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ABSTRACT The information used for human natural language comprehension is usually perceptual
information, such as text, sounds, and images. In recent years, language models that learn semantics from
single perceptual information sources (text) have gradually developed into multimodal language models
that learn semantics from multiple perceptual information sources. Sound is perceptual information other
than text that has been proven effective by many related works. However, there is still a need for further
research on the incorporationmethod for perceptual information. Thus, this paper proposes a languagemodel
that synchronously trains dual perceptual information to enhance word representation. The representation
is trained in a synchronized way that adopts an attention model to utilize both text and phonetic perceptual
information in unsupervised learning tasks. On basis of that, these dual perceptual information is processed
simultaneously, and that is similar with the cognitive process of human language understanding. The
experiment results show that our approach achieve superior results in text classification and word similarity
tasks with four languages of data set.

INDEX TERMS Information representation, multi-layer neural network, natural language processing,
unsupervised learning.

I. INTRODUCTION
Word representation is a method that allows a computer
to understand human language by quantifying word seman-
tics. This method is the basis of natural language pro-
cessing (NLP) and has received substantial attention from
academic circles.

The main way to obtain word representation is to
learn the relationship between words from textual contexts
[1]–[4]. However, such a distribution model only learns
semantics from text, while language comprehension is
more precise and includes both text and phonetics
[5]–[8]. Researchers believe that when humans use language
to express semantics, they will form corresponding sounds in
their minds, which can help humans enhance the expression
of semantics. This observation led to the development of
multimodal language models that incorporate textual and
sound information. A range of evaluations have shown that
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such models are better equipped to learn semantic word
representations than text-based models [9], [10].

There are already some researches on incorporate sound
in word representation. Some of them use sound as percep-
tual information selected sound come from natural, such as
bark, running water, thunder and so on. [9], [11]. However,
the representation of such sounds is limited and it cannot be
used to represent abstract nouns, such as ‘‘love’’, thus greatly
reducing multimodal vocabulary. The sound that can express
information is phonetic, which is spoken voice. So, this paper
proposes to use phonetics as the source of sound perception
information.

As a general fact, the phonetic context and the text context
can’t be regarded as duplicated. They are a complementary
relationship that provides a richer semantic for each other. For
example, in the case of word sense disambiguation, ‘‘minute’’
has two meanings. when the pronunciation of ‘‘minute’’ is
[’mınıt], it indicates a time unit, and when it is pronounced
[maı’nju:t], it means tiny. For words with similar pronunci-
ations and different meanings, text can provide the model
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with richer semantics (e.g., ‘‘ship’’ and ‘‘sheep’’). Their
differences in writing can help us distinguish the different
meanings of the two words.

In the early stage of language learning, humans cannot
express semantics in the form of textual words, but seman-
tics are instead expressed and communicated by phonetics.
The phonetic context can help people learn the language
quickly. In the later stage, when humans receive both pho-
netic and textual information, the understanding of language
is the most accurate. Nowadays, many related works usu-
ally train the two types of perceptual information separately
and then incorporate the information through concatenation
[12], [13]. This paper believes that the two types of perceptual
information are jointly trained and incorporated during the
training process, which can ensure that the language model
can produce word representations with sufficient semantics.

To simulate the process of language learning in humans,
this paper proposes a two-stage language model called
DPWR that synchronously trains dual perceptual information
and produces word representation with sufficient semantics.
The first stage involves the learning of the phonetic structure.
In the second stage, the attention mechanism is introduced
to extract semantics from the phonetic structure of the first
stage, which is incorporated with the text representation
by synchronous training in the language model task. The
DPWR model is compared with text-only language models
and image-basedmultimodal languagemodels, which reveals
that the DPWR word representations are able to incorpo-
rate phonetic perception information and are superior to the
word representations of other models. Moreover, compared
with the simple incorporation of previous multimodal mod-
els, the incorporation method that synchronously trains dual
perception information significantly improves the quality of
word representation.

II. RELATED WORKS
A. PERCEPTUAL GROUNDING
There is considerable evidence from behavioral experiments
and neuroimaging studies that the perceptual connection of
language plays an important role in natural language pro-
cessing [14]. Therefore, in recent years, a perceptually based
distribution model has emerged in which language represen-
tations are learned from both textual and perceptual input.
An important issue in developing such models is the source
of the perceptual information.

One method for obtaining perceptual representations is
to rely on direct human semantic knowledge in the form
of empirically derived semantic feature production norms
[15], [16], which have been used successfully in a range of
multimodal models [17]–[20]. However, manual annotated
norms have limited coverage and high cost. An alternative
method that overcomes these restrictions is the use of raw
data as the source of perceptual information. Raw data, for
instance, in the form of images or sounds, are inexpen-
sive, plentiful, and easy to obtain and provide much better
coverage [21], [22].

B. MULTIMODAL MODELS
Another important issue in addition to the type of method
used to capture perceptual information concerns how the
two modalities (perceptual and textual) are incorporated. The
multimodal representation model, which is used incorporate
the twomodalities, has received increasing attention. Existing
integration models can generally be classified into two types.

1) JOINT TRAINING MODELS
Joint training models are models that build multi-
modal representations with raw inputs of both tex-
tual and perceptual resources, such as text containing
images [23] or images described with text [24]. For exam-
ple, Hill and Korhonen [19] proposed a corpus incorporation
method that inserts the perceptual features of words into the
training corpus, which is then used to train the skip-gram
model [2]. These belong to early stage incorporation method,
that is expanding input datas to introduce additional per-
ceptual information. The disadvantage of this way is that
not every word has corresponding perceptual information.
Lazaridou et al. [25] proposed the MMSkip model, which
is a medium-stage incorporation method. In their model,
a convolutional neural network (CNN) is used to obtain visual
features, and then, the distance between the language vector
and the visual vector is minimized by means of a max-margin
objective function, thereby incorporating visual information
into the process of learning a language representation. The
language vector and the visual vector used in this function
are obtained with the skip-gram model. The works discussed
above are simple extensions of the skip-gram model; they
do not propose a new word embedding method. By contrast,
Hu et al. [26] proposed a novel model based on a multimodal
transformer architecture. Their model naturally fuses differ-
ent modalities homogeneously by embedding them into a
common semantic space, where self-attention is applied to
model the inter- and intramodality contexts. However, this
model is suitable only for visual question answering (VQA)
tasks involving text.

The joint training method implicitly incorporates percep-
tual information into word representations while learning
multimodal representation. However, these methods make
use of a raw text corpus in which the words associated with
the perceptual information account for a small fraction of the
total words. This approach weakens the effect of introducing
perceptual information, resulting in limited improvement in
language representation. Therefore, some researchers have
employed separate training models.

2) SEPARATE TRAINING MODELS
Separate training models are models that independently learn
text representations and perceptual representations and incor-
porate them afterwards.

The simplest approach to incorporation following learn-
ing is to incorporate text representations and perceptual
representations by concatenating them. This approach has
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been proven effective in learning multimodal models [9],
[12], [13]. Researchers have employed transformation and
dimension reduction on the concatenation results, such as
singular value decomposition (SVD) [9]and canonical corre-
lation analysis (CCA) [12]. In addition, Silberer et al. [27]
and Silberer et al. [28] used superimposed multi autoen-
coders to learn multimodal word representations by embed-
ding text and perceptual information inputs into a common
space. However, the above methods can only generate multi-
modal representations of those words that contain perceptual
information.

An alternative approach is to infer one modality by means
of the other. Hill et al. [12] utilized the ridge regression
method to learn a mapping matrix from the textual modal-
ity to the visual modality, and Collell et al. [13] employed
a feed-forward neural network to learn the mapping rela-
tion between textual vectors and visual vectors. In this
approach, applying the mapping function on text representa-
tions, the predicted visual vectors are obtained for all words.
Then, word representations are obtained by concatenating
textual and predicted visual vectors. Researchers have found
that irrelevant visual information is discarded in the process
of associating text to vision, whichmakes the predicted visual
vectors outperform the original visual vectors on various
semantic similarity experiments.

C. AUDITORY REPRESENTATIONS
As this work intends to show, the sources of perceptual
input are not necessarily limited to visual sources. Recent
work in multimodal semantics has explored the use of
sound as perceptual input to learn language embeddings
[11], [29]. In their work, a ‘bag-of-audio-words’ approach is
used, in which auditory grounding is achieved by dividing
sound files into frames, clustering these frames as ‘‘audio
words’’ and subsequently quantizing them into representa-
tions by comparing frame descriptors with the centroids.
Recently, Vijayakumar et al. [30] proposed an embedding
scheme that learns specialized word embeddings grounded
in sounds by using a variety of audio features. These tech-
niques were found to work well for modeling human sim-
ilarity and relatedness judgments and related experiments.
Building on this approach, Kiela et al. [9] used deep learn-
ing models that led to auditory representations of higher
quality.

However, the above work introduced sounds from the
physical world. For example, a rumble is used as the per-
ceptual information of the word ‘‘thunder’’, and the sound
of the waves is used as perception information of the word
‘‘sea’’. However, abstract nouns, such as ‘‘love’’, do not
have such physical sounds. In addition, there is work [31]
believe that spoken voice carries some semantic information.
Therefore, this paper uses spoken voice, i.e.,phonetics as the
perceptual information and utilizes pretraining phonetic rep-
resentations to enhance the effect of introducing perceptual
information.

III. SYNCHRONOUS TRAIN DUAL PERCEPTUAL
INFORMATION TO ENHANCE WORD
REPRESENTATION(DPWR)
The model training process is divided into two stages: the
phonetic structure extraction stage and the perceptual infor-
mation incorporation stage. The first stage mainly obtains
the phonetic structure feature of each word in the dictionary.
In the second stage, unsupervised joint training of the pho-
netic and textual perceptual information is performed.

A. STAGE 1: PHONETIC REPRESENTATION ACQUISITION
The goal of the first phase is to encode spoken word signal
features and obtain an initial phonetic representation, Vp.
We want to obtain a phonetic representation, Vp, at the

word level. There are many approaches for segmenting
utterances automatically. Automatic segmentation of spo-
ken words has been successfully trained and reported pre-
viously [32], so the training audio corpus in the present
work has been previously segmented into phonetic words.
A word and its corresponding phonetics form a token.
If two different phonetic sounds correspond to the same
word (a polyphonic word), the word forms two tokens with
two different phonetics to avoid the ambiguity arising from
pronunciation.

For example, the textual word ‘‘present’’ has two pronun-
ciations. When it is pronounced [’preznt], it means ‘‘now’’;
when it is pronounced [prizent], it means ‘‘give a speech’’.
If this textual word is considered a token, its two different
semantics will be encoded into the same word representation.
Regardless of the context, a word representation with two
mixed semantic meanings cannot provide clear semantics.
If this word is instead treated as two tokens, it will have two
word representations:

‘‘Present + [’preznt]’’ = a
‘‘Now + [prizent]’’ = b
Then, when these word representations are used, the appro-

priate word representation can be chosen in accordance with
the context or pronunciation of the word.

In addition, the audio corpus contains much unideographic
noise, such as background noise and speaker characteristics.
The ideographic component is the phonetic structure [31],
which is not changed by the environment or the speaker. The
objective of stage 1 is to disentangle the phonetic structure
and noise. To achieve this objective, we designed the network
structure shown in Fig. 1.

We denote the audio corpus as X = {xi}Mi=1,, which
consists of M spoken words, each represented as xi =
{xi1, xi2, . . . , xiT }, where T is the total number of frames in
the phonetic word, and xit is the Mel-scale Frequency Cep-
stral Coefficient (MFCC) feature vector for the t th frame. The
MFCC approach is commonly used to obtain the phonetic
features of audio [33]. In the MFCC approach, frequency
bands are spaced along the Melscale.

The training process is divided into the two parts described
below.
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FIGURE 1. The frame of phonetic representation acquisition.

1) ENCODER AND DECODER
As shown in the left of Fig. 1, a sequence of acoustic features
xi = {xi1, xi2, . . . , xiT } is entered into a phonetic encoder Ep
to obtain a phonetic vector Vp. Then, the phonetic vector Vp
is used by the decoder Dp to reconstruct the acoustic feature
x ′. This phonetic vector Vp will be used in the next stage for
the phonetic representations. The encoder Ep and the decoder
Dp are jointly learned by minimizing the reconstruction loss
as follows:

Lp =
∑
i

||xi − Dp(Ep(xi))||22 (1)

2) PHONETIC REPRESENTATION WITH NOISE
DISENTANGLED
As shown in the right of Fig. 1, a speaker discrimina-
tor Ds takes two phonetic vectors Vpi and Vpj as input
and attempts to determine whether the two vectors came
from the same speaker. The learning target of the phonetic
encoder Ep is to ‘‘fool’’ the speaker discriminator Ds, pre-
venting it from correctly discriminating the speaker iden-
tity. In this way, only the phonetic structure information
is learned by Ep. The speaker discriminator Ds learns to
maximize Ls in 2, while the phonetic encoder Ep learns to
minimize Ls

Ls =
∑
si=sj

Ds(Vpi,Vpj)−
∑
si 6=sj

Ds(Vpi,Vpj)

Vpn = Ep(xn) (2)

where the phonetics pi uttered by speaker si, Ds (·, ·) is a real
number. [31] proved that the adversarial training framework
like this can effectively remove noise.

B. STAGE 2: SYNCHRONOUSLY TRAINING OF PHONETIC
REPRESENTATION AND TEXT REPRESENTATION
The unsupervised learning task of the joint training frame-
work is similar to filling in blanks, that is, inferring the
target word from the context surrounding the target word. The
training framework is shown in Fig. 2. We use one sentence
of window sizes as input for the stage 2. Every time input,
the window moves one unit to the right. The phonetic vectors
Vp obtained in stage 1 and the text vectors Vt initialized by
word2vec [2] be regard as two kinds of word representations
in the sentence. The input format is matrix Xm∗n, and each
row in the matrix is the n-dimension vector representation of
a word. m is the context window size.

FIGURE 2. The frame of joint training.

In stage 1, only the spoken word signal feature is encoded
into the phonetic vector Vp. Therefore, we need to embed the
semantics in Vp in stage 2. Compared with that for textual
semantics, the extraction method for phonetic semantics is
more complicated. The semantics of two types of words
require strengthening in the language model based on their
phonetics. One is polyphonic words (such as ‘‘present’’ and
‘‘minute’’). These words have two distinct phonetic represen-
tations but correspond to the same text representation. The
other is homophones (such as ‘‘see’’ and ‘‘sea’’ or ‘‘son’’
and ‘‘sun’’). These words have different text representations
but the same phonetic representations. Therefore, we use
a multihead attention model to embed the semantics into
Vp. In addition, in this stage, we use residual networks to
incorporate the attention matrix, the phonetic vector matrix
and the text vector matrix as word representation matrices.

The nth row is taken from the word representation matrix
as the target word vector Vw, the other rows constitute the
context matrix as input of the fully connected layer, and
the output is the context representation vector Vc, which is
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FIGURE 3. Structure of Xm∗n, Vc and Vw .

used as the prediction target word Vw.The relationship among
Xm∗n, Vc and Vw is shown in Fig. 3
According to that two different words having similar con-

text should have similar semantics. We extend the idea of the
model and obtain the objective function for stage 2 as follows:

T∑
t=1

[
∑
c∈Cw

log(1+ exp(−s(w, c)))

+

∑
n∈Nw,c

log(1+ exp(s(w, n)))] (3)

where Cw represents words that in the context window, and
Nw,c represents a set of negative examples sampled in the
dictionary using the negative sampling method [2]. The key
principle of the negative sampling method is to replace the
expensive denominator with a collection of context words
‘‘negatively’’ sampled based on a distribution, which can be
set as the word unigram distribution U. In practice, to over-
come the data sparseness issue, we raise U to the 3/4th power
following [2].
Extract the semantics over the phonetic representation

Reference [34] found that multihead attention allows a
model to jointly attend to information from different repre-
sentations subspaces at different positions. Thus, this paper
utilizes a multihead self-attention model to extract phonetic
contextual semantics to the phonetic representations of the
current word. First, the query matrix WQ, the key matrix
WK and the value matrix WV of the ith attention head are
randomly initialized. Then, the phonetic vector matrix Xp and
the parameters (WQ

i , W
K
i , WV

i ) are input into the attention
layer to obtain the attention matrix of the ith attention head.

Attention(Qi,Ki,Vi) = softmax(
QiKT

i
√
dk

)Vi (4)

where Qi = Xp ∗ W
Q
i ; Ki = Xp ∗ WK

i ; Vi = Xp ∗ WV
i ; and

the parameter matrices WQ
i ∈ Rdmodel∗dk , WK

i ∈ Rdmodel∗dk ,
and WV

i ∈ Rdmodel∗dv . d is the dimension of queries and
keys. Mikolov et al. [2] proposed that for large values of
dk , the dot products grow large in magnitude, pushing the
softmax function into regions where it has extremely small
gradients. To counteract this effect, we scale the dot products
by
√
dk .

Finally, we linearly project the queries, keys and values h
timeswith different, learned linear projections to dk , dk and dv
dimensions, respectively. On each of these projected versions
of queries, keys and values, we perform the attention function
in parallel, yielding dv-dimensional output values. This out-
put attention matrix, the phonetic representations matrix Xp
and the text representations matrix Xt are concatenated and
once again projected, resulting in the final values, as depicted
in the lower half of Fig. 2.

Multihead(Q,K ,V )=Concat(Xp,Xt , head1,. . ., headh)W o

headi = Attention(Qi,Ki,Vi)

W o
∈ R(h+2)∗dv∗dmodel (5)

IV. EXPERIMENTS
In this section, we test the effectiveness of the DPWR model
in generating high-quality word representations.

A. DPWR MODEL SETTINGS AND DATASETS
Our experiments cover four languages: English, Spanish,
German, and French.

The training textual corpus we use is comprised of
Wikipedia datasets in English,1 Spanish,2 German3 and
French.4 We have dictionary sizes of 0.34, 0.38, 0.16, and
1.40 million words for English, Spanish, German and French,
respectively.

The English audio corpus was LibriSpeech [35], which is
a corpus of read speech in English derived from audiobooks.
This corpus contains 1000 hours of speech sampled at 16 kHz
uttered by 2484 speakers. The audio corpus for the other
languages was the GlobalPhone [36], a multilingual database
of high-quality read speech with corresponding transcriptions
and pronunciation dictionaries in 20 languages. This corpus
contains 400 hours of transcribed audio data from more than
2000 native speakers. We extracted 39-dimension MFCCs as
the acoustic features.

1https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-
articles.xml.bz2

2https://dumps.wikimedia.org/eswiki/latest/eswiki-latest-pages-
articles.xml.bz2

3https://dumps.wikimedia.org/dewiki/latest/dewiki-latest-pages-
articles.xml.bz2

4https://dumps.wikimedia.org/frwiki/latest/frwiki-latest-pages-
articles.xml.bz2
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In stage 1, the phonetic encoder Ep and decoder Dp both
are 2-layer GRUs with hidden layer size 128 and 256, respec-
tively. The speaker discriminatorDs is a fully-connected feed-
forward network with 2 hidden layers with size 128. The size
of representation vectors is set to 128.

In stage 2, the number of self-attention heads is set as 4,
and the parameters of each attention layer are as follows:
WQ
i ∈ R512×128, WK

i ∈ R512×128, WV
i ∈ R512×128 and

W o
∈ R768×512. The fully-connected feed-forward network

has 2 hidden layers with size 258. The size of representation
vectors is set to 128. The context window size is 5, and the
negative sampling number is 5.

B. TRAINING SCHEMES
To examine whether the pretraining of phonetic structure in
stage 1 and the synchronously training in stage 2 improve
performance in word representations, we design three model
training schemes. The first is DPWR, which performs
phase one and phase two of model training. The second is
DPWR-stage2, which directly concatenates text and phonetic
representations after stage 1. The third is DPWR-stage1,
which does not learn phonetic structure features before syn-
chronously training.

C. BASELINE ALGORITHMS
To assess the effectiveness of DPWR, we compare several
text-only models, such as sisg [3], word2vec [2] (includ-
ing the skip-gram and CBOW algorithms), and the GloVe
model [37].

In addition, we compared DPWR with text+boaw and
text+nae, which were proposed by Kiela et al. [9]. Both are
auditorily grounded multimodal models. These two models
achieve multimodal word representations by concatenated
representations of actual sound and text. The audio data are
from the online search engine Freesound5. text+boaw makes
use of the so-called ‘‘bag of audio words’’ (BoAW) algo-
rithm to obtain auditory-grounded representations. text+nae
makes use of a neural network to obtain auditory-grounded
representations.

In addition, we compared DPWR with TunedFL and
TunedSL [9], which are both image-based multimodal lan-
guage models that use visual information as perception infor-
mation. TunedFL assigns equal weights to the textual and
visual components, and TunedSL uses the Scoring Level (SL)
strategy (with similar weights assigned to the two channels,
and the same k values as TunedFL).

D. EVALUATION METHODS
Schnabel et al. [38] show that the word similarities task
is a prominent means for evaluating word representations.
The word similarities task is an intrinsic evaluation method.
Intrinsic evaluation methods concentrate on measuring lexi-
cal internal patterns such as semantic and morphology infor-
mation. A language model that achieves good performance

5http://www.freesound.org.,Roma & Serra, 2013

at intrinsic evaluation cannot produce similar performance in
extrinsic evaluation. So, in addition, we use the text classifi-
cation task for extrinsic evaluation.

E. WORD SIMILARITY TASK
1) EXPERIMENTAL SETTINGS AND DATASETS
We assess the performance of DPWR in predicting the degree
of semantic relatedness between two words as rated by
human judges, and compared the four DPWR model training
schemes with baseline models in English.

We evaluated DPWR, purely textual models, image-based
multimodal models, and sound-based multimodal models on
several standard word similarity datasets, such as WS-353
[39], MC-30 [40], RG-65 [41] andMEN-TR-3000 [42]. Each
word pair in these datasets is associated with several human
judgments on similarity and relatedness on a scale from 0 to
10 or 0 to 4.

WordSim353 is a widely used benchmark constructed by
asking 13 subjects to rate a set of 353 word pairs on an
11-point meaning similarity scale and averaging their ratings
(e.g., dollar/buck receives a very high average rating, profes-
sor/cucumber receives a very low one).

Among the word similarity datasets we use, MEN was
developed specifically for the purpose of testing multimodal
models. It consists of 3000 word pairs with [0, 1]-normalized
semantic relatedness ratings provided by Amazon Mechani-
cal Turk workers. For example, beach/sand has a MEN score
of 0.96, bakery/zebra received a 0 score. Since the MEN
dataset comprises a wide variety of concepts, one could argue
that this dataset was appropriate for our purposes.

The models are evaluated as follows. For each pair in a data
set, we compute the cosine of the model vectors representing
the words in the pair and then calculate the Spearman corre-
lation of these cosines with the human ratings of the same
pairs. The higher the correlation, the better the model can
score in correlation analysis, and the more accurate the word
representations can be. When a word has two representations
(i.e., two pronunciations), we choose the one that performed
better in the word similarity experiment.

It can be observed from Table 1 that the experimental
results of DPWR are superior to those of the other models.
Therefore, as reported in Table 2, this paper also conducts the
word similarity experiment in other languages and compares
the DPWR model with the baseline models. We use WS353,
MC and RG for the Spanish models, German WS353 for the
German models, and French WS353 for the French models.

2) EXPERIMENTAL RESULTS
The experimental results of the word similarity tasks are
reported in Table 1 and Table 2.

As shown in Table 1, the perceptual-based model has no
semantic word representations that are worse than those of the
purely textual models regardless of the source of perceptual
information. The results show that the method of extracting
semantics from perceptual information and the incorporation
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TABLE 1. Spearman’s Correlation ρ × 100 for word similarity datasets(%) in english.

TABLE 2. Spearman’s Correlation ρ × 100 for word similarity datasets(%) in other languages.

method of perceptual information can affect word represen-
tations quality.

When comparing sound-based representations with
image-based representations,We found that on theMEN-TR-
3000 dataset, word representations that incorporate image
perceptual information are of higher quality than those
that simply incorporate sound perceptual information, but
the DPWR has better performance. Comparison among the
several models of audio-based representations reveals that
the DPWR model with synchronously training perceptual
information can produce the better word representations,
especially on the MEN-TR-3000 dataset.

By comparing the three models DPWR, DPWR-stage1 and
DPWR-stage2, it can be seen that the model training scheme
has an effect, and the word representations of DPWR model
has the highest quality. The quality of DPWR-stage1 is worse
than that of DPWR, indicating the importance of the pre-
trained phonetic structure. DPWR-stage2 is the worst of the
three models, indicating that the incorporation method of
multimodal language model plays a large role in determining
the quality of word representations. synchronously training
perceptual information during the process of language model
learning is more effective than simple concatenate.

In other languages, DPWR’s performance is 2% to 10%
better than that of other models. The results demonstrate that
incorporation method of DPWR is equally valid for other
languages.

F. TEXT CLASSIFICATION TASK
In the text classification experiment, it is appropriate to select
the word representations of the polyphonic word by context.
We choose several models that perform well in word similar-
ity experiments and perform text classification task on these
models. We evaluate the performance of our models in two
languages.

TABLE 3. Accuracy (%) of text classification in each language.

1) EXPERIMENTAL SETTINGS AND DATASETS
For English, we use Yelp reviews as a classification data set.
We use the Yelp reviews from [43]. There are 1,569,264 sam-
ples of Yelp reviews with a total of 4 ratings. In this experi-
ment, we consider the first level and second level as negative
and the third level and fourth level as positive. For Spanish,
we choose TASS 2017 [44] as a text classification data set.
TASS 2017 is an emotional classification dataset based on
Spanish Twitter that includes four categories: ‘‘P’’, ‘‘N’’,
‘‘NEU’’, and ‘‘NONE’’. We use the average of the word
vectors contained in the text to represent the text. When a
word has two representations (that is, two different pronunci-
ations), we select one that is closer to the context representa-
tion as the current word representation, and the calculation is
as follows:

f (w) = σ (xTu θw), u ∈ context(w) (6)

where xu represents the sum of the word vectors of all words
in context(w), and θw represents the word vectors of the
word w.

Text classifier training is performed using the LIBLINEAR
tool [45]. For the data sets that do not have separate training
and test sets, we select 70% of the data as the training set
and 30% as the test set. The experimental results are reported
in Table 3.
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TABLE 4. Nearest neighbors of ‘‘minute’’ using TunedFL and DPWR.

2) EXPERIMENTAL RESULTS
As can be observed from Table 3, the DPWRmodel achieved
the superior results in each language. In English, the accura-
cies of sisg and DPWR reach 89%, but that of sisg is 0.05%
greater than that of DPWR.In Spanish, PATE has an accuracy
1.78% higher than the second. sisg is tied for second, with an
accuracy rate of 73.74%.

G. QUALITATIVE ANALYSIS
Comparing the five models that incorporate the phonetic
features listed in Table 1 shows that DPWR and DPWR-
stage1 outperform text+boaw and text+nae, which combine
two features in a proportionally concatenated manner. While
in the DPWR and DPWR-stage1 models, the semantic mean-
ing of perceptual information is extracted and incorporated
by synchronously training in neural network. This suggests
that the incorporation method of DPWR is more effective
than separately training and concatenation. Different incor-
poration methods lead to differences in the results.

Comparing the experimental results of image-based and
sound-based multimodal language models, reveals that the
sound-based models have no marked advantages. We analyze
semantic relations of word representations, hoping to obtain
different results.

We use the word ‘‘minute’’ as an example. In the fea-
ture space obtained by the TunedFL and DPWR mod-
els, we remove the morphological inflections on the word
’minute’, such as ’miniutes’, ’minuted’, and ’minuter’, and
find the ten nearest neighbors of ‘‘minute’’. The nearest
neighbors of a word are computed by comparing the cosine
similarity between the center word and all other words in
the dictionary. The results are reported in Table 4. The
image-based multimodal model TunedFL indicates that some
of the nearest neighbors are seemingly sports related. The
TunedFL model infers words related to time based on the
meaning of ‘‘minute’’. The nearest neighbors of the two
pronunciations ‘‘minute’’ in the DPWR model show that
the different pronunciations allows the contexts of different
meanings of a word to be classified into separate groups,
allowing our model to learn multiple meanings of a word.

V. CONCLUSION AND FUTURE WORK
Most of the language models that incorporate sound as per-
ceptual information into word representations do not apply a
good incorporation method, which leads to limited improve-
ment in the quality of language model. Inspired by the human
language learning process, this paper presents the language
model named DPWR, which synchronously trains dual per-
ceptual information to enhance word representation. The rep-

resentation is trained in a synchronized way that adopts an
attention model to utilize both text and phonetic perceptual
information in unsupervised learning tasks. On basis of that,
these dual perceptual information is processed simultane-
ously.

The above experiments suggest that the method used to
perceptual information, the method used to extract perceptual
information, and the source of perceptual information all
affect the quality of the language model. The experimental
results show that the incorporation method of joinly training
is more effective than the separately training and simple con-
catenation. In addition, pretraining of the phonetic structure
can improve the quality of the language model.

As one of the main research directions related to the
development of language representations, the performance of
multimodal language models depends not only on the source
of perceptual information but also on the method used to
incorporate that information. Such an incorporation method
should not be limited to the incorporation of only two kinds
of information but should also be capable of incorporating
information from more than two modes. This work initially
explores amethod of training amultimodal languagemodel to
incorporate phonetic perceptual information. In future work,
we will continue to explore incorporation methods for multi-
modal information and use these methods for sentence- and
chapter-level representation.
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