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ABSTRACT In laser powder bed fusion, a convolutional neural network could build a good regression model
to predict a laser power value from a melt-pool image. To empirically validate it, we used the acquired image
data from a monitoring system inside metal additive manufacturing equipment and optimally configured a
convolutional network by the grid search of hyper-parameters. The proposed network showed only 0.12 %
of test images were out of the criterion for judging the predicted laser power value to be reliable and showed
more accurate results than deep feed-forward neural network in the prediction of laser power states unseen
in training steps. We expect that the proposed model could be utilized to discover the problematic position
in additive-manufactured layers causing defects during a process.

INDEX TERMS Convolutional neural network, metal additive manufacturing, laser powder bed fusion,
melt-pool image, process monitoring.

I. INTRODUCTION
Metal additive manufacturing (AM) is a suitable technology
to produce specific parts which are difficult to be formed by
a traditional fabrication method such as casting or cutting
because of much more freedom of design. Metal AM offers
advantages to design the complex geometry and to reduce
the weight and the number of parts. It is the reason why
aerospace and energy industries have adopted metal AM to
produce parts of their aircraft engine and gas turbine. Laser
powder bed fusion is a metal AM technique to proceed
following two steps repeatedly on every layer. First, metal
powders of several ten-micrometer diameter are spread on a
metallic plate. Second, selectively focusing a laser beam spot
on the cross-section layer of a part melts powders, and the
molten region rapidly cool down. Unexpected phenomena of
powder distribution and melt-pool dynamics in AM process
cause defects in the part such as porosity, cracking and layer
delamination which act to worsen the part reliability and are
confirmed by only the destruction of part. The instant that
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these quality problems occur could be identified by in-situ
and real-time monitoring of a melt-pool.

The melt-pool is a locally melting zone generated by short-
time laser irradiation on powder particles. The melt-pool has
been utilized to monitor AM process by several researchers
[1]–[5]. The visible light is emitted from the melt-pool, and
high-speed camera could capture the only coaxial light with
a laser path. Because the light intensity and the shape of
melt-pool are determined by process parameters and circum-
stance, utilizing images of melt-pools could be considered
whether the process status is normal or abnormal without
the interruption to AM process and the destruction of part.
However, when an AM part is completely built by several
ten thousand of layers and over, several hundreds of gigabyte
files of melt-pool images and more are saved. It is impossible
to perfectly judge normal or abnormal melt-pool images by
human thinking or arithmetic algorithm because the images
show various shapes of melt-pools despite the same process
condition, but a deep neural network could be an appropriate
solution to correctly judge the state of melt-pool one-by-one.

A deep neural network (DNN) is a machine learning
method to stack multiple hidden layers of linear com-
binations of inputs with nonlinear activation functions.
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This data-driven model approach has shown good perfor-
mance in modelling with huge amount of data and enough
computing power without expert knowledge about features
and model structures in manufacturing applications including
material science [6]–[10]. In the case of DNN for image
classification, when the intensity data of pixels pass many
hidden layers of DNN consecutively, the extracted low-level
features such as lines and edges of a raw image change to
high-level features such as shapes combined by lines and
finally, DNN provides the probability to infer a certain object
from these feature information [11].

Machine learning technology including DNNs has
been recently applied to AM process monitoring fields.
Song et al. [12] used various machine learning algorithms to
predict the metal compositions using laser-induced plasma
spectroscopy. Scime and Beuth [13] used a convolutional
neural network for detection and classification of pow-
der spreading anomalies. Scime and Beuth [14] also used
machine learning to detect keyholing porosity and balling
instabilities using melt pool images. Shevchik et al. [15] used
a convolutional neural network for in situ quality monitoring
using acoustic emission recorded during AMprocess. Similar
to former researches, prior study by the authors [16] used a
feed-forward neural network (FFNN) to create a regression
model which predicted a certain laser power value from
a melt-pool image gathered by a high-speed camera in 6
laser power conditions between 100, 150, 200, 250, 300 and
350 W. The FFNN provided inference success rate over 99%
in classification approach but showed poor prediction of laser
power values in regression approach, especially in leave-one-
out test completely excluding data categorized as a class from
training data and then predicting it in test. Because acquiring
melt-pool images of all laser power conditions is restricted by
resource limitation, the poor prediction for the un-acquired
and unlabeled image set could be reluctant to apply DNN for
real industrial fields.

A CNN is a popular DNN in the application of image
classification. Differently to FFNN, a CNN apply more small
networks, called as filter, to smaller regions on an input
image to extract localized features and therefore we can
control the generalization level of extracted features at each
layer [11], [17].

The focused feature extraction on a small region is suitable
to laser power prediction from the melt-pool images because
the image of a melting spot is usually observed in a very
small area and their difference are mostly concentrated on the
edges of a circle. The strong locality of features to distinguish
cases is expected to point better in CNN than FFNN. This
dependency of close visual features can be represented in
CNN more naturally compared to FFNN assuming all possi-
ble dependencies, and therefore finely tuned CNN may have
the model regularized close to the real model.

In this study, the high-speed camera inside a metal AM
equipment captured 199,473 melt-pool images from coaxial
visible light during AM process as laser power condition
was changed. Various regression models using CNNs were

trained and tested to predict the laser power values from the
gathered melt-pool images. Root mean squared error and the
coefficient of the determination (R2) of CNNs were analyzed
to find the best-performed model. The results of inference
failure rate and leave-one-out evaluation for an FFNN and
CNNs were also compared.

II. METHODS
A. MELT-POOL IMAGE DATA ACQUISITION
The melt-pool images for the prediction of laser power val-
ues were collected by the melt-pool monitoring system of
metal additive manufacturing equipment which was devel-
oped by WINFORSYS. The optical elements of the monitor-
ing system were a dichroic mirror, a galvanometer scanner,
an F-theta lens and a high-speed camera. The laser beam
of 1075 nm wavelength and 100 µm beam size was reflected
by the dichroic mirror and the galvanometer scanner, and
finally irradiated on stainless steel (SUS316L) powders hav-
ing D50 of 28.5 µm. The laser beam fused the powders and
formed a melt-pool which emitted visible light. The only
co-axially aligned visible light (450∼900nm wavelength) at
the galvanometer mirror position was transmitted through the
optical elements and arrived at the high-speed camera. When
the laser beam was scanned along the programmed path,
the system saved the images of 512× 512 pixels and 8bit gray
scale using the high-speed camera of 2.5 kHz framerates. The
monitoring system simultaneously acquired not only a melt-
pool image but also a position data of x- and y-coordinate,
so we could know the location information where a melt-
pool image was captured. Laser power was the only pro-
cess variable to change the melt-pool shapes when cuboid
specimens of 8.5 mm in depth and 8.5 mm in width and
4 mm in height were fabricated on the SUS316L-based build
plate. The melt-pool images were saved during AM process
between the 50th layer and the 99th layer of total 150 layers.
The rest of process variables were fixed. Hatching distance
was 100 µm. Scan speed was 2.5 m/s. Layer thickness was
30 µm. Process gas was argon atmosphere with oxygen
density under 0.1%. Hatching strategy was the rotation of a
stripe pattern through 67 degrees for each layer. Fig. 1 shows
the schematic diagram for melt-pool monitoring, and Fig. 2
shows the produced specimens andmelt-pool images for each
laser power condition. All melt-pool images and the details
of the experiment settings used in this study were the same as
those used in the reference [16].

Six laser powers which were 100, 150, 200, 250, 300 and
350 W were utilized to gather various melt-pool images. The
images were clipped into 60 × 60 pixels to remove useless
black areas. Summing up 3,600 pixels’ intensities of each
image and calculating the histogram of those values were
used to filter garbage images having blurred and shattered
shapes. Table 1 shows the ratios of images which occupied
intervals of histograms for ‘the sum of pixel intensity’ to total
images. About 70% of total images were distributed among a
narrow interval regardless of the laser power conditions, and
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TABLE 1. The ratio of images which occupied the intervals of ‘sum of pixel intensity’ histogram to the number of total images metal additive
manufacturing equipment.

FIGURE 1. Schematic diagram of melt-pool monitoring system inside.

those images were used for deep learning as normal images
in this study. For each laser power condition, 22,000 images
among whole images were randomly selected. 17,600 of
22,000 images for ‘training’ were used to train the model,
2,200 of 22,000 images for ‘validation’ to detect the overfit-
ting status of a training model and 2,200 of 22,000 images
for ‘test’ to test the model. One melt-pool image was labeled
one laser power value. Therefore, total 132,000 labeled
images were used for training, validating, testing deep neural
networks.

B. STRUCTURES AND EVALUATION OF DEEP
NEURAL NETWORK
A CNN worked as the core component to predict the laser
power value based on the melt-pool image of 60× 60 pixels.
We considered three cases of the input size of filters and
three cases of the channel sizes of convolutional (Conv) layers
respectively, so total nine network structures were tested to
find out the best network. The different network structures

FIGURE 2. Produced specimens and melt-pool images for each laser
power condition.

were summarized in Table 2 and Table 3. The three cases
of filters for Conv layers were 3×3, 5×5 and 7×7. A filter
size was fixed in every layer of each structure except the
last layer. The number of Conv layers was fixed at 4. For
all Conv layers, stride was set on 1 and there was no zero-
padding. Max pooling layers were positioned after only first
three Conv layers from the input side. For all max pooling
layers, stride was set on 2 and zero-padding was applied. The
output size of the last Conv layer was adjusted to 1×1 by
changing the input size of the last filter. The channel size n of
l th Conv layer from the input side was as follows:

n = (l + 1)k (1)

l is the layer number of a Conv layer from the input side.
Three cases of k were considered (k = 2, 3, 4). The node
size of a fully connected (FC) layer was the previous layer’s
node size divided by 5, and it was repeated until the node
size became 25. When k was 2, there was only one FC
layer. The node size of the last FC layer was 1 for all cases
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TABLE 2. Feature map size varied by the filter size condition of
convolutional layers.

TABLE 3. Channel size of each convolutional (Conv) layer and node size
of each fully connected (FC) layer. The channel size n of Conv layers is
varied by k value of the equation (1).

of k . The number of total layers increased one by one as k
value increased. At each layer, after the output of a previous
layer were weighted and biased, batch normalization method
was applied for regularization and reducing learning time. Its
algorithm was to normalize the output using the mean and
the variance of one batch and introduce new weight and bias
to be learned for the normalized output [17]. To transform
the normalized output of a previous layer to a nonlinear
data, ReLU (Rectified Linear Unit) was used as an activation
function at each layer. ReLU is identity for all positive values
and zero for all negative values and is effective at avoiding
the vanishing gradient problem [18]. Afterwards the extracted
features were subsampled through a max pooling layer.

Fig. 3 shows the flowchart training a CNN. The network f
of total m hidden layers was composed of m weight matrices
W = {W1, · · · ,Wm} and m bias vectors b = {b1, · · · , bm}.
At first, all weight matrices were initialized byHe’s initializa-
tionmethodwhichwas a proper initializationmethod because
it could avoid to reducing or magnifying the magnitude of
input data exponentially when an activation function was
ReLU [19]. Bias vectors were initialized to zero. Total train-
ing images, i.e. 6 laser powers × 17,600 training images =
105,600 images, were subdivided to a batch to learn the
network f because of computing power. After the network
f randomly estimated an output hi for an image xi, hi was
compared to label yi using a cost function. The cost, root
mean squared error (RMSE) plus L2 regularization term was

calculated as follows:

cost =

√∑N

i=1

(yi − hi)2

N
+ λ ·

∑m

i=1
|Wi|

2 (2)

hi is the predicted output for ith image. yi is the label for ith

image. N is the number of images for one batch, which was
1,100 for training, 2,200 for validation and test. L2 regular-
ization λ ·

∑m
i=1 |Wi|

2 with weight value (λ) of 0.0001 was
added to RMSE for preventing the overfitting [20]. To train
the network f , we used AdaDelta optimizer which is a
gradient-based optimizer using second derivative known as
momentum [21]. After the gradient and the momentum of
the network f were evaluated, this optimizer updated network
parameters using dynamic programming to store partial eval-
uation results which is identical to backpropagation. Early
stopping algorithm was employed for the validation image
set to avoid overfitting and save the best network parameter
values [20], was called every 10th epoch and updated the min-
imum of the cost for validation set as the epoch proceeded.
When theminimum of the cost for validation set wasmaintain
during 5,000 epochs, it is saved as the best parameter values
of the network f that the parameter values of the epoch at
which the minimum of the cost for validation appeared.

The different neural networks evaluated their regression
performances using test images and ten-fold cross-validation.
The average and standard deviation of RMSE and R2 in ten-
fold cross-validation were used to find the best model of CNN
structures which could extremely reduce errors between the
predicted value and the label. The coefficient of determina-
tion R2 gave the information about the goodness of fit for the
network structures. R2 was calculated as follows:

R2
= 1−

(∑N
i=1 (yi − hi)

2∑N
i=1 (yi − ȳ)

2

)
(3)

ȳ is the mean of all labels. N is 13,200 calculated by mul-
tiplying 2,200 test images and 6 laser power conditions.
If RMSE is closed to 0 and R2 is closed to 1, it means that the
predicted value for images perfectly fits the laser power value.
In previous study, the optimization of FFNN was conducted
for same melt-pool image sets used for this study and the best
structure of FFNN was derived [16]. Fig. 4 shows the best-
performed FFNN (FFNN-10LK2) to predict the laser power
from a melt-pool image. It was comprised of 10 hidden layers
of which the number of nodes n was dropped by equation (4)
as follows:

n = 3600 · m2 (4)

m decreases from 0.9 to 0.1 with the increase of the layer
number from 1 to 9. ‘3600’ means total pixels of an image.
The layer number 0 was input layer and the layer number
10 was output layer. The inference performances of CNNs
and the FFNN were evaluated by the inference failure rate
which was a ratio of the number of images to be out of the
correct inference range to 2,200 test images for each laser
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FIGURE 3. Flowchart to train a CNN for predicting a laser power from an image.

power using ten-fold cross-validation. The correct inference
range was defined as follows:

ε =

∣∣hi,t − yi,t ∣∣
yi,t

× 100 < εth (5)

yi,t corresponds to the label of a test image, hi,t corresponds
to the predicted laser power value using the finally learned
neural network and εth corresponds to the threshold value for
inference successes decision. When the error ε was over εth,
it was decided the inference failure. The threshold value εth
of the criterion for decision were chosen by 3 and it came
from maximum long-term power instability of laser power
generator datasheet (YLR-AC 400W) because this tolerance
is commonly accepted by the equipment producer and it is the
criterion for judging the laser power value to be reliable.

Leave-one- out (LOO) method was also used to evaluate
the inference performance. The procedure of LOO method
was to train a certain deep neural network with training
images of only 5 laser power conditions except 1 condition
and after that, to test the neural network with test images of
all 6 laser power conditions including the omitted condition.
This method was effective to evaluate the performance that
how well a deep neural network could estimate an unknown
state between already known states. Therefore, LOO method
was only evaluated between 150 W and 300 W because there
were no lower and upper limit of 100W and 350W condition.
The optimization results of CNNs and inference performance
results of deep neural networks were described in Section III.

III. RESULTS AND DISCUSSION
Varying the filter size and the channel size of Conv lay-
ers, the results of RMSE and R2 were derived in Table 4.

When the filter size was 3×3, increasing the channel size
decreased RMSE. However, for 5×5 or 7×7 filter size, the
lowest RMSE was derived when k was 3. All R2 of nine
CNNs were highly close to 1, but R2 for 3×3 filter size was
further to 1 than other filter sizes. The case that the filter size
and the channel size were over the values of Table 4 spent
much time on training the model. For the variation of the
filter size and the channel size, RMSE was sensitive, but
R2 was robust. Therefore, the CNN of 7×7 filter size and k
value of 3 (CNN-F7K3) with the lowest RMSE was chosen
as the best performed structures in this study. Table 5 shows
the inference failure rate of FFNN-10LK2 and CNN-F7K3.
The averaged inference failure rates were 0.283% for FFNN-
10LK2 and 0.778 % for CNN-F7K3.

Although the CNNperformedwell with the averaged infer-
ence success rates of over 99 %, the FFNN showed higher
accuracy. It is generally known that a CNN have good ability
to extract detailed features of complicated images, but in
this study, the increase of inference failure rate meant that
CNN-F7K3 sensitively reacted to the shape variation of melt-
pool images and erroneously predicted the laser power values
of melt-pool images.

A sigmoid form function which returns the value mono-
tonically increasing from 0 to 1 for the input of all real num-
bers was introduced to reduce the sensitivity of CNN-F7K3.
As the output value of CNN-F7K3 entered a sigmoid form
function once more, the fluctuation of the final predicted
value could be reduced because large errors were suppressed.
The sigmoid form function which had two updating variables
was applied as follows:

hi =
a

1+ exp (b · zi)
(6)
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FIGURE 4. Best-performing FFNN (FFNN-10LK2) derived in preliminary results of our work [16].

TABLE 4. Average (µ) and standard deviation (σ ) of RMSE and R2 varied
by the filter size and the k value of the equation (1).

a and b were updated at the same time when weights and
biases of the CNN were updated. zi is the output value of
CNN-F7K3 for ith image. hi is the finally predicted output
of CNN-F7K3-Sig for ith image. Fig. 5 shows the CNN
of 7×7 filter size and k value of 3, of which the last layer
was connected to the sigmoid form function (CNN-F7K3-
Sig). The results of RMSE and R2 of CNN-F7K3-Sig were
derived in Table 6 and the results comparing CNN-F7K3 and
CNN-F7K3-Sig were shown in Fig. 6. Compared to CNN-
F7K3, CNN-F7K3-Sig decreased the average of RMSE by
50% and increased the average of R2 by 0.03%.
Applying the sigmoid form function was effective to

reduce the fluctuation of the predicted value as mentioned
above.

Table 7 shows the inference failure rate of CNN-F7K3-Sig
and Fig. 7 shows the inference failure rates of FFNN-10LK2,
CNN-F7K3 and CNN-F7K3-Sig for each laser power value.
The average of inference failure rate of CNN-F7K3-Sig was
0.123 %, and especially the inference failure rate for 100 W
drastically decreased from 3.16 % to 0.33 %. The inference

TABLE 5. Inference failure rate of the proposed deep neural networks for
each laser power condition.

TABLE 6. Average (µ) and standard deviation (σ ) of RMSE and R2 of the
convolutional neural network of which the last layer was connected to
the sigmoid function.

TABLE 7. Inference failure rate of the convolutional neural network of
which the last layer was connected to the sigmoid function.

performance of CNN-F7K3-Sig was also improved for all
laser powers comparing with CNN-F7K3 and was better than
FFNN-10LK2 for most laser powers.

The FFNN-10LK2 could correctly inferred 99 % and over
of test images, but the model was not good at the LOO
evaluation. Fig. 8 shows the averages of predicted laser power
for each omitted image set (only 150 W, 200 W, 250 W and
300W) of FFNN-10LK2 and CNN-F7K3-Sig. Because there
was no either the lower label than 100 W or the upper label
than 350 W, it is impossible to correctly predict these laser
power values from images of 150∼300 W. The dash line of
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FIGURE 5. CNN of 7×7 filter size and k value of 3, of which the last layer was connected to the sigmoid form function.

FIGURE 6. Averaged RMSE and R2 of CNN-F7K3 and CNN-F7K3-Sig.

FIGURE 7. Inference failure rate of FFNN-10LK2, CNN-F7K3 and
CNN-F7K3-Sig for data categorized by each laser power condition.

Fig. 8 meant the perfectly predicted laser power values for
the omitted labels. The predicted values of CNN-F7K3-Sig
model were closer to the dash line than FFNN-10LK2 and
were distributed on a straight line. RMSE and R2 of LOO
evaluations for FFNN-10LK2 were 55.56 and 0.54. However,

FIGURE 8. LOO evaluation results for each omitted image set (150 W, 200
W, 250 W and 300 W) of FFNN-10LK2 and CNN-F7K3-Sig.

the CNN achieved the high performance of LOO evaluation.
RMSE and R2 of LOO evaluations for CNN-F7K3-Sig was
18.82 and 0.99. If the model provides that RMSE is smaller
and R2 of the LOO evaluation is close to 1, it meant the model
could predict the laser power value for the unseen image sets
more precisely.

The FFNN could correctly infer the melt-pool images of
only already learned labels but had poor performance to
hardly infer the melt-pool images which were not in the label
sets for deep learning. However, the CNN showed good infer-
ence performance whether the melt-pool images were in the
label sets or not. The regularization effect by the filter of CNN
derived better performance for LOO evaluation. Because it is

impossible to gather melt-pool images of all laser power
conditions, the correct prediction for the unlabeled image set
of unseen state is required to utilize the model in industrial
sites. Therefore, the CNN is appropriate for monitoring the
melt-pool images one by one rather than the FFNN.

Additionally, the computational efficiencies of networks
were compared as shown in Table 8, which were measured
based on average running time at which training networks
took to complete. For example, the model name of ‘CNN
of 3×3 filter size and k value of 2’ was abbreviated to
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TABLE 8. Averaged running time at which training the network took to
complete.

‘CNN-F3K2’. The NVIDIA TITAN Xp GPU was used for
training a network. Increasing a filter map size usually took
short running time and increasing a channel size took long
running time roughly. The running time of CNN-F7K3-Sig
was like CNN-F7K3 even if the last layer was connected
to the sigmoid form function. The running time of FFNN-
10LK2, however, was shorter than any other network.

The proposed network will be used to judge the defects of
parts, the reliability of AM process, and the accuracy of laser
power. The type of most defects occurred during AM process
is a pore which is formed by the lack or the excess of an
energy required to melt powders properly. A melt-pool image
is also changed by the amount of the energy transferred into
powders. Using the CNN can distinguish the energy value
precisely from a melt-pool image and thus infer that a defect
occurs at the position where the predicted laser power is
suddenly and excessively changed. This method is also used
to confirm the reliability of AM process including powder
coating and laser irradiation because all melt-pool images
can be easily compared by the laser power values predicted
in real time and it can even define a standard trend using
images. Abnormal laser output can be also detected by the
CNN because an abrupt change of laser output significantly
affects a melt-pool if other variables like powders, a cham-
ber atmosphere, a plate temperature, etc. maintain normal
conditions. The proposed network will also be applied to a
feedback control system for AM process. When the predicted
laser power value at a certain position is out of the correct
inference range, powder coating and laser irradiation could
be re-proceeded at the problematic position and AM product
could be repaired during the process. Still there are problems
to be solved for applying the CNN to real AM field, which
are how more high-quality melt-pool images are acquired
and how useful or useless images are distinguished in a
preprocessing step.

IV. CONCLUSION
The regression model to predict a laser power value from
a melt-pool image was studied through adapting CNNs to
this problem. Total 132,000 melt-pool images gathered by

high speed camera varying laser power for AM process were
used to train, validate and test models. Although the best-
performing network structure was proposed through paramet-
ric experiments of nine CNNs, the FFNN still showed higher
inference accuracy because the CNN sensitively reacted to
the variation of melt-pool images and erroneously predicted
the laser power values of melt-pool images. A sigmoid form
function was applied to the last layer of the CNN to reduce
the sensitivity. Using a sigmoid form function decreased the
inference failure rate for all laser powers, and especially,
it for the images of 100 W drastically decreased. The pro-
posed CNN (CNN-F7K3-Sig) also provided higher inference
success rate on the LOO evaluation even if the melt-pool
images were not in the label sets for deep learning. Therefore,
it is expected that the prediction of laser power values from
melt-pool images using the proposed model could be used to
find the problematic position without destructive tests of AM
product.
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