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ABSTRACT Fuzzy cognitive map has gradually emerged as a powerful paradigm for uncertain knowledge
representation and a simulation mechanism that is applicable in dealing with complex artificial reasoning
problems. To better model uncertain inference reasoning problems, we propose an extended intuitionistic
fuzzy cognitive map via Dempster-Shafer theory. First of all, some new operations on IFSs are introduced
from the perspective of Dempster-Shafer theory. Then, the extended intuitionistic fuzzy cognitive map is
established via the proposed new operations. Next, we investigate the problem of modeling complex system
from multiple decision makers using extended intuitionistic fuzzy cognitive maps and present a method to
aggregate a number of maps. Particular emphases are put on defining the augmented connection matrices,
determining the importance levels of different extended intuitionistic fuzzy cognitive maps and aggregating
them. Finally, the performances of extended intuitionistic fuzzy cognitive maps have been validated through
a number of simulations. The simulations indicate that the theory of extended intuitionistic fuzzy cognitive
map not only provides much more choices to model complex system but also reduces the computational
complexity by comparison with intuitionistic fuzzy cognitive map.

INDEX TERMS System modeling, extended intuitionistic fuzzy cognitive map (EIFCM), intuitionistic fuzzy

sets, Dempster-Shafer theory.

I. INTRODUCTION

Since Kosko [1] introduced the fuzzy cognitive map (FCM),
the theory has gained considerable research interests and has
been widely utilized in a number of fields, such as time series
modeling [2], decision making [3], prediction [4], cooperative
sensing in cognitive radio [5], etc. To enhance the perfor-
mance of modelling the complex system, a number of gran-
ules, such as interval-valued fuzzy sets, grey sets, rough sets
and intuitionistic fuzzy sets (IFSs), have been successfully
employed to design high-order cognitive maps [5]-[9].

The existing studies indicate that various granular cogni-
tive maps are more effective in system modeling with uncer-
tainty than FCM. Among all granular theories, IFS belongs
to an effective generalization of fuzzy set and extends fuzzy
set by the membership degree, the non-membership degree
and the uncertain degree to depict the uncertain informa-
tion, where the three values are located in the interval [0, 1]

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan-Hsun Tseng

23186 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

and their sum equals to 1 [10], [11]. In view of its per-
formance to depict and handle uncertain information, IFS
has been successfully employed in a number of fields, such
as decision making [12], patter classification [13], image
processing [14], uncertain information fusion [15], [16] and
cognitive learning [9]. Note that intuitionistic fuzzy cognitive
map (IFCM) [8], [9], a generalization of FCM, provides
more choices to model uncertain problems, such as process
control, medical decision support and social economic prob-
lems. In particular, IFCM covers three key aspects [8]-[10]:
(1) IFCM represents the state of nodes and the connec-
tions via intuitionistic fuzzy number (IFN) to describe the
uncertain information. (2) IFCM employs conventional addi-
tion operation, multiplication operation and sigmoid func-
tions in the exploration process. (3) IFCM’s transformation
function just depends on the membership degree and the
non-membership degree to determine the state of all the nodes
in each iteration. Despite the better performance of modeling
uncertain system than FCM, IFCM may induce unreasonable
results in system inference due to its operations in iterative
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process [9]. What’s more, the problems of both aggregating a
number of different IFCMs and quantifying their importance
levels (weights) have not been fully considered [8], [9].

To overcome the limitations and to enhance the perfor-
mances of IFCM, we propose an extended intuitionistic
fuzzy cognitive map (EIFCM) via Dempster-Shafer (D-S)
theory [17]. The main contributions of the EIFCM can be
categorized as follows.

o We propose an aggregation operator, a new multipli-
cation and a similarity degree between intuitionistic
fuzzy matrices as supplements of conventional basic
operations on IFSs. Note that an IFN (u, v, 7) may be
regarded as a piece of evidence and D-S theory belongs
to an effective fusion scheme to aggregate evidences.
Thus, D-S theory can be effectively utilized within the
framework of IFS. Then, an aggregation operator and a
new multiplication are introduced from the perspective
of D-S theory [17]. By comparison with conventional
basic operations, both the aggregation operator and the
multiplication consider both the membership degree and
the non-membership degree with equal status which
reflects the essence of the concept of IFS. The result
is that the two operations can overcome some unrea-
sonable results derived from conventional operations
on IFSs in processing some uncertain fusion or deci-
sion making problems. In addition, the similarity degree
presents an effective way to describe the divergence
between two intuitionistic fuzzy matrices.

o« We present a complete mathematical frame of the
EIFCM via the proposed operations. In addition,
the EIFCM fully considers three elements of IFSs while
the IFCM just employs the membership degree and the
non-membership degree during the activation process of
concepts. Thus, the EIFCM not only has much more
choices to choose the transformation function but also
can meet more system modeling problems than the
IFCM.

« We propose a scheme for solving the problem of aggre-
gating a number of EIFCMs. To better model infer-
ence reasoning problems in complex system, it is of
great importance to aggregate knowledge from differ-
ent maps. This scheme mainly solves three challenges
including augmenting connection matrices, determining
the importance levels of different maps and aggregating
them. What’s more, this scheme can be employed in
aggregating [IFCMs.

In brief, in view of above three aspects, it is certain that
that the theory of EIFCM delivers a new vision of system
modeling.

This paper is organized as follows. In Section II, we recall
some preliminaries to be utilized in the whole paper.
In Section III, we present some new operations on IFSs
as supplements of conventional theories. In Section IV,
we establish a complete mathematical frame of the EIFCM
via the new proposed operations. Meanwhile, we investigate
the problem of aggregating knowledge in the framework of
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the EIFCMs. In Section V, we utilize a number of simulations
to validate the performance of the EIFCM by comparison
with conventional models. Section VI concludes the paper.

Il. PRELIMINARIES
A. INTUITIONISTIC FUZZY SET
In 1986, Atanassov [10] introduced the concept of IFS which
utilize the membership degree, the non-membership degree
and the uncertain degree to depict the uncertain information.
Definition I [10]: Let X be a set, an IFS A on X is
defined as A = {(x, pa(x), va(x))|x € X}, where iz
X — [0,1] and v4 : X — [0, 1] are two maps satisfying
0 < puax)+valx) < 1forallx € X. ua(x) and v4(x) denote
the membership degree and the non-membership degree of x
to A, respectively. For each IFS A in X, we designate ma(x) =
1 — ua(x) — va(x) an intuitionistic index of x in A. In order
to facilitate the description, we adopt &« = (Ly, Vo, Tq) OF
o = (Ug, Vo) to denote an intuitionistic fuzzy number (IFN).
Definition 2 [10]: For two IFNs a = (i, Vo) and f =
(g, vg), the basic operations between them are with the
following forms,

oa® /3 = (H’Ol + np — Lo, Vot"'ﬂ)’ (1)
a®p = (Mo, Vo + vp _Vavﬂ)v (2)
o = (Vo, ta). 3)

B. DEMPSTER-SHAFER THEORY
As a generalization of the Bayesian theory of subjective
probability, D-S theory allows one to combine those evidence
from different sources and get a degree of belief which con-
siders all the available information [17]. Due to good perfor-
mance in aggregating uncertain information, D-S theory has
been deeply discussed and successfully utilized in decision
making [18], [19], pattern classification [20], spectrum sens-
ing [21], etc. In what follows, we briefly recall D-S theory.

Definition 3 [17]: Let © be a finite set called the discern-
ment frame and 2° be the power set of ©. A basic belief
assignment (bba) is a mapping m : 2° — [0, 1] which
satisfies Y 4o = 1.

Definition 4 [17]: Let © be a finite set called the discern-
ment frame and 2° be the power set of ©. A belief (credibility)
function and a plausibility functions 0 A C © are defined by

Bel(A) = Z m(B), “)
Be2© BCA

PI(A) = Z m(B) = 1 — Bel(A), 5)
Be2© BNA£(

where A denotes the complement of A in ©.

Definition 5 [17]: Let m; and my be two bbas defined
on © which are derived from two different sources. Then the
combined bba is defined as
0 A=0

ZB,CQ@,BﬂC:A mi(Byma(C)

= ZB,Cg@,BmC:w mi(Byma(C)

my @ my(A) =

A+

(6)
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when Y p cco pnc=g ™ BYm2(C) # 1.K =) p cco prc=p
m1(B)my(C) is called the degree of conflict between the two
mass sets.

lIl. THE NEW OPERATIONS ON INTUITIONISTIC

FUZZY SETS

A. OPERATIONS

On the basis of D-S theory [17], [22], we introduce a special
fusion rule as below.

Definition 6: Let ® = {A1, Aa, A3} be the frame of dis-
cernment. Mass function from different J information sources
are denoted by m; (j = 1,2,...,J) satisfying mj(A1) +
mj(Az) + mj(A3) =10< mj(Al), mj(Az), mj(A3) < 1. Then
the fusion rule @ is with the following methematical form:

m(A;) = & mj(A)

J
m;(B;
ZB.m.--mB,:A,», Bje® Hj:l j(B))

-1, I_K @ )
7 j=1mj(Ai) (ii)

J
K= > [[mis) 8)

B;je®, BiN---NB;=0 j=1

where (i) : K # 1and [[_ miA) # 0G = 1,2);
(ii) : K =1or [T, mj(A;) = 0.

Following Definition 6 and relevant works [17], we present
an aggregation operator on IFS.

Definition 7: For n IFNs o; = (ui,vi) i = 1,2,...,n),
a D-S-theory-based intuitionistic fuzzy aggregation (DSIFA)
operator is defined by

DSIFA (a1, 02, . . ., ) = (D mi(A1), i mi(A2)), (9)

where mi(A1) = wini, mi(Az) = wv, w; € [0,1] and
maxie1,2,...{wi} = 1.

Remark 1: As indicated in Definition 7, the DSIFA oper-
ator not only provides a new way to aggregate a number
of IFNs but also describes their importance levels. Different
from the existing aggregation operators, the weights of all
IFNs are located in the interval [0, 1] and the maximum value
equals to 1 for the DSIFA operator. Clearly, the weights can
be transferred between the DSIFA operators and others.

As can be observed from [10], the three elements of three
IFS have not been considered equally in the multiplication
operation. As proved in [25], the operation may induce some
unreasonable in some fusion problems. To equally reflect
the three elements of IFS, we present a new multiplication
operation as supplements of conventional operations on IFS.

Definition 8: For two IFNs o« = (Ug,Vy) and B =
(g, vg), a new multiplication rule & is defined by

a®pB = DSIFA,(y1, V2, V3, V4, V5, Y6)s (10

wherew = %[Mﬂ vg 1—pg—vg to Vo l—pg—vol?, C =
max{ﬂﬂ’ vg, =g —Vg, e, Vo, 1 =g —Va}, Y1 = (Ra, Vo),
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V2 = (Has Vo), y3 = (Peg, By = (ug, vp), vs =
(11, vp) and ys = (“L5*2, HEE,

In what follows, we employ two examples to validate the
performance of the DSIFA operator and the multiplication
rule.

Example 1: There are 10 IFNs to be aggregated via
the DSIFA operator and a number of conventional opera-
tors [23]-[27] as TABLE 1.

Example 2: For two IFNs o =
(0.5, 0.5), we get

(0.5,0.5) and B =

a® B = (0.25,0.75),
a®B = (0.5,0.5).

Remark 2: As can be observed from TABLE 1, the aggre-
gated IFN of a number of IFNs is (1, 0) if there is one equaling
to (1, 0) for some operators. Similarly, the aggregated IFN
is (0, 1) of a number of IFNs from some aggregation opera-
tors [23]—[27] if one is (0, 1). In contrast with conventional
operators, the fusion value derived from DSIFA describes
the majority of aggregated IFNs. From the perspective of
IFS, (0.5, 0.5) implies that we can not distinguish the impor-
tance levels of the membership degree or the non-membership
degree. As shown in Example 2, ® better reflects the essence
of IFS than Q.

B. SIMILARITY ON INTUITIONISTIC FUZZY MATRICES
As well known, the similarity degree (or the distance)
presents an effective way to describe the divergence between
two vectors or matrices [12]. In order to describe the diver-
gence between two intuitionistic fuzzy matrices, we define a
similarity degree on intuitionistic fuzzy matrices as follows.
Definition 9: Let A and B be two n X n intuitionistic fuzzy
matrices, where

11 12 o Aln
%) (0%X) e oon

A= . . . . (11)
Upl Unl ce Qnn
B P2 - Pm
B B - Pum

B = ) ) . ) (12)
,3n1 ﬂnl ,Bnn

Then the similarity Sim(A, B) between A and B is defined by

‘ 1 n n
Sim(A. B) =1~ > D0 oG By, (13)

j=1j=1

where

Oajy, Bjj) = |mlogy) — (Bl + [v(egy) — v(Bj)l
(o) — (Bl (14)
Note that ajy = (u(aj), v(ogy), m(eyy)) and By =
((Bjj), v(Bjj), w(Bjj)) are two IFNs [10].
Obviously, the proposed similarity between two intuition-
istic fuzzy matrices satisfies the following theorem.
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TABLE 1. Aggregation results based on different operators.

Relevant parameters

Case Operators o - Results
TFWA a; = (0.1%.;),(13"22,...,10 i :?2:01 10 (1,0
[FOWA oy = (0.1?(1).;),(?2)2 ..... 10 i :%2:01 10 (1,0)
IFPWA o = (0.1(76;),(1]"22,”4710 i :uf2=01 10 (1,0)
TFHWA a; = (0 16,%.;),(1{22 ..... 10 i :1?2:01 10 (1,0)
1 IFHOWA a; = (0_1(?55),(1]71 2,....10 ; =“i2:01 10 (1.0
IFEWA o, = (0.1%;),(13"1)2, ..., 10 i :1112:01 10 S
IFEOWA a; = (0_1(?(1).;)7(1]"2 2,..., 10 i :uil, 2:,017 10 (1,0
IFWGA o = (0.1?6.;),(1]"2 2,...,10 i :?2:01 10 (1.0
IFOWGA o = (0_1?6;)1(1]-’22 ,,,,, 10 p :1112:01 10 (1,0
DSIFA a; = (0.10,%;),(13‘71)2, ...,10 = Iljlé,:“l. .10 (0.19,0.81)
[FWG o; = (0.9(76.12),(3"2 .10 i :uf2=01 10 (0.1)
IFHGWA o = (0_9?6.1:)1(3-’22 ,,,,, 10 p :1?2:01 10 ©1
, IFHGOWA a = (0_9?541:),((;’ 22, 10 ; =“i2:01 10 ©.1
IFEGA o = (0.9%‘1:)’(3-’1:) 10 i :1112:01 10 ©1
IFEOGA a; = (0_9(?(1).1:)7((;" i) 2,..., 10 i :uil, 2:,017 10 ©.1)
DSIFA o — (0.9%.1:)’((},1:)2’ o . 111;2:1 10 (0.81,0.19)

Theorem 1: Let A and B be two n X n intuitionistic fuzzy
matrices defined as Equations (13) and (14), then Sim(A, B)
satisfies the following three properties.

(1)0 < Sim(A,B) < 1;

(2) Sim(A, B) = Sim(B, A);

(3) Sim(A, B) = 1 if and only if A = B.

Proof: (1) Since 0 < |u(oyy) — w(Bj)l + [v(eyy) —
v(Bj)l + | (eyp) — (Bl = plegy) + vieyy) + (o) +
M(ﬁjj’) + V(,Bjj’) + n(ﬁjj’) and M(ajj’) + 1)(Oljj’) + n(ajj’) +
w(Bj) + v(Bjy) + m(Bjy) = 2 hold, we have 0 < Sim
(A,B) <.

(2) As shown in (14), Sim(A, B) = Sim(B, A) obviously
holds.

(3) = Sim(A, B) = 1 implies that 6(a;;, Bjy) = 0 (,j €
{1,2,...,n}). 0y, Bjy) = 0 is equivalent to p(ay) =
w(Bji), vie) = v(Bjy) and m(ay) = mw(By), i.e., A = B.
< A = B means that 0(ajy, Bj7) = 0 G,j € {1,2,...,n}).
Clearly, Sim(A, B) = 1 holds. [ |

IV. EXTENDED INTUITIONISTIC FUZZY COGNITIVE MAP

Based on FCM and its generalizations [1], [S], [6], [8], [9],
we present the EIFCM via the proposed operations. What’s
more, a scheme is proposed in dealing with the problem of

aggregating fuzzy knowledge networks within the framework
of EIFCM.

A. THE CONCEPT OF EXTENDED INTUITIONISTIC
FUZZY COGNITIVE MAP

An EIFCM is characterized by its connection matrix E.
It is the crux of the EIFCM. Connections between any two
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concepts in an EIFCM are denoted by IFNs. Input and output
information (activations and responses) in an EIFCM is also
expressed by IFNs.

To clearly state the concept of the EIFCM, some abbrevia-
tions are employed as below.

o IFSs(X) - all the IFSs on X
e N = {N1, N, ..., Ny} - the set of n concepts forming
the nodes of a map
o wjj - a weight of directed edge from N; to N;
e E = [wjjluxn - connection matrix
o C(t) = [C1(t) Ca(t) ... Cu()]” - all concept values
from vector C at the moment ¢
EIFCM exploration is based on activations C(¢), which
are processed with the connection matrix E according to the
formula

Cilt + 1) = F(DSIFA(C(1), Cy(1)@wyi, . . ., Cy ()@Wy))

15)

where wy; means all non-(0, 0) connections from the j'th (j’ €
{1,2,...,n}) concept to the ith concept. F : IFSs(X) — L is
a transformation function with the following form,
fw) fv)
F = (—— [ K}
(@) = (=)
T =fw)+fO)+f().

Remark 3: By comparison with IFCM, the differences of
EIFCM cover the following three aspects. (1) Both the DSIFA
operator and ® are employed to construct the EIFCM instead
of conventional operations (see & and Q) from the IFCM.
(2) The EIFCM represents the default connection through

(16)
a7)
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(0, 0) instead of 0 in IFCM. (3) EIFCM has more freedom
to choose the transformation function than IFCM.

B. AGGREGATING FUZZY KNOWLEDGE NETWORKS

In general, aggregating knowledge from multiple experts can
provide much more reliable or reasonable decision results
than single expert. It can be concluded that it is of great impor-
tance to consider the problem of aggregating knowledge in
the establishment of cognitive models [7], [9]. As indicated
in [9], any set of cognitive maps can be naturally aggre-
gated through adding their pointwise augmented connection
matrices. The key points of aggregating knowledge within
the framework of EIFCM cover quantifying the augmented
connection matrices, determining the importance levels of
different EIFCMs and aggregating them. In what follows,
we present the proposed scheme of aggregating fuzzy knowl-
edge within the framework of EIFCM. The flowchart of this
scheme is shown as FIGURE 1.

o X _
Expert k —’QOO/O \1 ~ES
Augmented
matrices

Aggregated

Experts EIFCMs EIFCM

FIGURE 1. The flowchart of aggregating EIFCMs.

1) PROBLEM DESCRIPTION

Suppose there are k experts each draw an EIFCM. The
ith expert’s EIFCM is equivalent to an n; X n; connection
matrix E;.

2) QUANTIFYING THE AUGMENTED
CONNECTION MATRICES
Transform connection matrices E; (i = 1,2, ..., k) to aug-
mented connection matrices E; (i=1,2,...,k). In general,
these different connection matrices are not likely to be con-
formable for aggregating directly. Suppose the first EIFCM
utilize a concept N; that is not utilized in the second one.
It implies that there are not any causal relationships between
Nj and every concept in the second one. Then E; can be
augmented to include N; by adding a row and column of all
(0, 0). If the total number of distinct concepts of k EIFCMs
is n, then each connection matrix E; is augmented to an x n
matrix E; as

(@) (@) (@)

T T

1 l L

- w w, w

E=|1 7 " (18)
Wl Wl Wi

23190

3) DETERMINE THE WEIGHTS OF ALL EIFCMs

For aggregating above k maps, the first task is to determine
their weights w. If w is known, we just need to aggregate
all the augmented connection matrices E; (i=12,...,k)
through the DSIFA operator. Concerning the situation that the
weights are completely unknown, we propose a consensus-
based method to assess the importance levels of different
maps. From the perspective of consensus, those maps with
higher similarities to others will be given larger values and
vice versa. As analyzed above, the weights of different maps
are defined by

L
0; = , 19
"7 max{I'y, T2, ..., Tk} (19)
where 0; € [0, 1]and Ty = Y"b_, ;. Sim(E;, Ey).
4) AGGREGATING ALL EIFCMs
Let E be the aggregated connection matrix as
Wil Wiz s Wi
w2t w2 s W
E = ] ] ) . . (20)
Wnl Wnl s Wnn

On the basis of both (18) and (19), we get

1 2 k ..
wjj =DSIFAg(W) W', . wj(.j,)), jji=12...,n (1)

i
where 6 = [01,60,, ..., Gk]T is the weight vetor of all maps

to be aggregated.

V. SIMULATION AND ANALYSIS
Two examples are employed to validate the performance of
the proposed EIFCM by comparison with [IFCM.

A. MEDICAL DECISION SUPPORT PROBLEM

Here we consider a pneumonia risk decision making prob-
lem [9], [28] which contains seven symptoms of cough (Ny),
fever (N3), rigor (N3), the radiological evidences of pneu-
monia (N4), the dyspnoea (Ns), the immunosuppression (Ne)
and the risk of infection (N7). Above seven symptoms are the
concepts of the considered cognitive models as FIGURE 2.

FIGURE 2. A cognitive map for pneumonia risk decision making [28].

1) EIFCM VS. IFCM

Here we employ both EIFCM and IFCM to model above
problem [9]. Suppose all the concept values are denoted by
IFNs, where the membership degree, the non-membership

VOLUME 8, 2020
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TABLE 2. The connection matrix.

N,y N» N3 Ny Ns Ne N7
N1 (0.70,0.10)
Ny (0.60,0.30)
N3 (0.65,0.10) (0.60,0.15)
%4 (0.60, 0.30) 5828, 8:1))83
5 .60, 0.
Ns (0.50, 0.40)
0.3 T T T T T 0.5 T T T
o) o} © ¢ ¢ ¢ —© membership degree
° 0.45 —© non-membership degree | 1
025 04
[0}
0.35
0.2 o) o 5
@ ® 03 Q © © 0] Q
ol £
2] 2]
3 0.15 2025
$ 3
%] » 02 4
0.1
0.15
0.1
0.05
—© membership degree 0.05
——© non-membership degree
0 T T T 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Iterations Iterations

FIGURE 3. The change tendency of C, for Case 1.

0.25
o} (0] 0] 0] (0]
02t g §
©
2 0.15
©
@
>
©
©
2
»n 0.1
0.05
—© membership degree
—© non-membership degree
0 I I I
1 2 3 4 5 6 7 8 9 10

Iterations

FIGURE 4. The change tendency of C; for Case 1.

degree and the hesitant degree denote the serious intensity,
the good degree and the uncertain degree of the symptoms,
respectively. The connection matrix is shown as TABLE 2,
in which the default connections are (0, 0) in EIFCM. Once
it + 1) — wil < 107* and vt + 1) — vi(0)| <
107% (i=1,2,...,7)(Ci(t) = {ui(t), vi(t)} and Ci(t + 1) =
{umi(t + 1), vi(t + 1)}) hold, we think EIFCM or IFCM reach
the steady states. Both [IFCM and EIFCM utilize tanh as the
transformation function. The results of the reasoning process
derived from both IFCM and EIFCM are shown as TABLE 3
and FIGUREs 3-8.
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FIGURE 5. The change tendency of C, for Case 2.

0.5

T T T
—©O membership degree
0.45 —© non-membership degree |

o
w 2
[N

o
w
©

©
©
©
©
©
O
o

Steady state
o o
° S 9 N
PN o N (4]

o
o
a

o
N
N}
w
IN

5 6 7 8 9 10
Iterations

FIGURE 6. The change tendency of C; for Case 2.

From the simulation results, we can get the following
results: (1) As shown in TABLE 3, the iterative times of
three cases from EIFCM are 0.86%, 0.77% and 1.32%
from IFCM’s, and the executing time (MATLAB 2016R;
Intel(R) Core (TM) i5-3470 CPU; 4.00 GB RAM) of three
cases from EIFCM are 8.74%, 8.91% and 35.25% from
IFCM’s. The results indicate that EIFCM has lower com-
putational complexity in modeling the pneumonia risk deci-
sion making problem than IFCM. (2) The initial state is
[(1,0) (0,0) (1,0) (1,0) (0, 0) (0, 0) (0, 0)]” for Case 1. The
steady state of IFCM is [(0.0379, 0) (0.4181, 0) (0.0379, 0)
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TABLE 3. Simulation results via IFCM and EIFCM.

Steady state

Iterative times Executing time (second)

Cases Concepts Initial State
IFCM EIFCM IFCM  EIFCM  IFCM EIFCM
C1 1,0 (0.0379,0) (1,0
Cs (0,0) (0.4181,0) (0.2883,0.0559)
Cs (1,0) (0.0379,0) (1,0)
Case 1 Cy (1,0) (0.0379,0) (1,0) 1043 9 0.4256 0.0372
Cs (0,0) (0,0) (0,0)
Cs (0,0) (0,0) (0,0)
Cr (0,0) (0.6309, 0) (0.2094, 0.0749)
Ch (0.5,0.5) (0.0379, 0.0379) (0.5,0.5)
Ca (0.5,0.5) (0.4180, 0) (0.3101,0.1996)
Cs (0.5,0.5) (0.0379, 0.0379) (0.5,0.5)
Case 2 Cy (0.5,0.5) (0.0379,0.0379) (0.5,0.5) 1040 8 0.4141 0.0369
Cs (0.5,0.5) (0.0379,0.0379) (0.5,0.5)
Cs (0.5,0.5) (0.0379, 0.0379) (0.5,0.5)
Cr (0.5,0.5) (0.6414, 0) (0.3025, 0.2046)
Cy ©,1) (0,0.0531) ©,1)
Ca (0,0) (0,0) (0.1366,0.2109)
Cs (0,1) (0,0.0531) (0,1)
Case 3 Cy (0,1) (0,0.0531) (0,1) 530 7 0.0959 0.0338
Cs (0,0) (0,0) (0,0)
Cs (0,0) (0,0) (0,0)
Cr (0,0) (0,0) (0.1326,0.1529)
0.2 connections to Ny, N3, N4, Ns and Ng, the steady state
EE N L values of the five nodes should be maintained. As indicated
02+ ?Q ? in TABLE 3, the simulation results from EIFCM are more
? reasonable than the results from IFCM with respect to above
five nodes. The steady state values of N, from both IFCM and
§ 0.15 o EIFCM are (0.4181,0) and (0.2823,0.0559) respectively.
z The patient has a big probability to get a fever and the risk
2 o of infection since 0.4181 > 0, 0.2823 > 0.0559, 0.6309 > 0
and 0.2094 > 0.0749 hold. In addition, 0.4181 > 0.2823 and
0.6309 > 0.2094 are due to the reason that [IFCM just consid-
0.05 ers the membership degree and the non-membership degree
6 non-membership degree in the construction of transformation function and adopts con-
0 —©_membership degree ventional operations [10] while EIFCM fully considers three
1 2 3 4 5 6 7 8 9 10 elements of IFS and employs both the new proposed DSIFA
Iterations

FIGURE 7. The change tendency of C, for Case 3.
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FIGURE 8. The change tendency of C; for Case 3.

(0.0379, 0) (0, 0) (0, 0) (0.6309, 0)]” and the steady state of
EIFCM is [(1, 0) (0.2823, 0.0559) (1, 0) (1, 0) (0,0) (0,0)
(0.2094, 0.0749)]7. Considering that there are not any
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operator and the multiplication rule ®. (3) The initial state is
[(0.5,0.5) (0.5,0.5) (0.5, 0.5) (0.5, 0.5) (0.5,0.5) (0.5,0.5)
(0.5,0.5)]7 for Case 2. The steady state of IFCM is
[(0.0379, 0.0379) (0.4180,0) (0.0379,0.0379) (0.0379,
0.0379) (0.0379, 0.0379) (0.0379, 0.0379) (0.6414, 0)]” and
the steady state of EIFCM is [(0.5,0.5) (0.3101, 0.1996)
(0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.3025, 0.2046)]” .
From the perspective of IFS, (0.5, 0.5) implies that we can
not distinguish the importance levels of every nodes. As dis-
cussed in (2), the steady state values of Ni, N3, N4, N5 and
Ng should be (0.5, 0.5) which are the same as the results from
EIFCM. The steady state values of N, from both IFCM and
EIFCM are (0.4180,0) and (0.3101,0.1996) respectively.
Since 0.4180 > 0.3101 > 0.1996 > 0 holds, IFCM
thinks that the patient has higher probability to get a fever by
comparison with EIFCM. The steady state values of N7 from
both IFCM and EIFCM are (0.6414, 0) and (0.3025, 0.2046)
respectively. 0.6414 > 0.5 > 0.3025 > 0.2046 > 0 means
that IFCM thinks that the patient has higher probability to
get the risk of infection than EIFCM. 0.6414 > 0.5 indicates
that the patient is with great probability to have the risk of
infection which contradicts the assumption of initial state.
(4) The initial state is [(0, 1) (0, 0) (0, 1) (0, 1) (0, 0) (0, 0)
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TABLE 4. Simulation results via EIFCM with three different transformation functions.

Steady state

Iterative times

Cases Concepts Initial State
f1 f2 f3 f1 f2 f3
C (1,0) (0.3333,0.3333) (1,0) (1,0)
Cs (0,0) (0.3241,0.3168) (0.2883,0.0559) (0.2380, 0.0439)
C3 (1,0) (0.3333,0.3333) (1,0) (1,0)
Case 1 Cy (1,0) (0.3333,0.3333) (1,0) (1,0) 6 9 9
Cs (0,0) (0.3333,0.3333) (0,0) (0 0)
Cs (0,0) (0.3333,0.3333) (0,0) 0)
Cr (0,0) (0.3225,0.3142) (0.2094, 0.0749) (0.1649 0.0579)
Cy (0.5,0.5) (0.3333,0.3333) (0.5,0.5) (0.5,0.5)
Cy (0.5,0.5) (0.3241,0.3168) (0.3101,0.1996) (0.2942,0.1818)
Cs (0.5,0.5) (0.3333,0.3333) (0.5,0.5) (0.5,0.5)
Case 2 Cy (0.5,0.5) (0.3333,0.3333) (0.5,0.5) (0.5,0.5) 5 8 11
Cs (0.5,0.5) (0.3333,0.3333) (0.5,0.5) (0.5,0.5)
Cs (0.5,0.5) (0.3333,0.3333) (0.5,0.5) (0.5,0.5)
Cr (0.5,0.5) (0.3225,0.3142) (0.3025, 0.2046) (0.2888,0.1901)
Cy (0,1) (0.3333,0.3333) (0,1) 0,1)
Cy (0,0) (0.3241,0.3168) (0.1366, 0.2109) (0.1092,0.1713)
Cs (0,1) (0.3333,0.3333) (0,1) 0,1)
Case 3 Ca (0,1) (0.3333,0.3333) (0,1) (0,1) 6 7 10
Cs (0,0) (0.3333,0.3333) (0,0) (0,0)
Cs (0,0) (0.3333,0.3333) (0,0) (0,0)
Cy (0,0) (0.3225,0.3142) (0.1326, 0.1529) (0.1026,0.1196)

(0,0)]7 for Case 3. The steady state of IFCM is
[(0, 0.0531) (0, 0) (0, 0.0531) (0, 0.0531) (0, 0) (0, 0) (0, 0)]”
and the steady state of EIFCM is [(0, 1) (0.1366, 0.2109)
(0,1) (0,1) (0,0) (0,0) (0.1326,0.1529)]7, respectively.
Same as both Case 1 and Case 2, the steady state values of
N1, N3, N4, N5 and Ng from EIFCM have maintained while
the steady state values of Ny, N3 and N4 from IFCM are com-
pletely different from initial values. In addition, 0.1366 <
0.2109 and 0.1326 < 0.1529 from EIFCM indicate that the
patient have maintained good situations while [IFCM can not
make a definite decision since the steady state values of both
N; and N7 are (0, 0). (5) FIGUREs 3-8 reflect the change
trend of both N, and N7 and the gap between the membership
degree and the non-membership degree.

Remark 4: As discussed above, EIFCM can not only pro-
vide more reasonable inference results in system modeling but
also reduce the computational complexity than IFCM .

2) EIFCM WITH DIFFERENT TRANSFORMATION FUNCTIONS
We respectively utilize three different transformation func-
tions including fi(x) = H—Tp(x)’ f(x) = tanh(x) and
f3(x) = exp(x) — exp(—x) in the establishment of EIFCM
to model the above medical decision support problem. Using
f1, > and f3, the simulation results via EIFCM are shown as
TABLE 4.

Remark 5: As proved in TABLE 4, EIFCM presents a
flexible way to choose different functions as transformation
function while IFCM just chooses sigmoid functions. As a
result, we have more choices in system modeling.

B. SOCIAL ECONOMIC PROBLEM

Here we employ the proposed scheme of aggregating
EIFCMs to model a social economic inference system via
five factors including Population (Ny), Crime (N3), Economic
condition (N3), Poverty (N4), and Unemployment (Ns) [28].
Three experts present their respective EIFCMs based on some
of above five factors shown as FIGUREs 9(a)-9(c). In what
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follows, we present two cases: (1) the known weights of
three EIFCMs; (2) completely unknown weights of the three
EIFCMs.!

1) THREE EIFCMs ARE WITH KNOWN WEIGHTS
Step 1: Let [0.2 0.5 0.3] be the weight vector of three
EIFCMs. As shown in FIGURE 9, the connection matri-

ces of three respective EIFCMs E|, E, and E3 are denoted
by (22)-(24).

Ny N3 Ns
N (0,0) (0.1,0.8) (0.8,0.1) 22)
N3 (0,0) 0, 0) (0.1,0.8) |’
Ns (0,0) 0, 0) 0, 0)
Ny Ny N3 Ny
N1 0,0) 0, 0) 0.1,0.7) 0, 0)
N> 0,0) 0, 0) 0, 0) 0.1,0.7) |,
N3 0,0) (0.1, 0.8) 0,0) 0, 0)
Ny (0.1,0.8) 0.9,0) 0,0) 0,0
(23)
Ny N3 Ny Ns
Nj 0,0) 0.2,0.7) 0, 0) 0.7,0.2)
N3 0,0 0,0 0,0) 0.2,0.7)
Ny (0.1,0.7) 0, 0) 0, 0) (0.7,0.2)
Ns 0,0) 0, 0) 0.8,0.1) 0, 0)
(24)

_ Next, we get their augmented connection matrices Eq,
E» and Ej5 as (25)-(27).

0,0) (0,0) (0.1,0.8) (0,0) (0.8,0.1)
0,0) (0,0) (0,0) (0,0) (0,0)
0,0) (0,0) (0,00 (0,0) (0.1,0.8) |, (25
0,0) (0,0) (0,0) (0,0) (0,0)
0,0) (0,0) (0,0) (0,0) (0,0)

The problem of aggregating knowledge regarding IFCMs has not been
considered in [8], here we just employ EIFCMs to mode this aggregating
knowledge problem.

23193



IEEE Access

Z. Jia et al.: EIFCM via D-S Theory

wis = (0.1,0.8)

wss = (0.1,0.8)

N; N5 )
(a) Model 1

(5 ‘ ::/N_%\:

LA Wiz = (02'07) _
15 = (0.7,0.2)

wyq = (0.1,0.7) wss = (0.2,0.7)

wss = (0.8,0.1)

Was = (0.7,0.2)

(c) Model 3

FIGURE 9. Three EIFCMs and their aggregated map.

wisz = (0.1,0.7)

wyp = (0.1,0.8) ws, = (0.1,0.8)
wy, = (0.9,0
N 42 = (0.9,0) %)
R W = (0.1,0.7) N

(b) Model 2

‘:/Nl

(d) Model 4

0,0 0,00 (0.1,0.7)  (0,0) (0,0 Step 2: Based on the known weight vector [0.2 0.5 0.3],
0,0 0,0 0,00 (0.1,0.7) (0,0) we get & = [0.4 1 0.6]. Then we get the aggregated connec-
0,00 (0.1,0.8) (0,0 0,00 (0,0) |, tion matrix as (28), shown at the bottom of this page.
0.1,0.8)  (0.9,0) (0,0 0,00 (0,0) Step 3: Let C(0)=[(0.1, 0.8) (0.1, 0.1) (0.4, 0.1) (0.1, 0.2)
0,0) 0,0) 0,0 0.0 0,0 0.1, 0.D]7 be the initial state values. In addition, we have
(26) selected the function f(x) m as the transfor-
0,00 (0,0) (0.2,0.7) (0,0) (0.7,0.2) mation function for the simulations. Once |u;(t + 1) —
0,00 (0,00 (0,0) 0,0) 0,0) wi(®)] < 107* and |vi(r + 1) — vi(t)] < 107* ( =
0,00 (0,00 (0,0 0,00 (0.2,0.7) 1,2,...,5 (Cit) = {ui(®),vi@®)} and Ci(r + 1) =
(0.1,0.7) (0,0) (0,0) 0,0) (0.7,0.2) {ui(t + 1), vi(r + D}) hold, the aggregated model is consid-
0,00 (0,00 (0,00 (08,0.1) (0,0 ered to reach the steady states. The results of the reasoning
27 process that are obtained with the aggregated model at each
0,0 (0,0) (0.0005, 0.1002) (0,0) (0.2467, 0.0533)
0,0) 0,0) (0,0) (0.0333, 0.2333) 0,0)
E = (0,0) (0.0333, 0.2667) (0,0) 0,0) (0.0533, 0.2467) (28)
(0.0533, 0.4067) (0.3000, 0) (0,0) 0,0) (0.1400, 0.0400)
0,0) 0,0) (0,0) (0.1600, 0.0200) 0,0)
0,0) 0,0) (0.0023, 0.4534) 0,0) (0.4944, 0.0984)
0,0) 0,0) (0,0) (0.0305, 0.2137) 0,0)
E = 0,0) (0.0305, 0.2443) (0,0) 0,0) (0.0984, 0.4944) (30)
(0.0631, 0.4720) (0.2748, 0) (0,0) 0,0) (0.2277,0.0651)
0,0) 0,0) 0,0) (0.2603, 0.0325) 0,0)
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TABLE 5. Reasoning using the aggregated EIFCM.

t C1(t) Ca(t) Cs(t) Ca(t) Cs(t)

0 (0.1000,0.8000) (0.1000,0.1000) (0.4000,0.1000) (0.1000,0.2000) (0.1000,0.1000)
1 (0.3013,0.3456) (0.3076,0.2887) (0.3429,0.2981) (0.3047,0.2889) (0.3096,0.2885)
2 (0.3306,0.3147) (0.3401,0.2923) (0.3350,0.3039) (0.3357,0.2923) (0.3431,0.2889)
3 (0.3348,0.3123) (0.3448,0.2925) (0.3339,0.3031) (0.3402,0.2923) (0.3479,0.2888)
4 (0.3354,0.3121) (0.3455,0.2925) (0.3338,0.3029) (0.3409,0.2923) (0.3486,0.2887)
5 (0.3355,0.3121) (0.3456,0.2925) (0.3338,0.3029) (0.3410,0.2923) (0.3487,0.2887)
6 (0.3355,0.3121) (0.3456,0.2925) (0.3338,0.3029) (0.3410,0.2923) (0.3487,0.2887)
7 (0.3355,0.3121) (0.3457,0.2925) (0.3338,0.3029) (0.3410,0.2923) (0.3487,0.2887)
8 (0.3355,0.3121) (0.3457,0.2925) (0.3338,0.3029) (0.3410,0.2923) (0.3487,0.2887)

TABLE 6. Reasoning using the aggregated EIFCM.

t Cq (t) Cg(t) Cd(t) C4(t) C5(t)

0 (0.1000,0.8000) (0.1000,0.1000) (0.4000,0.1000) (0.1000,0.2000) (0.1000,0.1000)
1 (0.3014,0.3513) (0.3072,0.2887) (0.3429,0.2991) (0.3059,0.2889) (0.3155,0.2890)
2 (0.3309,0.3175) (0.3393,0.2922) (0.3349,0.3137) (0.3388,0.2923) (0.3535,0.2902)
3 (0.3351,0.3146) (0.3440,0.2924) (0.3338,0.3143) (0.3439,0.2923) (0.3590,0.2900)
4 (0.3357,0.3143) (0.3447,0.2924) (0.3336,0.3142) (0.3446,0.2923) (0.3598,0.2900)
5 (0.3358,0.3143) (0.3448,0.2924) (0.3336,0.3142) (0.3447,0.2923) (0.3599,0.2900)
6 (0.3358,0.3143) (0.3448,0.2924) (0.3336,0.3142) (0.3447,0.2923) (0.3599,0.2900)

iteration ¢ till convergence at a steady state are displayed
in TABLE 5.

2) THREE EIFCMs ARE WITH COMPLETELY
UNKNOWN WEIGHTS
Step 1: Similarity as above example, the connection matri-
ces of three respective EIFCMs are the same as (22)-(24),
and their augmented connection matrices are the same
as (25)-(27).

Step 2: On the basis of Eq. (19), we get

6 =[1.0000 0.9161 0.9760]. (29)

Next, we get the aggregated connection matrix as (30), shown
at the bottom of the previous page.

Step 3: Let C(0)=[(0.1, 0.8) (0.1, 0.1) (0.4,0.1) (0.1,0.2)
(0.1,0.1)]7 be the initial state values. In addition, we have
selected the function f(x) = m as the transformation
function for the simulations. Once |pc;+1) — ey < 1074
and |ve,g41) — vl < 1074 (= 1,2,...,5) hold, the
aggregated model is considered to reach the steady states.
The results of the reasoning process that are obtained with
the aggregated model at each iteration ¢ till convergence at a
steady state are displayed in TABLE 6.

Remark 6: Firstly, the augmented matrices of EIFCMs
have been defined in the construction of the aggregated map
as (25)-(27). Secondly, the problem of objectively determin-
ing the weights (importance levels) of different EIFCMs has
been solved. Note that (29) describes the importance levels
of different cognitive models. Thirdly, the aggregated EIFCM
has been established via the proposed DSIFA operator as
(28) (or (30)) which describes the mutual causal relationships
among different maps. Fourthly, the difference between (28)
and (30) and the variation tendency of all five factors
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(see TABLE 5 and TABLE 6) indicate the weights of different
models play an important role in system modeling. Overall,
the proposed new scheme of aggregating EIFCMs delivers a
new vision to establish reasonable map in system modeling.

VI. CONCLUSION
In this paper, an extended intuitionistic fuzzy cognitive map
via D-S theory (EIFCM) is proposed. While the proposed
extension retains the key advantage of IFCM, i.e., quantifying
the uncertain information in system modeling, it helps to
accurately capture the uncertain state to be modeled. Addi-
tionally, a new structure of EIFCM has been established.
Specifically, the DSIFA operator, a new multiplication oper-
ation and a similarity degree between two intuitionistic fuzzy
matrices have been proposed in succession as supplements of
basic theory on IFS. Basing on the DSIFA operator and the
new multiplication operation, the mathematical structure of
EIFCM was defined. What’s more, the problem of aggregat-
ing knowledge has been solved via the DSIFA operator, espe-
cially on the key point of objectively determining the weights
of different maps. The experiments indicate that EIFCM has
lower computational complexity and better generalization
ability when compared with the performance of IFCM.
EIFCM has not been fully validated by more practical
problems in the current work. In addition, it is necessary to
consider the combination between EIFCM and other machine
learning models. The studies on afore-mentioned two aspects
will be the future research hotspots.

REFERENCES
[1] B. Kosko, “Fuzzy cognitive maps,” Int. J. Man-Mach. Stud., vol. 24, no. 1,
pp. 65-75, 1986.
[2] A. Jastrzgbska and A. Cistak, “Interpretation-aware cognitive map con-
struction for time series modeling,” Fuzzy Sets Syst., vol. 361, pp. 33-55,
Apr. 2019.

23195



IEEE Access

Z. Jia et al.: EIFCM via D-S Theory

[3]

[4]

[5]
[6]

[71

[8]
[91

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

P. Hajek and W. Froelich, “Integrating TOPSIS with interval-valued intu-
itionistic fuzzy cognitive maps for effective group decision making,” Inf.
Sci., vol. 485, pp. 394-412, Jun. 2019.

S. Yang and J. Liu, “Time-series forecasting based on high-order fuzzy
cognitive maps and wavelet transform,” IEEE Trans. Fuzzy Syst., vol. 26,
no. 6, pp. 3391-3402, Dec. 2018.

J. Wang and Q. Guo, “Ensemble interval-valued fuzzy cognitive maps,”
IEEE Access, vol. 6, pp. 38356-38366, 2018.

W. Pedrycz and W. Homenda, “From fuzzy cognitive maps to granular
cognitive maps,” IEEE Trans. Fuzzy Syst., vol. 22, no. 4, pp. 859-869,
Aug. 2014.

G. Népoles, C. Mosquera, R. Falcon, I. Grau, R. Bello, and K. Vanhoof,
“Fuzzy-rough cognitive networks,” Neural Netw., vol. 97, pp. 19-27,
Jan. 2018.

E. I. Papageorgiou and D. K. Iakovidis, “Intuitionistic fuzzy cognitive
maps,” IEEE Trans. Fuzzy Syst., vol. 21, no. 2, pp. 342-354, Apr. 2013.
Y. Zhang, J. Qin, P. Shi, and Y. Kang, “High-order intuitionistic fuzzy
cognitive map based on evidential reasoning theory,” IEEE Trans. Fuzzy
Syst., vol. 27, no. 1, pp. 16-30, Jan. 2019.

K. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 20, no. 1,
pp- 87-96, Aug. 1986.

Y. Li and Y. Deng, “Intuitionistic evidence sets,” IEEE Access, vol. 7,
pp. 106417-106426, 2019.

C. Cheng, F. Xiao, and Z. Cao, “‘A new distance for intuitionistic fuzzy sets
based on similarity matrix,” IEEE Access, vol. 7, pp. 70436-70446, 2019.
J. F. B. Valderrama and D. J. L. B. Valderrama, ““On LAMDA clustering
method based on typicality degree and intuitionistic fuzzy sets,” Expert
Syst. Appl., vol. 107, pp. 196-221, Oct. 2018.

F. Zhao, Y. Chen, H. Liu, and J. Fan, “Alternate PSO-based adap-
tive interval type-2 intuitionistic fuzzy C-means clustering algorithm
for color image segmentation,” IEEE Access, vol. 7, pp. 64028-64039,
2019.

L. Fei, H. Wang, L. Chen, and Y. Deng, “A new vector valued similarity
measure for intuitionistic fuzzy sets based on OWA operators,” Iranian
J. Fuzzy Syst., vol. 16, no. 3, pp. 113-126, 2019.

F. Xiao, “Multi-sensor data fusion based on the belief divergence measure
of evidences and the belief entropy,” Inf. Fusion, vol. 46, pp. 23-32,
Mar. 2019.

A. Dempster, “The Dempster—Shafer calculus for statisticians,” Int.
J. Approx. Reasoning, vol. 48, no. 2, pp. 365-377, Jun. 2008.

L. Fei, Y. Deng, and Y. Hu, “DS-VIKOR: A new multi-criteria decision-
making method for supplier selection,” Int. J. Fuzzy Syst., vol. 21, no. 1,
pp. 157-175, Feb. 2019.

L. Fei, J. Xia, Y. Feng, and L. Liu, “An ELECTRE-based multiple criteria
decision making method for supplier selection using Dempster—Shafer
theory,” IEEE Access, vol. 7, pp. 84701-84716, 2019.

T. Denceux, “Logistic regression, neural networks and Dempster—Shafer
theory: A new perspective,” Knowl.-Based Syst., vol. 176, pp. 54-67,
Jul. 2019.

J. Wang, Q. Guo, W. X. Zheng, and Q. Wu, “Robust cooperative spectrum
sensing based on adaptive reputation and evidential reasoning theory in
cognitive radio network,” Circuits Syst. Signal Process., vol. 37, no. 10,
pp. 4455-4481, Oct. 2018.

L. Zhou and F. Xiao, “A new matrix game with payoffs of general-
ized Dempster—Shafer structures,” Int. J. Intell. Syst., vol. 34, no. 9,
pp. 2253-2268, Sep. 2019.

Z. Xu and R. R. Yager, “Some geometric aggregation operators based on
intuitionistic fuzzy sets,” Int. J. Gen. Syst., vol. 35, no. 4, pp. 417-433,
Aug. 2006.

23196

(24]

(25]

[26]

(27]

(28]

Z. Xu, “Intuitionistic fuzzy aggregation operators,” IEEE Trans. Fuzzy
Syst., vol. 15, no. 6, pp. 1179-1187, Dec. 2007.

S.-M. Chen and C.-H. Chang, “Fuzzy multiattribute decision making
based on transformation techniques of intuitionistic fuzzy values and intu-
itionistic fuzzy geometric averaging operators,” Inf. Sci., vols. 352-353,
pp. 133-149, Jul. 2016.

Y. D. He, H. Chen, L. Zhou, J. Liu, and Z. Tao, “Intuitionistic fuzzy
geometric interaction averaging operators and their application to multi-
criteria decision making,” Inf. Sci., vol. 259, pp. 142-159, Feb. 2014.
Y.D. He, H. Y. Chen, L. G. Zhou, B. Han, Q. Y. Zhao, and J. Liu, “General-
ized intuitionistic fuzzy geometric interaction operators and their applica-
tion to decision making,” Expert Syst. Appl., vol. 41, no. 5, pp. 2484-2495,
Apr. 2014.

B. Kang, Y. Deng, R. Sadiq, and S. Mahadevan, “Evidential cognitive
maps,” Knowl.-Based Syst., vol. 35, pp. 77-86, Nov. 2012.

ZHUOSHENG JIA is currently a Senior Engineer,
a Supervisor of master’s degree in computer sci-
ence, and the Director of the Information Tech-
nology Center, Beijing Jiaotong University, and
the Chairman of the Network Application Branch,
China Computer Users Association. His research
interests include computer network and applica-
tion, data analysis, and information technology.

YINGJUN ZHANG (Member, IEEE) received the
Ph.D. degree in computer science and technology
from the Harbin Institute of Technology, China,
in 2012. He is currently an Associate Professor and
a Ph.D. Supervisor with the School of Computer
and Information Technology, Beijing Key Labora-
tory of Traffic Data Analysis and Mining, Beijing
Jiaotong University. His current research interests
include machine learning, artificial intelligence,
! and decision theory and applications.

XUEMIN DONG received the bachelor’s degree
in computer science and technology from the Inner
Mongolia University of Technology, in 2018. She
is currently pursuing the master’s degree in com-
puter technology with Beijing Jiaotong University.
Her research interests include machine learning
and cognitive radio.

VOLUME 8, 2020



	INTRODUCTION
	PRELIMINARIES
	INTUITIONISTIC FUZZY SET
	DEMPSTER-SHAFER THEORY

	THE NEW OPERATIONS ON INTUITIONISTIC FUZZY SETS
	OPERATIONS
	SIMILARITY ON INTUITIONISTIC FUZZY MATRICES

	EXTENDED INTUITIONISTIC FUZZY COGNITIVE MAP
	THE CONCEPT OF EXTENDED INTUITIONISTIC FUZZY COGNITIVE MAP
	AGGREGATING FUZZY KNOWLEDGE NETWORKS
	PROBLEM DESCRIPTION
	QUANTIFYING THE AUGMENTED CONNECTION MATRICES
	DETERMINE THE WEIGHTS OF ALL EIFCMs
	AGGREGATING ALL EIFCMs


	SIMULATION AND ANALYSIS
	MEDICAL DECISION SUPPORT PROBLEM
	EIFCM VS. IFCM
	EIFCM WITH DIFFERENT TRANSFORMATION FUNCTIONS

	SOCIAL ECONOMIC PROBLEM
	THREE EIFCMs ARE WITH KNOWN WEIGHTS
	THREE EIFCMs ARE WITH COMPLETELY UNKNOWN WEIGHTS


	CONCLUSION
	REFERENCES
	Biographies
	ZHUOSHENG JIA
	YINGJUN ZHANG
	XUEMIN DONG


