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ABSTRACT Quantum mechanism, which has received widespread attention, is in continuous evolution
rapidly. The powerful computing power and high parallel ability of quantum mechanism equip the quantum
field with broad application scenarios and brand-new vitality. Inspired by nature, intelligent algorithm has
always been one of the research hotspots. It is a frontier interdisciplinary subject with a perfect integration
of biology, mathematics and other disciplines. Naturally, the idea of combining quantum mechanism with
intelligent algorithms will inject new vitality into artificial intelligence system. This paper lists major
breakthroughs in the development of quantum domain firstly, then summarizes the existing quantum
algorithms from two aspects: quantum optimization and quantum learning. After that, related concepts,
main contents and research progresses of quantum optimization and quantum learning are introduced
respectively. At last, experiments are conducted to prove that quantum intelligent algorithms have strong
competitiveness compared with traditional intelligent algorithms and possess great potential by simulating
quantum computing.

INDEX TERMS Quantum optimization, quantum learning, quantum evolutionary algorithm (QEA), quan-
tum particle swarm algorithm (QPSO), quantum immune clonal algorithm (QICA), quantum neural network
(QNN), quantum clustering (QC).

I. INTRODUCTION
In the early 1980s, Benioff and Feynman put forward the
idea of quantum computing, pointing out that computers
using quantum mechanics were more effective than classi-
cal counterparts when dealing with specific problems [1].
Feynman proposed to apply quantum mechanics to computa-
tional problems. According to [2], complex quantum systems
can be simulated by standard quantum systems to solve prob-
lems that classical computers cannot solve. Although people
had no idea about how to realize such a quantum simulator at
that time, Feynman’s idea has directly affected the develop-
ment of quantum computing. Then, the concept of quantum
Turing machine was presented and the existence of univer-
sal models based on quantum mechanics was theoretically
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proved in [3]. Simply speaking, the computational abilities
that classical computers can achieve can also be realized
using quantum models. The first quantum algorithm is given
in [4]. In the proposed problem, quantum computation has
exponential acceleration over classical computation. [5], [6]
propose quantum algorithms subsequently, which show that
quantum computing has advantages over classical computers
in solving certain problems. However, these specific prob-
lems are manually designed and their influence is limited to
practical usage.

In 1994, Shor proposed a quantum algorithm (Shor algo-
rithm) for factorizing large integers [7], which attracted many
researchers. Large prime factorization, a NP-hard problem,
is the guarantee of RSA public key cryptosystem security.
It takes exponential time to solve this problem using classical
computers. However, Shor algorithm shows that only polyno-
mial time is needed with quantum computing, making RSA
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can be easily deciphered. After that, the quantum searching
algorithm proposed byGrover can effectively find a particular
data in an unordered database. Taking advantage of quantum
parallelism, Grover algorithm can check all data at the same
time in each turn, which greatly reduces the complexity to
solve this searching problem. Since the proposition of Shor
algorithm and Grover algorithm, the unique computing style
and huge potential in information processing of quantum
computing have attracted extensive attention.

Quantum algorithm has shown profound impact in the
field of algorithm design. How to introduce the powerful
storage and computing advantages of quantum computing
into existing algorithms is of widespread concern. Intelligent
algorithm has always been a hotspot, thus the idea of com-
bining quantum theory with intelligent computing is natu-
rally proposed. Utilizing characteristics of quantum parallel
computing, the shortcomings of intelligent algorithm will be
efficiently made up.

Existing quantum intelligent algorithms include: quantum
evolutionary algorithm (QEA), quantum particle swarm opti-
mization algorithm (QPSO), quantum annealing algorithm
(QAA), quantum neural network (QNN), quantum Bayesian
network (QBN), quantum wavelet transform (QWT), quan-
tum clustering algorithm (QC), etc. It should be noted that
these algorithms are designed in a way that conforms to
the characteristics of quantum mechanism or are inspired by
them, more or less adopting the advantages of quantum com-
puting. As the development of quantum hardware is relatively
lagging behind, these algorithms cannot be tested on a real
quantum computer at present. Nevertheless, by simulating the
process of quantum computing, these algorithms can show
competitiveness over traditional intelligent algorithms.

From the perspective of application, intelligent algorithms
can be divided into two categories: optimization and learning.
On this basis, QEA, QPSO, QAA etc. are unified as quantum
optimization algorithms; QNN, QBN, QWT, QC etc. are
unified as quantum learning algorithms. In this paper, accord-
ing to the above two topics, typical quantum algorithms are
introduced in detail.

The structure of this paper is as follows: the develop-
ment of quantum computing and main content of quantum
intelligent algorithms are introduced in INTRODUCTION.
Then, according to the two modules which are quan-
tum optimization and quantum learning respectively, typical
quantum intelligent algorithms are showed and summa-
rized in QUANTUN OPTIMIZATION and QUANTUM
LEARNING. After that, TYPICAL APPLICATIONS lists
detailed applications and verifies performance of quantum
intelligent algorithms. Finally, a conclusion is presented in
CONCLUSION.

II. QUANTUN OPTIMIZATION
Using the unique characteristics of quantum computing,
intelligent optimization algorithms can be improved to
quantum intelligent optimization methods. Quantum opti-
mization not onlymaintains the powerful global search ability

and excellent robustness of intelligent algorithms, but also
absorbs the advantages of quantum computing. By using the
parallel computing ability of quantummechanism, it is able to
improve the diversity of population and accelerate the search
speed, thus greatly improving the efficiency of intelligent
optimization. In this part, some representative quantum opti-
mization methods are explained respectively. Firstly, QEA,
QPSO and QICA are introduced in detail. Then, according to
the existing research content, the hotspots of mainly improve-
ments are summarized. Finally, a summary is made.

A. QUANTUM EVOLUTIONARY ALGORITHM
QEA is a new evolutionary algorithm which adopts the
concept of quantum computing mechanism. [8] combined
quantum theory with genetic algorithm for the first time.
The concept of quantum genetic algorithm was introduced
and the field of the integration of quantum computation and
evolutionary computation was opened up. Han proposed a
genetic quantum algorithm (GQA) [9], and then extended it
into a quantum evolutionary algorithm [10]. Compared with
traditional one, QEA has the advantages of rich population
diversity, good global search ability, fast convergence and
easy integration with other algorithms. Over the past decades,
QEA has attracted wide attention and yielded fruitful results.

1) ALGORITHM DESCRIPTION
Compared with traditional evolutionary algorithms, QEA
uses quantum bit, which enables a quantum chromosome to
represent a superposition of multiple states, thus bringing
richer population diversity. Thanks to this special coding
method, the population size of QEA can be very small and
even an individual can maintain the diversity. Moreover, it is
more suitable for parallel structure, which leads to a higher
searching efficiency.

QEA based on quantum rotation gates encodes each indi-
vidual in the population with quantum bits. For example,
Q (t) =

{
qt1, q

t
2, . . . , q

t
n
}
denotes a quantum population,

where t denotes the current iteration and n denotes the popu-
lation size. By this way, the jth individual in the tth generation
can be expressed as:

qtj =
[
αtj1 αtj2 . . . αtjm
β tj1 β tj2 . . . β tjm

]
where m stands for the coding length of an individual. When
setting each bit, α denotes the probability amplitude of 0 and
β denotes the probability amplitude of 1. Meanwhile, every
column satisfies α2 + β2 = 1. This coding method enables
a quantum chromosome to represent 2m probabilistic ampli-
tudes, expanding the information capacity of chromosomes
in evolutionary algorithms. When α or β approaches 0 or 1,
the quantum chromosome will collapse to a deterministic
solution.

The procedure of QEA can be described in TABLE 1:
QEA based on quantum gates adopts quantum coding and

updates through quantum gates to produce a better generation
with a larger probability. The usage of quantum chromosomes
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TABLE 1. The procedure of QEA.

provides QEA with strong robustness and parallel processing
abilities. Due to the less degree of communication between
quantum chromosomes and the high degree of parallelism of
the algorithm, QEA has great potential to deal with large-
scale data.

2) RESEARCH PROGRESS
a: ENCODING SCHEME
i) BLOCH SPHERICAL COORDINATE CODING: A qubit Bloch
spherical coordinate coding is proposed in [11], which
matches a point in a Bloch sphere to a qubit. By tak-
ing 3 Bloch spherical coordinates as gene bits, a qubit
can be easily represented using Bloch spherical coding.
This encoding method can deal with continuous opti-
mization problems, avoid the random brought by mea-
surements and increase the chance of obtaining global
optimum.

ii) REAL NUMBER ENCODING: A real-coded QEA is defined
in [12], which achieves faster convergence and higher pre-
cision for high-dimensional function optimization. Refer-
ring to the niche mechanism, initial individuals are divided
into real-coded chromosome subpopulations in [13], each
subgroup using the local search ability of immune oper-
ators to find the optimal solution. In addition, the gra-
dient of objective function can be used to speed up
the search process. Selection of parameters often carries
weight in meta-heuristics. Utilizing adaptive real coded
QEA, [14] is able to avoid tuning of evolutionary param-
eters and solve power economic load dispatch problem
effectively.

iii) HYBRID ENCODING: An improved form of diploid cod-
ing is adopted and a fuzzy neural network based on QEA
is proposed in [15]. In addition, using triploid real encod-
ing or multi-nary compound states of probability angle can
also make QEA suitable for multi-bit encoding.

b: IMPROVEMENT ON OPERATORS
Substantial ideas focus on basic operators, specifically,
including the introduction of new operators and the improve-
ment on update strategy.

i) INTRODUCING NEW OPERATORS: Continuing the idea of
traditional genetic algorithm, different crossover and muta-
tion operators can also be applied to quantum genetic algo-
rithm. New operators can help to jump out of local optimum
and avoid premature effectively. Utilizing the independent
searching ability of quantum individuals, a new crossover
operator and a single qubit mutation operator are designed
in [16] to enhance the searching performance of the algo-
rithm. Drawing on the quantum coherence characteristics,
a quantum crossover mechanism is proposed in [17], which
conducts multiple individuals at the same time to construct
new individuals and can even work when most individu-
als are identical. [18] refers to the concept of normative
knowledge in cultural algorithms and introduces cultural
operators into QEA. The utilization of normative knowl-
edge can guide individuals to search for effective regions,
thus improving the accuracy and convergence speed. Based
on hybrid quantum evolution, a phased optimal algorithm
is put forward in [19]. A greedy repair operator is well
designed to enhance the convergence rate and an adaptive grid
operator is introduced to keep the dispersion of the Pareto
solutions.

ii) IMPROVING THE UPDATE STRATEGY: Quantum rotation
gates have great influence on the whole evolutionary process.
Appropriate rotation gates can effectively enhance the ability
to find global optimum. [20] adopts an adaptive adjustment
of search grid and updates quantum gate through quantum
bit phase comparison. Quantum probability amplitude has
the characteristic of chaos, and quantum rotation gates are
to change the quantum probability amplitude from chaos to
determination so as to complete evolution. Therefore, using
pre-generated chaotic sequence to update quantum gates
can significantly decrease the computational complexity and
enable the algorithm to apply in real-time environment. From
this point of view, updating quantum rotation gates by chaotic
operation is proposed in [21]. In addition, the rotation angle
and direction are solved through multi-objective optimiza-
tion, then these parameters are used in QEA optimization pro-
cess in [22]. Quantum rotation gates are improved using two-
point crossover operator in [23] to ensure current solutions
converge to chromosomes with higher fitness. A new rotation
angle is defined and adaptively adjusted in [24] according
to the evolution generations. Also, by adopting Hε gate,
the corrective manipulation of the probability amplitude is
conducted to prevent the extramalization. To avoid any tuning
of parameters, [25] uses two qubits representation. When
varying rotation angle of the qubits in the first set, the second
qubit’s probability amplitude is effectively employed during
the computation. In addition, in the evolutionary algorithm,
the elitist strategy can ensure optimal individuals not be
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disturbed, which is a guarantee of the convergence. This
strategy can also be applied to QEA.

Like operation shown in [26], an elitist QEA can prevent
the optimal solution from being destroyed to render the evo-
lution faster. Still, there are some methods that can adaptively
change the rotation angle according to the fuzzy reasoning or
simulated annealing algorithm.

c: IMPROVEMENT ON POPULATION
i) IMPROVEMENT ON POPULATION STRUCTURE: The popula-
tion structure of QEA is classified into ring, grid, binary tree,
cluster, square, ladder, etc. in [27], and grid is recognized as
the best population structure. The grid population structure is
subdivided into square, rectangle and strip in [28] and QEA
is designed to dynamically adjust the population structure
according to individual fitness and population entropy. Each
node in the proposed grid structure in [29] represents an indi-
vidual, which can maintain the diversity of the population. In
addition, [15] proposes a new coarse-grained parallel QEA
with a hierarchical ring structure. Ring is used as population
structure in [30] to ensure each individual only adjacent to
two neighbors, and population size is also changed during
evolution to maintain diversity. Using the small world theory
and complex network theory, [31] analogizes the relation-
ships among individuals in QEA, dividing the population into
local small groups, which can effectively avoid premature.
[32] proposes a L5-based synchronous cellular QEA based on
L5 neighbors, in which individuals are located in a lattice and
neighbors of each individual all undergo a QEA. Different
individuals communicate through the overlapped neighbors
to evolve the population.
ii) IMPROVEMENT ON POPULATION SIZE: The parallel char-
acteristic of QEA can be effectively utilized by dividing
all individuals into independent subgroups according to a
certain topological structure. On the basis of coarse-grained
parallel QEA, [33] proposes a pairwise exchange algorithm to
deal with individual migration, which makes full use of the
advantages of local search and global search. [29] changes
the size of population dynamically. When the population
size increases, the randomly added population will bring in
diversity. When the population size decreases, removing indi-
viduals of poorer performance will narrow down the search
scope and accelerate the convergence. [26] adopts the niche
technique to increase the diversity of the population, through
which the similarity among individuals is largely reduced.

d: COMBINATION WITH OTHER ALGORITHMS
Common ideas to integrate other algorithms include com-
bining global optimization with local optimization to realize
the balance of exploration and exploitation and combin-
ing post-processing method and post-processing method to
solve specific problems. The improved algorithm can fully
demonstrate the advantages of previous algorithms and effec-
tively avoid their disadvantages.

[34] draws on the idea of differential evolution. QEA is
good at global search while differential evolution is skilled
in local search, so this combination renders the search more
efficient. Based on the coarse-grained model, a hybrid algo-
rithm combining parallel QEA and local search algorithm
is proposed in [35]. [36] combines the shuffled frog leap-
ing algorithm to regulate the phrase of the quantum bit,
through which a balance of the local and global search is
achieved and the run speed is improved. In order to optimize
combinational logic circuits, [37] combines QEA with local
particle swarm optimization, and a circuit design schemewith
minimum number of gate circuits is obtained using multi-
objective optimization. This hybrid optimization method is
obviously superior to other evolutionary algorithms. A multi-
universe parallel quantum genetic algorithm is proposed
in [17], which combines QEA with independent component
analysis to separate blind source signals. [38] utilizes QEA
to evolve different parameters in fuzzy C-Means to cluster
better.

In addition, some improvements focus on absorbing the
characteristics of other algorithms into QEA, which can
effectively avoid the defects and make full use of the advan-
tages of each algorithm. Particle swarm optimization is
embedded in QEA in [39], in which quantum bits are used to
represent particles and their positions to accelerate the aggre-
gation speed. [40] proposes two hybrid approaches based on
the hybridization of Firefly algorithm (FA) to solve the qual-
ity of service multicast routing problem. Two approaches,
FAQEA1 and FAQEA2, are introduced, which embed the
evolutionary equation of FA in the operator of QEA and
replace the operator of QEA using the evolutionary equation
of FA respectively.

e: THEORETICAL RESEARCH
Theoretical research mostly analogizes the differences and
similarities between QEA and other classical evolution-
ary algorithms from the operation mechanism of QEA.
According to the theory of quantum entanglement, it can
be considered that genetic algorithm is a kind of quantum
parallel computing in nature [41]. Typically, [42] shows that
the process from non-equilibrium to equilibrium in quantum
systems in a deep depth and has a great comparability with the
convergence process of population in genetic algorithm (GA).
Therefore, the combination of quantum system and GA can
be proved to be effective. Details are shown in TABLE 2:

In addition, [43], [44] show that the essence of QEA is
a distributed estimation algorithm (EDA). From the com-
parison in FIGURE 1, EDA establishes probability model
through individual distribution, using this model to sam-
ple and generate new population while QEA generates
new population through collapse of the probability ampli-
tude. Collapse in QEA corresponds to sampling in EDA,
which allows the population to evolve better. Compared
with EDA, QEA has advantages of rich diversity and strong
adaptability.
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TABLE 2. Similarities.

FIGURE 1. Comparison between QEA and EDA.

3) SUMMARY
This part first introduces the basic process of QEA, and then
sums up existing researches from five aspects. Specifically,
there are abundant studies on the improvement of operators
and combination ideas. These studies effectively utilize the
characteristics of QEA, and solve specific problems from
both local and global aspects by combining certain domain
knowledge. In addition, the current improvement on coding
schemes mainly draws on the experience of the traditional
genetic algorithm and the uniqueness of quantum coding has
not been fully exploited, which has great potential and should
be given sufficient attention. Most of theoretical studies start
from the analysis of the operation mechanism of QEA and
prove the rationality of QEA from the perspective of evolu-
tion. It should be pointed out that the convergence of QEA
is closely related to its parameters, thus more thorough proof
should be made in this respect. In addition, future research
should also focus on the practical application, so the efficient
performance of QEA can be made full use of.

B. QUANTUM PARTICLE SWARM OPTIMIZATION
Swarm intelligence is a new optimization method. Since its
emergence in the 1980s, it has attracted widespread attention.
It has become a research hotspot in the field of optimiza-
tion and the frontier of inter-disciplines. Swarm intelligence
is a heuristic search algorithm based on swarm behavior
to optimize a given function, whose optimization process
embodies the characteristics of randomness, parallelism and
distribution. A particle swarm optimization algorithm with
quantum behavior is proposed in [45]. The motion state of
a particle is described using quantum uncertainty principle,
and the quantum mechanism is combined. [46] extends the

quantum particle swarm optimization to the field of multi-
objective optimization.

1) ALGORITHM DESCRIPTION
In particle swarm optimization (PSO), model parameters are
hard to be determined, changes of particle positions lack ran-
domness, and global optimum cannot be found easily. QPSO
throws away the orientation property, leading the update of
particle positions no relation with previous movement, thus
increasing the randomness of the particle position. In classical
mechanics, the trajectory of a particle is determined by its
velocity and current state. However, in quantum mechanics,
the motion of particles remains uncertain and the state of
particles is described by wave function 9(Ex, t). In a three-
dimensional space, the wave function is expressed as follows:

|9|2 dxdydz = Qdxdydz (1)

Qdxdydz represents the probability that a particle will appear
at position (x, y, z) at time t . |9|2 is a probability density
function and satisfies (2):∫

∞

−∞

|9|2 dxdydz =
∫
∞

−∞

Qdxdydz = 1 (2)

The correlation function between 9(Ex, t) and time can be
given by Schrödinger equation:

ih
∂

∂t
9 (Ex, t) = Ĥ9(Ex, t) (3)

Ĥ is a Hamilton operator and h is the Planck constant. For a
single particle with mass m in a potential field V (Ex):

Ĥ = −
h2

2m
∇

2
+ V (Ex) (4)

Assume that the particle is in a δ potential well with a
center p. Taking a particle in one-dimensional space as an
example, the potential energy function can be expressed as:

V (x) = −γ δ (x − p) = −γ δ(y) (5)

y = x − p, thus Ĥ can be expressed as:

Ĥ = −
h2

2m
d2

dy2
− γ δ(y) (6)

Then the Schrödinger equation for this model can be trans-
formed:

d29
dy2
+

2m
h2

[E + γ δ (y)]9 = 0 (7)

Because
∫ ε
−ε
dx, ε→ 0+, (8) can be obtained:

9 ′
(
0+
)
−9 ′

(
0−
)
= −

2mγ
h2

9(0) (8)

For y 6= 0, (8) can be expressed as (9):

d29
dy2
− β29 = 0

β =

√
−
2mE
h

(E< 0) (9)
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When the following constraints are satisfied:

|y| → ∞, 9 → 0 (10)

The solution of (9) can be expressed as follows:

9(y) ≈ e−β|y| (11)

Consider the form of the solution shown below.:

9 (y) =

{
Ce−βy y> 0
Ceβy y< 0

(12)

C is a constant, according to (8):

−2Cβ = −
2mγ
h2

C (13)

So β can be solved,

β =
mγ
h2

(14)

and

E = E0 = −
h2β2

2m
= −

mγ 2

2h2
(15)

Since the wave function needs to satisfy the normalization
condition, the following formula holds:∫

+∞

−∞

|9(y)|2 dy =
|C|2

β
= 1 (16)

So |C| =
√
β and L = 1

β
=

h2
mγ ,L is called the characteristic

length of a potential well. Then the normalized wave function
can be expressed as follows:

9 (y) =
1
√
L
e−
|y|
L (17)

The corresponding probability density function Q can be
expressed:

Q (y) = |9(y)|2 =
1
L
e−

2|y|
L (18)

The wave functions of particles’ states in quantum space
are given in (18). Using Monte Carlo method to simulate
collapse of the probability amplitude, so positions of particles
in classical mechanical space are obtained. s is a random
number with uniform distribution between [0, 1/L]:

s =
1
L
rand (0, 1) =

1
L
u, u = rand(0, 1) (19)

Use s to substitute Q in (18):

s =
1
√
L
e−
|y|
L (20)

So:

y = ±
L
2
ln(

1
u
) (21)

Because y = x − p:

x = p±
L
2
ln(

1
u
) (22)

(22) achieves the accurate measurement of particles’ posi-
tions in quantum space. It is the core iteration of QPSO.
By constantly updating attractor p and characteristic length L,
the efficient search of particles in the whole decision space is
realized according to the motion of quantum mechanics.
p can be constructed in multiple ways and the local opti-

mum of particles is often used as an attractor. Considering the
distance between the current position and the local optimum,
L is constructed in [47]. For multi-objective optimization
problems, [46] constructs L using the global and local optima
of subproblems.

2) RESEARCH PROGRESS
a: ENCODING SCHEME
In order to improve the inefficiency when dealing with dis-
crete problems, [48] introduces the operators on discrete
binary variables. In this algorithm, trajectory is a proba-
bility change of coordinate value. In addition, a fast and
simple discrete PSO is created in [49] with the form of
quantum expression. For combinatorial optimization, based
on the concept of QEA, a discrete PSO method is proposed
in [50]. Firstly, quantum angles are defined and confined to
−π/2 to 0. Secondly, a new adaptive speed update method is
adopted. Moreover, particles can be transferred from decimal
code to binary code under the idea of QEA, which helps to
solve discrete problems. Binary QPSO is designed in [51]
referring to the advantages of GA, which is more effective
than binary version of PSO. The algorithm redefines the
position and distance between two positions, and adjusts the
iteration equation to adapt to binary search space. In addi-
tion, local attractors are obtained using crossover operation
to possess QPSO with characteristics of GA. A new qubit
representation, called quantum angle, is defined in [52] and
all subgroups are cooperated to prevent stagnation of evolu-
tion. Unlike classical QPSO, particles in [53] are encoded
based on Bloch spheres. Each particle includes three Bloch
coordinates and updates synchronously, which can expand
the search scope and accelerate the optimization.

b: IMPROVEMENT ON OPERATIONS
A considerable amount of works focus on the modification
of operators. For constraint problems, [54] studies Gauss,
Chaos, Cauchy and Levy operators using penalty mechanism.
The mutation mechanism is introduced in [55] to mutate
the global optimal particle with Cauchy distribution. A new
Sobol mutation operator is proposed in [56], which uses
quasi-random Sobol sequence to find new solutions. Com-
pared with random probability distribution, quasi-random
sequence covers the search area more evenly, thus increasing
the chance of finding a better solution. In [57], the posi-
tion and velocity information of each particle is applied
to adaptively adjust the inertia factor, in which the non-
linear dynamic adjustment strategy of acceleration factors
and mutation operation are introduced to reduce the proba-
bilities of trapping in the local optima solution. [58] presents
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a novel reverse operation to improve QPSO, leading each
particle with 50% probability to away from the position of the
original one according to probability theory. In [59], the best
particle will be randomly selected to participate in the cur-
rent search domain. Also, the mean best position is changed
adopting a mutation strategy and an enhancement factor is
incorporated to contribute to the global search capability. [60]
proposes a QPSO with extrapolation, in which particles will
take an extrapolation operator when degradation occurs.

In addition, based on public history and mutant particles,
a mutate operation is conducted on the best particles in [61].
The global optimum and the average optimum are mutated
respectively using Cauchy distribution in [62]. The scale
parameters of mutation operator are modified by annealing
strategy, which improves the adaptive ability of the algo-
rithm. [63] replaces the global optimum with a randomly
selected individual optimum. A recombination operator is
used in [64] to interpolate and generate new solution in search
space. In [65], randomly selection of the optimal individual is
introduced and a linear weight parameter is used to represent
the importance of a particle according to its fitness.

c: IMPROVEMENT ON POPULATION
The diversity of population has always been a key point. For
multi-objective optimization, a new distance measurement is
used in [66] to maintain performance. The inertia weight of
particles is set dynamically, and the non-dominant sorting
is used to evolve the population. Pareto minimax distance
is adopted to keep the diversity so the global search and
local search can be well balanced. [67] makes full use of
cooperative search and competitive search among different
subpopulations to make QPSOmore efficient. In order to pre-
vent premature, a threshold is set in [68] to avoid clustering.
A diversity-guided QPSO is proposed in [69], [70] which
sets a lower limit for diversity. Once the diversity is below
this limit, the global optimum particle is mutated. Besides,
random perturbation can be introduced to solve the lack of
diversity in evolution [71].

In addition, clustering coefficient and characteristic dis-
tance are used to guide diversity in [72]. In evolution,
the threshold of clustering coefficient and characteristic dis-
tance should be adjusted adaptively. When the clustering
coefficient is large and the characteristic distance is small,
the population scatters and the exploration is strengthened;
Otherwise, the population gathers and exploitation is per-
formed. An exchange strategy is proposed in [73], which
establishes two particle swarms. Once the whole swarm falls
into local optimum or solutions are not improved after certain
iterations, the exchange strategy is implemented. Collabora-
tive search is carried out in [74] by utilizing themutual benefit
among groups. Cooperative search is specially designed to
overcome the curse of dimensionality and can easily deal
with high-dimensional optimization problems. A hierarchical
clustering method is used in [75] to solve dynamic opti-
mization problem in order to improve the ability of track-
ing the optimal solution. In addition, convergence check,

overcrowding check and overlapping check are also used to
maintain the diversity of the population.

d: COMBINATION WITH OTHER ALGORITHMS
Like PSO, QPSO has the possibility of premature. Com-
bining QPSO with other algorithms can effectively increase
diversity, avoid premature and improve the possibility of
converging to the global optimum. To solve the problem of
falling into local optimum easily, [76] proposes a diversity
guidedmethodwhich sets an attraction state and an expansion
state for the population. If the diversity is less than the pre-
set value, QPSO will in the attraction state and the immune
clonal algorithm will be used to conduct local search. Neigh-
borhood search strategy is introduced into QPSO in [77],
which combines local search and global search to improve
the diversity, and parallel technology is used to shorten the
searching time. [78] combines shuffled complex evolution
and QPSO to ensure the efficiency of optimization in both
low and high dimensional problems.

In addition, QPSO can be applied to optimize parameters
of other algorithms. For example, it is able to optimize neural
network to improve its performance. In [79], QPSO is used
to optimize the weight of autoencoder neural network and
the parameter of softmax to help the autoencoder classify
more accurately. [80] focuses on the optimization of network
topology, in which hyper-parameters of a neural network like
the number of layers, neurons in each layer, etc. are tuned
using QPSO.

e: THEORETICAL RESEARCH
The proof of the convergence of QPSO is a hot topic in
theoretical study. Global convergence of QPSO is closely
related to its parameters. Some researches focus on how
to select appropriate parameters to ensure the convergence
of QPSO. For example, by discussing adaptive parameter
control methods, [81] illustrates how to set parameters to
ensure the convergence. The behavior of a single particle in
QPSO is analyzed in [47] from the perspective of probabil-
ity measurement. Its purpose is to find the upper bound of
the contraction-expansion (CE) coefficient. Within the upper
bound, the selected value of CE coefficient can ensure the
convergence of particles. CE coefficient is studied in [82],
and a control method of coefficient with Q-learning which is
able to tune the coefficient adaptively is introduced.

Besides, selection of the potential well type is critical for
the convergence of QPSO. [83] explores the motion pattern
of particles in square potential well and proposes the ternary
correlation QPSO based on square potential well.

3) SUMMARY
This part first introduces the basic process of QPSO, and then
summarizes the existing research. Abundant researches focus
on mutation operator, which enables QPSO jump out of local
optimum quickly and increase the probability of searching
the global optimum. In addition, the population distribution
of swarm intelligence search algorithm has always been a
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TABLE 3. Procedure of QICA.

widespread attention. Whether considering the role of guid-
ing the search or the ability to explore the overall space,
the size setting and diversity control of population should
be highly valued. In addition, QPSO shows great potential
for constrained optimization, integer programming andmulti-
objective optimization, so corresponding application should
be further studied.

C. QUANTUM IMMUNE CLONAL ALGORITHM
Artificial immune system draws on the experience of
the information processing of vertebrate immune system.
Constructing new intelligent algorithms based on immune
terminology and basic principles will provide novel ideas for
solving problems. Immune clonal selection algorithm is an
intelligent algorithm with strong local optimization ability
through increasing the population size, which adopts clonal
operators to keep strong local optimization ability. Quantum
system is a parallel distributed processing system in nature,
so the combination of biological evolution with quantum
theory will be better at simulating the process of information.

1) ALGORITHM DESCRIPTION
[84] proposed a quantum-inspired immune clonal algorithm
in 2008. The qubit-coded chromosomes can represent mul-
tiple states at the same time, bringing abundant population
information. In addition, the usage of clonal operator can
easily proliferate the information of the current optimal indi-
vidual to the next generation, and lead the population evolves
towards a better direction. The main idea of QICA is that
cells capable of recognizing antigens can be selected for
reproduction.

TABLE 3 lists the procedure of QICA, in which Q(t)
denotes the antibody population using qubit at the tth genera-
tion, P′(t) denotes the antibody population using classical bit
and B(t) denotes the best antibody population using classical
bit in the subpopulation.

Obviously, in order to maintain the diversity of solutions
and expand the searching scope, the strategy of replicating the
parent generation is adopted in the immune clonal method,
which expands the solution space at the cost of computing
time. Possessing the characteristics of parallel computing,

it is effective to introduce qubit encoding into immune clonal
algorithm.

2) RESEARCH PROGRESS
a: IMPROVEMENT ON OPERATORS
Mutation operators help to accelerate the convergence and
crossover operators help to enhance the exchange of infor-
mation to increase the diversity of the population. For the
improvement on immune clonal operators, many strategies
are proposed. [84] utilizes quantum recombination as the
crossover operations, through which more antibodies are
involved during the evolution. A new selection scheme and
a novel mutation operator with a chaos-based rotation gate
are proposed in [85] to create new population. Produced by
logistic mapping, [86] introduces chaos variables into quan-
tum rotation gates to improve searching capability. A hybrid
quantum crossover is adopted in [87] to well balance the
exploration and exploitation in immune maturation process.
In [88], based on the Pareto-dominance, the clonal selection
and the entire cloning are adopted. Antibodies are divided
into two parts: dominated ones and non-dominated ones,
in which the non-dominated ones are selected.

Some methods adopt memory mechanism, and the design
of affinity function is also improved. Optimal solution is
obtained through the mechanism in which cross-mutation is
accomplished by immune cells. Memory cells are produced
while similar antibodies are suppressed in [89], [90]. The
memory strategy in [91] realizes the information transfer
during the courses of evolution. [92] uses replicator dynamics
to model the behavior of the quantum antibody. The mecha-
nism of immunological memory and immunologic is referred
in [93], possessing QEA with antibody memory enhance-
ment. [94] introduces an expression of antigen and antibody
affinity. Moreover, [95] solves the sensitivity problems of
scale parameter and slow iteration by designing effective
immune operators and embedding a potential evolution for-
mula into affinity ofmulti-elitist immune clonal optimization.

In addition, [96] uses a repair operator to amend the infea-
sible solutions so as to ensure the diversity. [97] utilizes non-
feasible solutions to improve the constrained multi-objective
optimization. Quantum observing entropy in [98] is intro-
duced to evaluate the population evolutionary level, by which
relevant parameters are adjusted accordingly.

b: IMPROVEMENT ON POPULATION
Improvement on population is mainly aimed at population
size. The common strategy is to divide the original population
into several sub-populations according to certain criterion,
so that sub-populations can evolve in a parallel mode to obtain
more efficient results.

An antibody is proliferated and then divided into a sub-
population in [99], each is represented by multi-state gene
qubits. In [100], [101], individuals are divided into indepen-
dent sub-colonies, called universes. Each universe evolves
independently using QICA and information among uni-
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verses is exchanged by emigration. [102] proposes a niche
method, in which population is automatically divided into
subpopulations and local search is carried using the immune
mechanism.

[103] proposes a computational model, which consists of
a population space based on QEA and a belief space based
on immune vaccination. The population space and the belief
space create their own population and conduct evolution
independently and in parallel. Besides, these spaces are able
to exchange information to constitute a dual-evolution mech-
anism and the convergence speed can be greatly accelerated
in this way. To preserve the diversity of the population, [104]
adopts a suppression algorithm and a truncation algorithm to
create a new population.

c: COMBINATION WITH OTHER ALGORITHMS
Combining with different strategies, QICA can effec-
tively avoid the shortcomings and solve practical prob-
lems more efficiently as a pre-processing or post-processing
means. [105] proposes an adaptive multiscale Bandelet based
on QICA and wavelet packet for image representation, which
is of low complexity and thus can be implemented rapidly.
To address the problem of image segmentation, [106] intro-
duces watershed algorithm into QICA to improve over-
segmentation. A load balancing strategy is adopted in [107]
to accomplish task scheduling and allocation. Based on evo-
lutionary game theory, QICA in [92] is embedded with evo-
lutionary game and maps the process of a quantum antibody
finding the optimal solution to the process of a player pursu-
ing maximum utility. [103] integrates QICA into the cultural
frame. In addition, traditional Fuzzy C-Means (FCM) clus-
tering is usually based on the image intensity, so the segmen-
tation results can be rather unsatisfactory when images are
interfered by noise. To address this problem, [108] modifies
the FCM objective function and uses QICA to optimize this
function. Moreover, to balance exploration and exploitation,
[104] combines an artificial immune system based on binary
encoding (BAIS) and a quantum-inspired artificial immune
algorithm (QAIS). On one hand, QAIS is responsible for
exploration of the search space. On the other hand, BAIS is
applied for exploitation using a reverse mutation.

d: THEORETICAL RESEARCH
Theoretical studies of QICAmainly focus on its convergence.
UsingMarkov chain, [109] proves that quantum-inspired evo-
lutionary algorithm based on immune operator is completely
convergent. [91] proposes a memory strategy to realize the
information transfer during the courses of evolution. Theoret-
ical analysis proves that quantum-inspired immune memory
algorithm converges to the global optimum.

3) SUMMARY
Compared with QEA and QPSO, researches and applications
on QICA are relatively less, which deserve further develop-
ment. Immune cloning increases the population size locally in
exchange for local optimization ability. In order to maintain

the diversity of solutions and expand the space of searching,
it shows distinct local mining ability. The existing quantum
immune clonal algorithms mainly focus on the new operators
and combination with other algorithms. Most of the ideas
usually come from the improvements of other quantum opti-
mization methods, which possess the universal characteris-
tics. However, it needs to be pointed out that QICA draws on
the experience of the information processing mode of animal
immune system, and the common improvement ideas fail to
utilize this point of view and make full use of the character-
istics of immune mechanisms such as memory cells. Simply
speaking, the common immune clonal algorithms only use
the main framework of artificial immune cloning, and have
not made a deep exploration and application. Making full use
of animal immune system and continuing to maintain and
strengthen the characteristics of immunology should be the
main development trend of QICA in the future.

III. QUANTUM LEARNING
Quantum computing has shown tremendous advantages in
intelligent optimization. Therefore, people put forward the
idea of combining quantum theory with learning algorithm,
hoping to introduce the advantages of quantum computing on
the basis of existing learning algorithms and achieve more
fruitful results. In this part, two classical algorithms, quan-
tum neural network (QNN) and quantum clustering (QC) are
elaborated specifically. Besides, contents of algorithms and
relevant research progresses are introduced and the related
works are summarized.

A. QUANTUM NEURAL NETWORK
With the advancement of psychology, neuroscience, com-
puter information processing and artificial intelligence,
conditions for exploring consciousness of human with nat-
ural science methods have become mature and many valu-
able research results in neurocomputing have been achieved.
Using threshold logic unit to simulate biological neurons,
a well-known M-P neuron model is proposed in [110], which
opens the prelude of neural network research. In order to
simulate the plasticity of synapses, Hebb rule is proposed
in [111], which lays the foundation for constructing a learning
neural network model. After that, a learning mechanism is
added to the original MP model, and the theory of neural
network is put into practice for the first time in [112]. After
several decades of development, artificial neural network
(ANN) has achieved extensive success in many fields such
as pattern recognition, automatic control, signal processing,
assistant decision-making and so on. The excellent perfor-
mance of neural network makes it one of the hotspots in
quantum research.

In 1995, Kak proposed the concept of quantum neural
computing for the first time [113]. The thought of com-
bining nerve computing with quantum computing to form
a new computing paradigm pioneered in the field of quan-
tum study. T Menneer discussed quantum neural network
(QNN) comprehensively from the point of multi-universe and
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FIGURE 2. Quantum M-P Model.

considered that QNN worked better than traditional neural
network. After that, new QNN models have been brought
in. Based on Grover search algorithm, a quantum associative
memory model is proposed in [114]. In [115], the model of
a quantum neuron is described and its mechanism and corre-
sponding training algorithm are discussed. In the meanwhile,
it is proved that a single quantum neuron can perform XOR
functions that a single classical neuron cannot achieve.

1) ALGORITHM DESCRIPTION
a: QUANTUM M-P MODEL
Each input of a neuron has a weight coefficient w, which
simulates excitation and inhibition of synapses in cerebral
neurons and is used to describe the connection strength.
Referring to the classical M-P model, the conceptual model
of a quantum M-P model is shown in FIGURE 2:

Corresponding outputs of a neuron are expressed as
follows:

O =
∑

j
wjφj, j = 1, 2, . . . ,2n (23)

2n denotes the total number of inputs, 8j denotes a quantum
state and wj = (wj1,wj2, . . .wj2n ) is a vector. Quantum states
are represented by Dirac symbols, and the calculated output
of quantum M-P can be expressed as follows:

O =
∑

j
Oj =

∑
j

∑
i
wjixji =

∑
j

∑
i
wji |x1, . . . ,x2n〉,

i = 1, 2, · · ·2n (24)

Oj =
∑2n

i=1
wjixji

= wj1
∣∣0, 0, . . . , 0〉 + wj2∣∣ 0, 0, . . . , 1〉

+ · · · + wj2n |1, 1, . . . , 1〉 (25)

• If state φj is orthogonal, w is an orthogonal matrix, and
the output can be expressed as the following quantum
unitary transformation:

O =


w11
w21

w12
w22

. . .

. . .

w12n

w22n

. . .

w2n1

. . .

w2n2

. . .

. . .

. . .

w2n2n



×


| 0, 0, . . . , 0〉
| 0, 0, . . . , 1〉

. . .

| 1, 1, . . . , 1〉

 (26)

• If state φj is not orthogonal, the relationship between
input and output can be modified as:

Oik =
∑

j
wijφj · φk , j = 1, 2, . . . ,2n (27)

TABLE 4. Procedure of updating the weight in qunatum M-P model.

FIGURE 3. Conceptual model of QHNN.

φj ·φk represents the inner product of two states, thus the
output can be expressed as follows:

O=

w11 · · · w12n

...
. . .

...

w2n1 · · · w2n2n


×

 φ1 · φ1 · · · φ1 · φ2n

...
. . .

...

φ2n · φ1 · · · φ2n · φ2n


| 0, . . . , 0〉. . .

|1, . . . , 1〉


(28)

As for the two situations of orthogonality and non-
orthogonality for φj, selecting a W can achieve certain func-
tions. Based on the above quantum M-P model, the weight
can be updated in TABLE 4:

b: QUANTUM HOPFIELD NETWORK
Hopfield introduced the concept of energy function into the
network and established the stability criterion, making the
network a dynamic systemwith feedbackmechanism to solve
dynamic problems. Referring to the classical Hopfield neural
network, a conceptual model of quantum Hopfield network
(QHNN) is presented in FIGURE 3:

There are N neurons in the network. The output of each
neuron is fed back to other neurons as one of their inputs,
however, it does not feedback to itself. The weight matrixW
is a diagonal matrix, whose elements satisfy wij = wji,wii =
wjj = 0.
According to Schrödinger equation and quantum linear

superposition principle,W can be written as follows:

W =
1
Ps

∑Ps

i
| φi〉 〈φi| =

∑
i
piWi (29)
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TABLE 5. The quantum learning algorithm.

pi denotes the probability that W collapses to Wi, Ps
denotes the total number of images or patterns stored in
QHNN, and also represents the total number that can be
recognized, | φi〉 (Wi) denotes a single image or pattern stored
and | φi〉 is the complex conjugate of 〈φi| . When an external
image is input into the network, the network can collapse
into a stored image or pattern with a certain probability after
quantum measurement, thus realizing image recognition.

According to the principle of quantum linear superposition
and the matrix composed of quantum states, the quantum
learning algorithm to determine weights by quantum unitary
evolution is in TABLE 5:

Usually, traditional Hopfield networks can store 0.14N
images with N neurons. Because of the great difficulties in
recognizing a large number of images or patterns, researchers
have been looking for a breakthrough. Compared with tra-
ditional networks, QHNN has achieved the ability of rec-
ognizing 2N images, which brings a huge acceleration on
the storage capacity, thus creating a new model constructing
style.

2) RESEARCH PROGRESS
a: IMPROVEMENT ON TRAINING ALGORITHM
QNN is developing rapidly and continuously. To train the
network more efficiently, abundant new training algorithms
have been proposed. [114] presents a quantum computational
learning algorithm, taking advantage of the unique abilities
of quantum computation. [116], [117] bring forward a quan-
tum back propagation learning rule (QBP), and reconstruct
a QBP neural network through removing the dummy input.
A learning algorithm for quantum neuron is proposed and its
properties are explored in [118]. Reference [119] presents a
randomized training algorithm whose aim is to search each
node’s weight independently and the complexity is reduced
in the meantime.

Complex version of the training algorithm is one of
focuses, too. [120] introduces a complex numbered version
for the back-propagation algorithm and [121] investigates
the characteristics of the learning rule. In [122], a quantum
conjugate gradient back-propagation network is constructed.
Rather than the steepest gradient algorithm, a conjugate
gradient algorithm is chosen to accelerate the convergence.
Besides, by adding an error component into the conventional
error function, [123] proposes a backpropagation algorithm
for the complex-valued version. To address the local min-
ima problem, [124] puts forward an individual adaptive gain
parameter backpropagation algorithm.

Besides, [125] utilizes an improved PSO to train the con-
nection weights and thresholds between different layers of
QNN. To improve learning performance, instead of using
back-propagation algorithm, a real-coded genetic algorithm
is applied in [126] to facilitate the supervised training of the
multi-layer QNN.

In addition, the combination strategy is absorbed in the
constriction of learning algorithms as well. A model of feed-
back quantum neuron as well as a novel multi-user detec-
tion algorithm are shown in [127]. To apply to the speech
enhancement task, a speech enhancement method based on
quantum BP neural network is proposed in [128]. The focus
of [129], [130] is associative memory, in which the imple-
mentation of associative information processing in quantum
fields is shown.

b: IMPROVEMENT ON MODEL
According to different research purposes, the quantummodel
has been improved to make it more suitable for corresponding
applications. An extension of Hopfield model is proposed
in [131] to solve the constraint satisfaction problems and
the concept of the known-energy systems based on QNN is
introduced in [132]. [133] presents a self-organizing QNN
that can perform pattern classification automatically and
self-organizationally through quantum competitive process,
which is faster than traditional methods in classification.
Reference [134] designs the structure of quantum storage
network and shows its practical pattern storage algorithm.
After that, on the base of quantum linear superposition, [135]
presents a network whose elements of the storage matrix
are distributed in a probabilistic way, making its storage
capacity increase exponentially. Network in [136] are pre-
sented as quantum computational agents, which have learning
ability via implementing reinforcement learning algorithm.
Reference [137] proposes a quantum-inspired neuron using
controlled-rotation gate, in which the discrete sequence input
is represented by qubits and the target qubits are controlled
for rotation. Reference [138] proposes a quantum version of
themultilayer self-organizing neural network, in which single
qubit rotation gates are operated and linear indices of fuzzi-
ness are incorporated as the system errors to adjust weights.
Reference [139] proposes a quantum parallel bi-directional
self-organizing neural network to realize a real-time pure
color image denoising. Each constituent updates weighted
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connections using quantum states and rotation gates are
adopted to represent weighted inter-links. Reference [140]
seeks to model language using the mathematical framework
in quantum mechanism. This framework unifies linguistic
units in a complex-valued vector space and a complex-valued
network is built for the task of semantic matching.

c: THEORETICAL RESEARCH
Some studies focus on the stability analysis of QNN. The
stability of complex numerical neural networks is analyzed
in [141], then conditions are relaxed in [142]. Reference [143]
proposes an energy function for higher order complex-valued
Hopfield neural network, and then studies the stability con-
ditions to prove the convergence. An intrinsic similarity
between artificial neural network and quantum theory is
highlighted and analyzed in [144], and dynamic features of
QNN are also investigated in detail. A class of discrete time
recurrent neural networks with multivalued neurons in syn-
chronous update mode is discussed in [145], also, the network
complete stability is well established.

There are also some studies from the perspective of net-
work learning, which focus on the theoretical analysis of
network performance. Reference [146] describes how sev-
eral optimization problems can be quickly solved by highly
interconnected neural networks of simple analog processors.
In [147], performance is improved due to the use of super-
position of neural states as well as probability interpreta-
tion during the observation of the output states. As for the
exploration of the computational power, [115] demonstrates
that only a single quantum neuron is capable of perform-
ing the XOR function which is unrealizable with a single
classical neuron, which means that a single quantum neuron
has the same computational power as the two-layer percep-
tron. Reference [148] considers a model using particles in a
two-humped potential in quantum mechanism as a neuron.
Moreover, the possibility of conducting the simplest logical
elements using the introduced quantum particles is shown.

Moreover, [149] shows that any quantum system has a
dynamical structure of Hopfield-like associative artificial
neural network and the influence on learning with gradi-
ent descent method by changing the number of neurons is
described in [150]. Besides, [151] discusses the question
whether the adoption of quantum computational means will
affect systems of agents and the autonomy of individual.

3) SUMMARY
Compared with quantum optimization, the development of
QNN is relatively late. However, the artificial neural network
has shown tremendous vitality in many fields, leading the
direction of artificial intelligence. In view of this, the prospect
of QNN is very broad and needs a great breakthrough space.
Since QNN was first proposed, the related improvements of
QNN is very rich and versions of QNN are abundant. These
versions are specifically designed for different problems.
Based on the strong computing power of the artificial neural
network and the advantages of quantum mechanism, QNN

injects new vitality into the framework of neural networks.
So far, QNN is far less popular than artificial neural network,
so in addition to the theoretical study of QNN, the practical
application of QNN should also become the focus of future
work.

B. QUANTUM CLUSTERING
Cluster clustering plays a very important role in the field of
data mining and is a useful tool for data analysis and knowl-
edge discovery. The purpose of cluster analysis is to classify
the sample objects into several special meaningful categories
according to their similarity. Data clustering has been widely
used in data mining, computer vision, information retrieval
and pattern recognition. Generally, clustering methods are
divided into the following categories: partition-based algo-
rithm, hierarchy-based algorithm, density-based algorithm,
grid-based algorithm and model-based algorithm [152]. As a
new kind of clustering algorithm, quantum clustering (QC)
attracts more and more attention, produces a large number
of excellent theoretical results, and has achieved extensive
success in many fields.

According to the core idea of the algorithm, quantum clus-
tering can be divided into two categories: based on quantum
optimization algorithms or inspired by quantum mechanics.
In the design of clustering algorithm based on evolutionary
computation, the principal problems are the coding of indi-
viduals, the distance measurement and the selection of an
appropriate objective function [153]. A clustering technology
based on genetic algorithm is proposed in [154]. According
to the evolutionary scheme, evolutionary strategy is used to
find the optimal solution in the target space, not only to
update the clustering center, but also to reduce the depen-
dence on the initial clustering center. In addition, a quan-
tum clustering algorithm inspired by quantum mechanics is
introduced in [155], which uses the gradient descent method
to solve the minimum of potential energy and determine
the clustering center. The physical basis of QC is illustrated
in [156] by taking clustering as a physical system. By solving
Schrödinger equation and using the gradient descent, minima
of the resulting potential function can be obtained, which
correspond to cluster centers.

1) ALGORITHM DESCRIPTION
According to different design philosophies, quantum cluster-
ing can be divided into clustering based on quantum optimiza-
tion and clustering inspired by quantum mechanics.

1. Clustering based on quantum optimization converts the
process of clustering to optimization. In order to describe
the clustering results better, criteria are used to evaluate the
performance of the algorithm and the similarity between real
classes. The mathematical form is as follows:

P
(
C∗
)
= min

cε�
P(C) (32)

� is a feasible set of clustering results, C is the division of
data set and P is a criterion function, which usually reflects
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the similarity of data. Through the search for the minimum
of P, classification can be transformed into an optimization
problem, and the optimal solution is obtained using quantum
optimization algorithm. Any quantum intelligent algorithm
that absorbs quantum thought can be used to optimize the
above problem. Compared with other clustering algorithms,
the objective function P in quantum mechanism is nothing
special. However, due to the use of quantum optimization
in QC, the feasible solution set � is slightly different from
that in traditional clustering. Each solution in the feasible
solution set is constructed under the idea of quantum mech-
anism, and solutions are expressed using qubits. Clustering
based on quantum optimization can enhance the ergodicity
of solution space and the diversity of population. The opti-
mal solution is expressed using qubit probability amplitude,
so the probability of obtaining a global optimum is further
increased.

2. The basic idea of clustering inspired by quantum
mechanics is: clustering focuses on the distribution of sam-
ples in a scale space, while quantum mechanics study the
distribution of data in a quantum space, thus a clustering
problem can be solved referring to the thought of quantum
mechanics. The basic idea is to use Schrödinger equation to
solve the potential energy function, then the cluster center can
be determined from the point of potential energy.

Schrödinger equation, which does not consider time, is
expressed as:

H9 =
(
−
σ 2

2
∇

2
+ V (p)

)
9 = E9 (33)

9(p) is a wave function, V (p) is a potential energy func-
tion, H is a Hamilton operator, E is the energy eigenvalue of
H and σ is parameter to adjust the width of wave function.
In QC, a Gaussian kernel function with a Parzen window

is used to estimate the wave function (i.e. the probability
distribution of the sample points):

9 (p) =
∑N

i=1
e−‖p−pi‖

2/2σ 2 (34)

(34) corresponds to the observation set {p1, p2, . . . , pN } ⊂
<
d , pi = (pi1, pi2, . . . , pid )T ∈ <d in scale space. Gauss

function can be used as a kernel function that defines a
nonlinear mapping from the input space to the Hilbert space.
σ can be considered as a kernel parameter to adjust width.
When the wave function 9 (p) is known, if there is

only one single point p1 in the input space, the potential
energy function can be expressed by solving the Schrödinger
equation.

V (p) =
1

2σ 2 (p− p1)
T (p− p1) (35)

The energy eigenvalue of H operator is E = d/2, and d is
the possible minimum eigenvalue of operator H , which can
be expressed by the dimension of the sample.

In general, the potential energy function with samples
obeying Gaussian distribution is:

V (p) = E +

(
σ 2

2

)
∇

29

9

= E −
d
2
+

1
2σ 29

∑
i
‖p− pi ‖2e

−
‖p−pi‖

2

2σ2 (36)

Assuming that V is nonnegative and can be determined,
then E can be obtained by solving the above formula.
The gradient descent method is used to find the minimum

of the potential energy function as the center of clustering.
Core iteration is as follows:

yi (t +1t) = yi (t)− η(t)∇V (yi(t)) (37)

The initial point is set as yi (0) = pi, η(t) is the learning
rate and ∇V is the gradient of the potential energy. More
sophisticated global minimum search methods can be found
in chapter 10 of [157]. Finally, particles will move towards the
direction in which the potential energy is decreased, which
means that data will gradually move towards its cluster center
and gather at last. In this way, the central points of clustering
can be determined by QC and points close to each other are
grouped together.

Compared with traditional clustering algorithms, some
advantages of quantum mechanics-inspired clustering algo-
rithms are as follows: (i) The focus is on the selection
of clustering centers rather than the search of boundaries;
(ii) Centers of clusters are not determined randomly or using
simple geometric centers, but completely depend on the
potential information of data (iii)The number of clusters is
not needed to set previously.

2) RESEARCH PROGRESS
a: CLUSTERING INSPIRED BY QUANTUM MECHANICS
i) PARAMETER ADJUSTMENT: Appropriate parameters have
a great impact on the performance of algorithm. However,
the kernel scale parameter is often needed to be estimated
through experiments for many times in QC. To address this
problem, some studies have been carried out. A method for
estimating parameters of kernel width is proposed in [158],
[159] also proposes a framework to select suitable values
of σ by optimizing cluster separation and consistency. [160]
concludes that the potential field is assimilated with the den-
sity of data and uses the K-nearest neighbors distribution for
estimating the scale parameter. Besides, [161] proposes the
parameter-estimated QC to achieve better performance.

ii) MODIFICATION ON DISTANCE: In QC, the measured dis-
tance between two samples is relatively fixed, thus methods
aiming to improving the distance setting are proposed. Based
on the change of metric distance, [158] proposes an improved
QC. In [162], the exponential form is used in the distance
function to replace the Euclidean distance, which improves
the iteration efficiency and achieves better clustering results.

iii) COMBINATION WITH OTHER ALGORITHMS: According
to the specific application of the algorithm, QC is often
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combined with other methods to solve practical problems.
From the view of information theory, [163] combines Renyi
entropy with the kernel method. Fuzzy neural network is
able to handle non-linear and complex data, but the structure
of model determination is a difficult yet important issue to
be identified. [164] presents the fusion of fuzzy C-Means
clustering method and QC, and the structure of the network
is carried out at different levels. Also, in [165], the quan-
tum state machine equips random fuzzy membership input
with the fuzzy C-Means soft clustering algorithm to deal
with remotely sensed multi-band image segmentation. More-
over, a quantum local potential function network is discussed
in [166], which inherits the outstanding characteristics of QC
through constructing the waves and the potential functions.

b: CLUSTERING BASED ON QUANTUM OPTIMIZATION
i) IMPROVEMENT ON ALGORITHM: QEA, QPSO, QICA and
other optimization methods can be used in the research of
clustering problems. Based on the specific mechanism of
different algorithms, corresponding improvement ideas can
be put forward.

Combined with fuzzy theory, a particle swarm optimiza-
tion approach is improved for image clustering in [167]. [168]
introduces detour distance into QPSO and applies the par-
ticles escaping principle to avoid the phenomenon that the
updated cluster center particles sink into the area of the
obstacles. To address the problem of predefining clusters
number in PSO, [169] updates the amount of cluster cen-
troids in the process of iteration dynamically, preventing over-
congregating particles near boundaries of solution space and
making the algorithm to search for optimum in different
dimensions. Reference [170] models the task of clustering a
complex network as a multi-objective optimization and deals
with it using QPSO, which is the first attempt to utilize the
quantum mechanism based discrete PSO to solve network
clustering.

When dealing with clustering problems, the slow conver-
gence of QEA has been an important problem compared
with other heuristic algorithms. By adding a fast repair
facility, [171] accelerates the speed of the search process
sharply. [172] presents a quantum inspired method using
GA to automatically find the number of clusters when pro-
cessing image data set. In the previous quantum evolution-
ary clustering methods, the fixed relationship between the
clusters and the data points completely ignores the dataset
distribution. Taking this factor into consideration, [173] mod-
ifies the function evaluating the degrees of belonging by
absorbing inspiration from possibilistic clustering. Based on
clonal selection principle and the immunodominance theory,
an immunodomaince operator is introduced into the clonal
selection process in [174], which achieves gaining priori
knowledge online and realizes sharing information among
different individuals. [175] makes a combination of quan-
tum clustering method and multi-elitist immune algorithm to
avoid the problem of getting stuck in local extremes. Besides,
by embedding a potential evolution function into affinity

calculation of multi-elitist immune clonal optimization, [95]
applies QC to image segmentation.

ii) COMBINATION WITH OTHER ALGORITHMS: Compared
with other clustering algorithms, swarm intelligence pos-
sesses the ability that it can quickly converge to the global
optimum and effectively avoid falling into the local solution.
With this advantage, QPSO-based quantum clustering can
be easily combined with other algorithms. [176] proposes
to combine QPSO with K-Medoids, which introduces the
rapid global convergence of QPSO to separate the global
clusters firstly and then find the optimal exact solutions by
K-Medoids. In [177], QPSO is coupled with the fuzzy C-
Means clustering algorithm. The global search ability of
QPSO assists in avoiding stagnation in local optima while the
soft clustering of FCM helps a lot in partitioning data based
on membership probabilities.

In addition, the combination strategy also includes using
QC as the pre-processing or post-processing method to
achieve more accurate classification results according to the
actual application scenarios. For example, [38], [178] com-
bine QCwith fuzzy C-Means clustering and use QC to evolve
different values which are necessary to be known in advance
to perform clustering process using fuzzy C-Means.

iii) SUMMARY: This part explains QC from two aspects: clus-
tering based on quantum optimization and clustering inspired
by quantum mechanics. Clustering based on quantum opti-
mization regards clustering as an optimization problem with
certain criteria, then conducts clustering by mature optimiza-
tion methods such as QEA and QPSO. The main hotspot
is the selection of clustering criteria. Clustering inspired by
quantum mechanics uses gradient descent method to solve
the minimum of quantum potential energy so as to deter-
mine the clustering center. This method makes full use of
quantum mechanics, draws on the experience of the particle
distribution in quantum space, and fully exploits the potential
information of data. In addition, the determination of the
wave function and the parameter setting of the model play an
important role in the clustering process, which are still needed
to be further explored.

IV. TYPICAL APPLICATIONS
In this part, several typical applications of quantum optimiza-
tion and quantum learning are presented from the perspective
of experimental proof. Through the modeling of different
problems, practical problems are converted to be solved by
quantum optimization or quantum learning methods. The
experimental results also show that algorithms based on
quantum mechanism achieve better results and possess great
application potential.

A. QWEA APPLIED TO SAR IMAGE SEGMENTATION
The goal of segmentation is to partition an image into disjoint
regions. In this part, the problem based on partition cluster-
ing is viewed as a combinatorial optimization problem. The
improved algorithm (QWEA) firstly uses watershed algo-
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TABLE 6. Main steps of watershed algorithm.

rithm to segment the original image into small blocks, then
through QEA, the optimal combination is obtained to form
the final results.

1) RELATED WORK
Image segmentation is a technology that divides the image
into regions with different characteristics and extracts inter-
esting objects. It is a basic content of image understand-
ing. Generally speaking, there are several commonly used
methods for image segmentation: region-based segmentation,
edge-based segmentation, the combination of region-edge
based segmentation and other advanced methods.

Watershed transform is a commonly used image segmen-
tation algorithm with the characteristics of being simple and
fast. It can obtain continuous closed edges and make full use
of the edge information obtained from gradient surface. Main
steps are listed in TABLE 6:

However, watershed transform is sensitive to noise,
thus leading to over-segmentation easily. After the post-
processing of the over-segmentation, unnecessary details can
be removed while main parts can be retained [179]. The
process of reducing over-segmentation can be regarded as
an optimization process, in which the objective can be the
criterion of consistency or difference between regions.

2) MODELING THE TASK
Texture image segmentation can be regarded as a com-
binatorial optimization problem. After segmentation, the
appropriate sequence combination is searched as clustering
results, and the searching process can be optimized by QEA.
Firstly, the image is segmented by watershed algorithm to get
over-segmentation feature; Secondly, the texture eigenvalues
of each region are counted; Then, optimize the combination
of the texture eigenvalues of these regions by QEA; At last,
the final results are obtained when regions belong to the
same category are merged. The detailed implementation of
the above procedure (QWEA) is shown in TABLE 7:

TABLE 7. Procedure of QWEA.

FIGURE 4. Results of image segmentation using different algorithms.

3) EXPERIMENT
QWEA, a genetic clustering method (GAC) [154], a cluster-
ing algorithm based on QEA using texture features (QEAC)
and K-Means (KM) are conducted on three texture images
respectively and results are shown in FIGURE 4 - FIGURE 6.

The initial population size of QWEA and QEAC is N =
20. Parameters of GAC are: population size N = 20,
crossover probability pc = 0.75, mutation probability pm =
0.1. The update threshold of these four algorithms is ε =
10−5 and the window size of feature extraction is 7. The size
of figures below is 256× 256.

FIGURE 4(a) shows a Ku band SAR image of the Rio
Grande River in the central of the United States and contains
river, vegetation and crop. FIGURE 5(a) is a SAR image
including rivers and urban. FIGURE 6(a) is an X-SAR sub-
image with a resolution of 5 cm and has four regions: rivers,
urban areas and two types of crops. The initial segmentation
using watershed algorithm is given in (b) and the segmen-
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FIGURE 5. Results of image segmentation using different algorithms.

FIGURE 6. Results of image segmentation using different algorithms.

tation results of QWEA, GAC, QEAC and KM are given
in (c) - (f) respectively.

FIGURE 4 shows that these methods can divide the
river area very well. However, when distinguishing vege-
tation and crops, results of QEAC, GAC and KM are far
inferior to QWEA in continuity and regional consistency.
All thesemethods can separate urban areas and rivers easily in
FIGURE 5, yet QWEAmaintains better regional consistency
and image edges. FIGURE 6(d), (e) and (f) show that GAC,
QEAC andKM incorrectly classify crop areas into river while
QWEA in FIGURE 6(c) can identify these regions well, and
obviously reduce the probability of misidentification.

Experimental results show that compared with other meth-
ods, QWEA possesses better region consistency, accurate
region edge and less clutters when applied to SAR image.

4) CONCLUSION
In this paper, three algorithms are compared with QWEA,
which are KM, GAC andQEAC. KM (K-means) is a classical
clustering method, which has the advantages of clear and
simple procedure. Because KM is relatively simple, the effect
is not very ideal; GAC borrows genetic thought, which uses
population search according to evolutionary mechanism and
is a typical group intelligent optimization method; QEAC is

based on QEA and texture features, which is also a quantum
intelligent algorithm. As quantum intelligent algorithms, the
segmentation results of QWEA and QEAC are better than
those of GAC and KM. Compared with GAC, QEAC and
QWEA absorb quantum ideas and adopt quantum coding
style to make chromosomes carry more information, thus
greatly improving the diversity of the population and search-
ing for the global optimal solution more easily. Due to the use
of the watershed algorithm to preprocess data and extract dis-
crete wavelet energy features, QWEA is better than QEAC.
When processing SAR image, QWEA shows better regional
consistency, accurate region edge division, and less clutter
compared with other methods.

B. DYNAMIC-CONTEXT COOPERATIVE QPSO APPLIED TO
MEDICAL IMAGE SEGMENTATION
In QPSO, the updating method of particles will determine the
performance of the algorithm. In this paper, we incorporate a
new method for dynamically updating the context vector to
update particles.

1) RELATED WORK
a: CAUCHY MUTATION
In QPSO, the global optimal particle will attract other par-
ticles in the population. Besides, it will attract the average
optimal particle as well. The Cauchy mutation probability
is defined as pm, which is used to guide the variation of
the global optimum gbest and the average optimum mbest .
pm = 1/N , where N is the size of population. The formula
for the distribution is:

x∗ = x + α × m(x) (40)

m (x) = b×
1
π
×

1
x2 + b2

(41)

b = 0.2,m(x) is a random variable and x∗ is the value after
variation.

b: DYNAMIC SELECTION OF CONTRACTION FACTOR α
The convergence rate and the convergence degree of iteration
are directly determined by the contraction factor α [180].
According to mathematical statistics, when α is between
[0.3, 0.8], the average optimal position of the objective func-
tion will change continuously.

When the contraction factor α is between [0.3, 0.8],
the dynamic setting of α according to [35] is as follows:

α =
(α1 − α2)× (Nmax − N )

Nmax
+ α2 (42)

α1 and α2 are the initial and final values of α respectively, N
is the current number of iteration andNmax is the total number
of iterations.

c: QPSO BASED ON CONTEXT COLLABORATION
The main idea of QPSO based on context collaboration
(CCQPSO) [181] is: randomly generate multiple probabili-
ties and use Monte Carlo theorem to measure and produce
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FIGURE 7. The basic process of CCQPSO.

multiple individuals; select the best one of these particles,
compare it with the best individual in the population and
choose the best one as context variable; evaluate other indi-
viduals by comparing each dimension of the particle with
the context variable to get the next generation. CCQPSO
makes full use of the quantum uncertainty through multiple
measurements. In addition, the time used increases linearly
and the convergence is accelerated. The basic process of
CCQPSO is shown in FIGURE 7.

2) MODELING THE TASK
In the later iteration of QPSO, the diversity will deteriorate
definitely because of the aggregation state of the population.
Generally, at the end of the search, particles will converge
and the search space will be limited. In order to jump out the
local optimum, we adopt the strategy of Cauchy mutation and
dynamic selection of contraction factor to improve CCQPSO
and propose a new algorithm (MCQPSO). The framework of
MCQPSO is in TABLE 8:

3) EXPERIMENT
MCQPSO, an improved cooperative QPSO algorithm
(SunCQPSO) [182] and a weight based QPSO algorithm
(WQPSO) [183] are used to performmulti-threshold segmen-
tation respectively in four CT brain images.

All these four brain CT images are 512 × 512 in size
and the number of class is set as 4. The number of the
population is 20 and the contraction factor ranges from 0.3 to
0.8. For MCQPSO, the number of evolutions is 100 and the
number of independent iterations is 10. Besides, the number
for cooperative measurement is 5.

TABLE 8. The framework of MCQPSO.

FIGURE 8. Results of ‘‘CT 872.’’

FIGURE 9. Results of ‘‘CT 772.’’

The segmentation results of brain CT are shown in
FIGURE 8 - FIGURE 10. (a) (b) (c) (d) represent the orig-
inal CT image, MCQPSO segmentation result, SunCQPSO
segmentation result and WQPSO segmentation result respec-
tively. The segmentation parts are marked in red box.

As can be seen from the results, MCQPSO has better
performance than sunCQPSO and WQPSO. In addition,
according to the criterion of OSTU, the larger the inter class
variance, the more accurate the result is; the smaller the
variance, the more robust the result is. Taking FIGURE 10 as
an example, the inter-class variance and variance are shown
in TABLE 9. MCQPSO has larger inter-class variance and
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FIGURE 10. Results of ‘‘CT 869.’’

TABLE 9. Results of ‘‘CT 869.’’

smaller variance, which shows that the proposed MCQPSO
has better result. Combined with the visual effect and statisti-
cal data results, MCQPSO can improve the accuracy of image
segmentation very well.

4) CONCLUSION
WQPSO and SunCQPSO are used to compare with
MCQPSO. All these methods are quantum intelligent algo-
rithms, which are based on QPSO and improved reasonably.
The difference is that WQPSO is an improved QPSO with
weighted mean best position according to fitness values of
the particles. Based on analysis of the mean best position,
a linearly increasing weight parameter is introduced to ren-
der the importance of particles in population when they are
evolving. The idea of collaboration is adopted in SunCQPSO
to make particles cooperate more efficiently so that particles
can update the information of each dimension. MCQPSO is
improved on the basis of SunCQPSO and also uses cooper-
ative mechanism to update particles. The difference is that
MCQPSO adopts Cauchy mutation and dynamic selection of
contract factor α. In addition, MCQPSO conducts multiple
measurements to make full use of the quantum uncertainty.
These operations enable MCQPSO to fully possess quantum
properties and search the optimal solution more efficiently.

C. QUANTUM-INSPIRED IMMUNE CLONAL
MULTI-OBJECTIVE OPTIMIZATION
Based on the concept and principle of quantum com-
puting, a quantum-inspired immune clonal multi-objective
optimization algorithm (QICMOA) is proposed to solve
extended 0/1 knapsack problems.

1) RELATED WORK
Multi-objective optimization originates from the design and
modeling of practical complex systems. Compared with
single objective optimization, multi-objective optimization
is more complex, which often needs to optimize several
conflict multiple objectives at the same time. Basically,

multi-objective optimization has a set of optimal solutions,
elements in which are called Pareto optimal solutions or non-
dominant solutions.

0/1 knapsack problem is a typical combinatorial optimiza-
tion problem, which can be used as reference to other fields
such as business, cryptography, applied mathematics, etc.
and deserves in-depth study. By changing the number of
knapsacks, this single-objective problem can be converted to
the multi-objective one. Define multi-objective 0/1 knapsack
problems with n knapsacks and m items as follows:

Maximize F(x) = (f1(x), f2(x), . . . , fn(x))

subject to
∑m

j=1
wijxj ≤ci i = 1, 2, . . . , n (43)

where fi (x) =
∑m

j=1 pijxj(i = 1, 2, . . . , n) and xj = 1(j =
1, . . . ,m) if item j is selected. x = (x1, x2, . . . , xm) ∈ {0, 1}m

is a binary vector. As for a knapsack i with capacity ci, pij
denotes the profit of item j and wij denotes the weight of
item j. The goal of this multi-objective knapsack problem is
to search for a set of Pareto solutions which can be used to
approximate the true Pareto front.

2) MODELING THE TASK
Quantum immune clonal multi-objective optimization com-
bines the immune dominance concept and antibody clonal
selection theory, using qubits to encode dominant antibodies,
and conducting clone, recombination and update operations
on antibodies with smaller crowding density. Dominant anti-
bodies are able to evolve and their affinities are designed
using the crowding distance.

The main loop of quantum-inspired immune clonal multi-
objective optimization algorithm (QICMOA) is shown in
TABLE 10.

3) EXPERIMENT
In this part, nine multi-objective 0/1 knapsack problems
are solved using SPEA [184], NSGA [185], VEGA [186]
NPGA [187] and QICMOA. The test data sets are avail-
able from [188] and 2, 3, 4 knapsacks containing 250, 500,
750 items are considered respectively during the comparison.

Based on the performance metric of coverage and repre-
sented using the symbol I , TABLE 11 shows the comparison
of QICMOA (Q) with SPEA (S), NSGA (NS), VEGA (V)
and NPGA (NP). For example, I (Q, S) means the coverage
of solutions obtained by QICMOA compared with solutions
obtained by SPEA. The bigger the value of I (Q, S) is, the bet-
ter the performance of solutions obtained by Q.

For 2 knapsacks with 250 items (2-250), TABLE 11 indi-
cates that the behavior of QICMOA is better than that of
the other four algorithms. Specifically, solutions obtained by
QICMOA weakly dominate solutions obtained by SPEA and
clearly dominate solutions obtained by NSGA, VEGA and
NPGA.As for 2 knapsackswith 500 and 750 items (2-500 and
2-750), performance of QICMOA is rather exceptional com-
pared with others over 30 independent runs. For 3 knapsacks
with 250 items (3-250), QICMOA is better than SPEA and
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TABLE 10. The main loop of QIVMOA.

solutions obtained by NSGA, VEGA and NPGA are clearly
weakly dominated by solutions obtained usingQICMOA. For
3 knapsacks with 500 items and 750 items (3-500 and 3-750),
solutions obtained by QICMOA in a certain extent weakly
dominate the solutions obtained by the other four algorithms.
Especially, for 3 knapsacks with 500 items, all solutions using
NPGA and VEGA are clearly weakly dominated compared
with QICMOA. For 4 knapsacks with 250 items (4-250),
all I (Q, S) are smaller than I (S,Q), which indicates SPEA
performs better than QICMOA to a certain degree. However,
for 4 knapsacks with 500 items and 750 items (4-500 and
4-750), QICMOA works better.

4) CONCLUSION
In this part, four algorithms are compared with QICMOA,
which are SPEA, NSGA, VEGA and NPGA. The com-
pared methods are all classical multi-objective optimiza-
tion methods. Different from these traditional methods,
QICMOA is a heuristic intelligent algorithm under the idea
of quantum mechanism and immune clone. Besides, QIC-
MOA absorbs the advantages of common multi-objective

TABLE 11. The coverage of two sets for the nine 0/1 knapsack problems.

optimization methods. The fitness value of each Pareto opti-
mal individual is assigned as the average distance of two
Pareto optimal individuals on either side of this individual
along each of the objectives, which is called crowding-
distance and proposed in NSGA-II. In QICMOA, only less
crowded Pareto optimal individuals are selected to con-
duct clone and recombination in the trade-off front. It is
a highly effective combination of quantum intelligent opti-
mization algorithm and traditional multi-objective optimiza-
tion method, so the best performance can be undoubtedly
obtained.

D. QUANTUM CLUSTERING FOR COMMUNITY DETECTION
Inspired by the mechanism of quantum computing, QC is
applied to complete the clustering in the feature space to find
the corresponding communities in the network space.

1) RELATED WORK
In the real world, many complex systems can be abstractly
represented as networks. In the study of the physical signifi-
cance and mathematical properties of complex networks, it is
found thatmany real networks have a common characteristic -
community structure. That is to say, the network is composed
of several communities. Internal nodes of a community are
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closely connected while nodes from different communities
are connected relatively sparsely.

Generally, a concrete network can be represented
abstractly using a graph G = (V ,E), which is composed
of a point set V and an edge set E . ωij denotes the weight of
an edge which connects node i and node j and the connection
degree between node i and node j can be expressed as Mij.
The adjacency matrix of nodes is expressed as A, then we
have the co-adjacency matrixM :

M = (A 2
+ 2A+ I )· ∗ (A+ I ) (44)

When there exists no edge between two nodes, the struc-
tural similarity is defined as 0. The more common neighbors
exist, the structural similarity is bigger. Structural similarity
is defined as follows:

sij=
Mij

√
|0 (i)| · |0 (j)|

=
Mij√∑

u∈0(i) ω
2
iu ·

√∑
u∈0(j) ω

2
ju

(45)

Structural similarity matrix S can be decomposed as S =
Q3QT , where 3 is a diagonal matrix composed of eigenval-
ues λ1, λ2, · · · , λN (λ1 ≥ λ2 ≥ · · · ≥ λN ), and Q is the cor-
responding eigenmatrix using eigenvectors q1, q2, · · · , qN as
column vectors. Principal component analysis (PCA) is used
to obtain the transformed data as follows:

8l = 3
1
2
l Q

T
l (46)

3l is a diagonal matrix containing the first l eigenvalues,
Ql is a matrix composed of the first l corresponding eigenvec-
tors, and 8l is a principal component matrix whose shape is
(N × l).8l is used as input for QC and each row corresponds
to a point in the original data set.

An improved QC is used by utilizing K-nearest neighbor
strategy. The set of node p and its adjacent nodes are repre-
sented by 0 (p). It can be assumed that the wave function of
a node is only affected by the nodes connected to it. Based on
this assumption, the wave function of node p and the potential
energy function can be rewritten as follow:

9 (p)=
∑N

i=1
e−‖p−pi‖

2/2σ 2 (47)

V (p)=E +

(
σ 2
/
2
)
∇

2ψ

ψ

=E−
d
2
+

1
2σ 2ψ

∑
pi∈0(p)

‖p−pi‖2 exp

[
−
‖p−pi‖2

2σ 2

]
(48)

The adjacency matrix is a sparse matrix, a large number
of elements of which are zero. In the improved QC, for a
network with N nodes, the time complexity of each iteration
is reduced to O (2L + N ), where L is the total number of
edges in the network and 2L + N � N 2. For large-scale
networks, nodes and their adjacent information are taken into
account, without considering the interference of other nodes,
which will greatly reduce the running time of the algorithm.
At the same time, the introduction of adjacent information
will also help the performance of QC.

TABLE 12. The procedure of QCCD.

2) MODELING THE TASK
A new community detection method based on QC (QCCD) is
proposed. Firstly, the structural similarity is used to measure
the strength of the connection of nodes in the network, and
the spectral features are extracted to transform the community
detection problem into a data clustering problem. Then, QC
is applied to complete the clustering in the feature space to
find the corresponding communities in the network space.
During the process of QC, the introduction of node adjacency
information can not only improve the local analysis ability
of the algorithm, but also reduce the time complexity. The
procedure of QCCD is in TABLE 12:

3) EXPERIMENT
Three contrast algorithms are set up: Niu [189] is a spectral
method combining QC and standard cut criterion; Fu [190]
uses K-Means method to optimize module density and dis-
cover communities; Newman [191] is a spectral bisection
method based on modularity matrix.

In order to evaluate the results of community divi-
sion, the widely used evaluation indicators are introduced:
normalized mutual information (NMI) [192] and modularity
Q [193]. In addition, jaccard score (JS) [194] is adopted from
the perspective of clustering.

QCCD is tested on six real world networks: Zachary’s
Karate Club [195], Dolphin social network [196], Journal
index network [197], American College Football [198], Santa
Fe Institute (SFI) [198] and The Science Network [198].

Results of QCCD in real world network are given in
TABLE 13. Errors denote the number of nodes wrongly clas-
sified and NC denotes the number of network communities
obtained.
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TABLE 13. Results of QCCD in real network.

FIGURE 11. Distribution of points before and after QC, (a)(b)(c)(d)
represent results of Karate, Football, Dolphins, and Journal respectively.
In addition, (#-1) represents the two-dimensional principal component
mapping of the original network and (#-2) represents the final
distribution after 20 iterations using QC.

In TABLE 13, for Karate and Journal, QCCD can get
the correct partition results (NMI = 1). For Football and
Dolphins, we can also get the correct number of communities,
with six nodes and one node wrongly classified respectively.
Because SFI and Science have no standard correct results,
only NC and Q can be obtained.

TABLE 14. Comparisons of four algorithms on real networks.

Distributions of points before and after conducting QC are
shown in FIGURE 11. The real network partition is marked
with different colors and partitions detected by algorithms
are circled. Because of a large number of communities exist
in Football, the result is not very clear. For the other three
networks, nodes in the network are regarded as particles in
quantum space and the nodes belonging to the same commu-
nity will move to the same area by QC eventually, which can
further expand the differences between different communities
and improve the compactness of the community.

TABLE 14 shows results of QCCD compared with other
three contrast algorithms in four real world networks. New-
man focuses on maximizing the network modularity function
Q. On this basis, Fu uses K-Means to optimize the modularity
density. Both QCCD and Niu are proposed on the basis of
QC and the discovery of communities depends entirely on
the potential information of samples. TABLE 14 shows that
QC-based algorithms have better community detection ability
than Fu and Newman. Comparing QCCD with Niu, both of
them achieve the same results on Dolphins. However, QCCD
excels in Karate and Journal with correct divisions, while
Niu has wrong results. For Football, JS and NMI values
obtained by Niu are higher than those obtained by QCCD,
but Niu divides the network into 15 communities, which
are quite different from the real one. QCCD has obtained
12 communities, and only a minority of results are incorrect.
In summary, the performance of QCCD is better.

4) CONCLUSION
In this paper, three algorithms are used to compare with
QCCD, namely, Niu, Fu and Newman. Fu uses k-means to
optimize module density, and then finds communities; New-
man is a spectral bisection method based on module degree
matrix. Niu is based on the standard cut criterion, and then
the spectrum information is extracted and the community
detection task is further completed by using QC. QCCD is
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similar to the spectral clustering framework, which extracts
the feature information of the original network and transforms
the community detection problem in the complex network
into a clustering problem in the data space. Most clustering
methods are sensitive to the initial value and noise, thus can
be easily trapped in the local optima. However, the focus
of QC is on the selection of clustering center, which com-
pletely depends on the potential information of the data itself
and the number of clustering categories do not need to be
presupposed. Therefore, QC is a suitable clustering choice
compared with other clustering methods.

V. CONCLUSION
This paper summarizes the existing quantum algorithms from
two aspects: quantum optimization and quantum learning.
Firstly, the related concepts and development history of quan-
tum optimization and quantum learning are introduced. Then,
classical algorithms are described in detail, and their devel-
opment is summarized. Finally, related experimental proofs
are given. As a new kind of algorithm, quantum intelligent
algorithms combine the high efficiency of global search with
high parallelism, powerful storage and computing advantages
of quantum computing perfectly, which can effectively avoid
the shortcomings of intelligent algorithms and improves
the efficiency. Experiments also show that, compared with
traditional intelligent algorithms, quantum intelligent algo-
rithms have shown strong competitiveness and possess great
potential.
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