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ABSTRACT This manuscript investigated coordinated intersection signal design problem for mixed traffic
flow of Human-Driven Vehicles (HDVs) and Connected and Autonomous Vehicles (CAVs). Two main
macroscopic impact of the mixed flow on signal setting are considered: saturation flow rate and the platoon
dispersion. In order to capture the traffic flow operational characteristics on coordinated intersections, three
locations, namely entrance location where the loop detector was located at, and upstream intersection and
downstream intersection were defined. Two types of vehicle cumulative curves, namely cumulative arrival
profile and cumulative departure profile were constructed. The mixed-flow traffic dynamics were analyzed,
and the arrival-departure curves relationship was derived using a combination of Newell car-following and
Akçelik acceleration model. A mixed-flow platoon dispersion model was proposed to describe the vehicle’s
progression between two locations. Due to the nonlinear nature of the problem, a particle swarm optimization
(PSO) method was employed to obtain the optimal signal parameters, including the cycle length, green
duration, and optimal offset. The algorithm was implemented and validated in a case study involving two
intersections, with the demand formulated and simulated by the Markov chain. The results showed that the
proposed model could effectively decrease delays when compared with current signal control methods.

INDEX TERMS Coordinated signal control, connected and autonomous vehicles, cumulative curves,
platoon dispersion, traffic flow modeling.

I. INTRODUCTION
Connected and autonomous vehicle (CAV) technologies
endow great potentials for future transportation systems. CAV
technologies can be decomposed into connected vehicles
(CV) and autonomous vehicles (AV). With the former tech-
nology, vehicles can communicate with each other (known
as V2V) and infrastructure (known as V2I) or even com-
municate with pedestrians (known as V2P). Together, they
are named V2X. With respect to the latter one, according to
the U.S. Department of Transportation [16], the autonomous
level can be classified into six levels, from level zero (L0)
to level five (L5). AVs can detect traffic flow dynamics,
such as real time distance between the host vehicle and other
vehicles, the speed of other vehicles and the pedestrians, etc.
with on-board sensors that include a camera, Lidar, and so
on. Compared with human driven vehicles (HDV), CAVs
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have many advantages but, of most importance, CAVs behave
accurately, as they are controlled by the algorithms, and there
is no reaction delay in the high computation power of today’s
processors.

Current traffic control systems work using the following
procedures: (1) First, the demand, or arrival flow rate, is deter-
mined. This can be detected by loop detectors or other sen-
sors, including a camera, magnetic detectors, etc. (2) Given
traffic demand, a variety of Performance Indexes (PI) can be
computed, such as delay, stops, etc. These PIs are calculated
given the saturation flow rate, which is assumed fixed and
independent on the arrival demand. (3) A signal plan is chosen
that best corresponds to the PI (such as traffic delay and
number of stops), and the system implements these signal
parameters. Typical parameters include cycle length, green
split, offset.

With the advancement of CAV technologies, the traffic
control systems that were designed for only HDVs are cur-
rently facing new challenges. One of the fundamental reasons
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is that CAVs can react to traffic flow changes in a way that
is not only much faster but also more accurate than HDVs.
Therefore, many of the microscopic traffic flow dynamics are
different, indicating if the same signal planning method is to
be used, the results would be unsatisfactory. Take the platoon
dispersion behavior of the discharging vehicles, which is
a key factor that influences traffic signal coordination as
an example. The reason that platoon dispersion occurs is
that different vehicles operate in various speeds and, hence,
the same upstream departure eventually leads to different
downstream arrivals. As CAVs behave accurately, and their
speed variances becomes minimal, or even zero, the signal
coordination scheme which is currently designed for only the
HDVs platoon may not perform well for mixed traffic flows
that include both HDVs and CAVs.

Signal control for a CAV environment has received sig-
nificant research attention. For instance, Beak et al. [2]
used connected vehicle trajectory to optimize the coordinated
signal settings. The algorithm worked at two levels–one at
intersection level and the other at corridor level. Dresener
and Stone [6] developed an Autonomous Intersection Man-
agement (AIM) protocol which was free of traffic signals.
The vehicles called ahead to reserve a time interval and,
then, the intersection decided whether to assign an interval
or not. Such a model was extended to multi intersections by
Hausknecht et al. [8]. In this extended coordination algo-
rithm, the navigation policy of CAVwas combined. Lee et al.
[12] studied the sustainable control of multi-intersections for
CVs, which obeyed the commands of controllers. This type
of control was also named ‘‘signal-free’’ control. However,
the problem of intersection coordination control for themixed
traffic flows of HDVs and CAVs had not yet been well inves-
tigated. Another type of research is to optimize the signal
and the CAV trajectories simultaneously. The objectives of
the cooperative control include efficiency, eco and safety.
For instance, Yu et al. [26] optimized the trajectories and
the signal at single intersection simultaneously. The CAV
vehicles passed the intersection in a platoon style; Xu et al.
[24] also proposed a cooperative control method of signal and
vehicles trajectories. The fuel consumption was taken into
account; Guo et al. [5] studied the joint optimization of signal
and the trajectories at the same time. The numerical scenario
was common four-phase but can be extended to other cases.

This manuscript investigated coordinated intersection sig-
nal design problem for mixed traffic flows of Human-Driven
Vehicles and Connected and Autonomous Vehicles. In order
to capture the two main influences of mixed flow, namely the
saturation flow rate (SFR) and the platoon dispersion, three
locations, namely entrance location where the loop detector
was located at, and upstream intersection and downstream
intersection were defined. Two types of vehicle cumulative
curves, namely cumulative arrival profile and cumulative
departure profile were constructed. The mixed-flow traffic
dynamics were analyzed, and the arrival-departure curves
relationship was derived using a combination of Newell car-
following and Akçelik acceleration model. A mixed-flow

platoon dispersion model was proposed to describe the vehi-
cle’s progression between two locations. Due to the nonlinear
nature of the problem, a particle swarm optimization (PSO)
method was employed to obtain the optimal signal parame-
ters, including the cycle length, green duration, and optimal
offset. This research mainly considers the signal optimization
given arrival mixed demand. Although the control of CAV
using SPaT information is possible [26], it can be foreseen
that in the near future, most intersections are operated without
the proactive control of CAVs. Thus it is important to under-
stand the impact of mixed flow on the traffic flow operational
characteristics: the saturation flow rate at the stop line and the
platoon dispersion behavior [28]. The above two influences
brought by mixed flow and the resulting signal optimization
performances are the main focus of our study, although there
are many other influences [27]. Also note that, the signal
settings are implemented for movements, rather than single
vehicle. There exist a variety of headway preferences of
drivers. Extend of the proposed model to accommodate the
headway variety is easy.

The structure of this paper was organized as follows. The
model formulation for mixed-flow coordinated intersection
signal control was presented in Section 2. The model took in
the mixed flows arrival information at entrance location as
the input data, and outputted the departure profile, as well as
delays and stops at the downstream intersection location. The
proposedmodel was implemented and tested in Section 3, and
Section 4 provided a conclusion for this approach, along with
a discussion of future work.

II. MODEL FORMULATION
A. NOTATIONS
As a convenient reference, the mathematical notations used
in this section are presented below.

HDV and CAV: human driven vehicles and connected
and autonomous vehicles;
Ni,W ,TH (t), Di,W ,TH (t), Qi,W ,TH (t): arrival, departure
cumulative vehicle count and queued vehicle count at
intersection i for west approach, through movement;
N−1i,W ,TH (j): the moment when the cumulative arrival
vehicle count is j at intersection i;
D−1i,W ,TH (j) the moment when the cumulative departure
vehicle count is j at intersection i;
di,i+1: distance between intersection i and i+ 1;
vmin and vmax : the minimal and maximal speed for trun-
cated normal distribution;
ṽ: speed limit
m: parameter in the Akcelik acceleration profile model;
ta: time for acceleration used in Akcelik acceleration
profile model;
amax : maximum acceleration in the Akcelik accelera-
tion profile model; djam: the distance between the front
bumper of the leading vehicle and following vehicle
when the speed is zero.
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τHDV and τCAV : the reaction delay of human driven
vehicles and connected and autonomous vehicles.
hCAV, hHDV: the stable headway for CAVs and HDVs.
fV (v): the speed distribution of HDVs
ge: the green duration required for the queue to be com-
pletely cleared.
gmin and gmax : the minimal and maximal green duration;
Cmin and Cmax : the minimal and maximal cycle length;
tyellow: yellow time;
S: saturation flow rate.
tloss: startup loss time and stop loss time;
PID,i: the total delay of intersection i;
PIS,i: the number of stops of intersection i;
A,D: used to indicate the approach and turning direc-
tions. A ∈ {E,W , S,N } which means east, west, south
and north; D ∈ {L,TH ,R}, which means left, through
and right;
K(t): the arrival cycle index for moment t;
ξ : the interval between neighboring arrival types;
fξ (t) is the distribution of interval ξ ;
π = [πHDV , πCAV1, πCAV2]: the probability of each
arrival type including HDV, CAV1 and CAV2. The last
type is the batch arrival with smaller headway;
51, 53 and 53: three π settings in the experiment.
They are [0.1, 0.1, 0.8], [0.1, 0.8, 0.1] and [0.8, 0.1, 0.1]
respectively.
φ: the mean arrival vehicles count for CAV2;
Sj: the ‘velocity’ of the jth particle during the PSO opti-
mization; Smax is the maximal allowed velocity;

B. DEPARTURE-ARRIVAL PROFILE MODELING
FRAMEWORK
This subsection presents the modeling framework of this
manuscript based on the key concept of cumulative departure
profile curve and cumulative arrival profile curve. As shown
in FIGURE 1, The study area in the figure consists three
locations, namely entrance location where the loop detector
is located at, upstream intersection, and downstream intersec-
tion. It should be noted although only two intersections are
shown in this figure, the developed model can be applied iter-
atively for a network with more intersections. It is assumed
that each intersection is equipped with a road side unit (RSU),
with a detection range of about 500 m to 1000 m (Dey et al.,
[3]). This allows the system to obtain arrival information for
vehicles. It is assumed that the vehicle type is also known
(HDV or CAV) to the intersections systems and, therefore,
the arrival demand could be represented by using a flow rate
curve or a cumulative curve.

Upon obtaining the arrival vehicles information at the
entrance location, the system captures the traffic flow dynam-
ics in four steps, as indicated in FIGURE 1. Suppose that
an arrival at the entrance location is indicated by cumulative
profile Ni,W,CAV(t) and Ni,W,HDV(t), the model works as
follows:

FIGURE 1. Study area description and model framework.

1) Uses Newell car following model and Akçelik accel-
eration model to get the departure profile at upstream
intersection i, Di,W,HDV(t) and Di,W,CAV(t).

2) Uses platoon dispersion model to capture the expected
arrival profile at downstream intersection i+1,
N′i+1,W,CAV(t) and N′i+1,W,HDV(t).

3) As the expected arrival at downstream intersection is
measured at the stop-line location, we need to translate
this expected arrival to a pseudo arrival profile at the
upstream location, Ni+1,W,CAV(t) and Ni+1,W,HDV(t).

4) Again, the Newell car-following and Akçelik acceler-
ation model can be employed to obtain the departure
profile at downstream intersection i+1.

In step 1, the vehicles are treated as exogenous flow and,
therefore, the microscopic traffic flow behavior is differ-
ent from the flow traverse from intersection i to i+1 in
step 2, which experiences a platoon dispersion. For the model
component of step 3, as the Newell car following model
cannot capture the dispersion effect of platoons of mixed
flow, the dispersed cumulative arrival N′i+1,HDV(t) needs to
be projected to the road entrance of this intersection, i.e.
Ni+1,HDV (t) = N′i+1,HDV(t+di,i+1/ṽ). Then, in step 4 we can
use the samemethod as step 1 to describe the departure profile
at downstream intersection i+1.
The next several subsections are devoted to the presenta-

tion of mixed-flow traffic dynamic analysis and the method-
ologies for step 1 and step 2. The detailed presentation of step
3 is skipped as it’s mostly an horizontal shift of the cumulative
curve, and discussion on step 4 is not repeated either as the
key methodology is the same as step 2.

C. MIXED-FLOW TRAFFIC DYNAMICS ANALYSIS
Prior to the presentation of the four-step model, this section
analyzes the traffic dynamics of mixed flow of HDVs and
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CAVs, which reveals the intrinsic microscopic traffic flow
behavior and will be referred back often in future sections
later on. The resulting startup loss time and saturation flow
rate, which are two key inputs to the traffic signal design, will
also be analyzed.

It has been generally recognized that, after the onset of a
green signal, most HDVs pass the stop line with a decreasing
headway. The first several headways are relatively high, due
to the fact that these vehicles have not accelerated enough.
After the 4th or 5th vehicle passes the stop-line, the following
headways remain relatively stable and are lower. The inverse
of a stable headway is defined as ‘‘saturation flow rate’’ and
the underlying headway is defined as ‘‘saturated headway’’.
According to field observation, a saturated headway was
about 2s (this value was observed for an environment that had
only HDVs).

CAVs, on the other hand, can timely and accurately react
to changes in the status of the leading vehicles, and, hence,
behave differently than HDVs. To investigate the headway
behavior of a mixed CAV flow, we resort to the Newell sim-
plified car following model (Ni [17]) which works as shown
in FIGURE 2. There are two vehicles - one is the lead vehicle
and one follower vehicle. The two vehicles are expressed as
bold lines. Before time t, both vehicles travel at speed v1. At
time t, the leading vehicle slows down to speed v2 and, after a
time duration τ , the following vehicle also changes its speed
to v2. The spacing before moment t and after moment t+ τ is
s1 and s2, respectively. The headway at location x1 is h1 and
at location x2 is h2. The above description implies that, when
using the Newell car following model, one just needs to move
the leading vehicle’s trajectory horizontally (i.e., spatially)
by djam and vertically (i.e., temporally) by τ , so that the
resulting trajectory becomes the following vehicle’s trajec-
tory. The parameters τ and djam are independent of the speed.
τ could be interpreted as the perception reaction time, and
d could be interpreted as the jam density. We could derive
that h1 = τ + djam/v1 and h2 = τ + djam/v2. If the speed
limit is ṽ, the stable headway could be derived by τ + djam/ṽ.
When the jam density is given, the jam distance between
two vehicles, i.e. djam is also fixed. As the jam density is
relatively fixed, the headway depends on parameters τ and
speed limit.

FIGURE 2. Newell simplified method.

The reaction time of human drivers consists of several
parts (Gartner et al. [4]), including perception latency, eye
movement, fixation, recognition, and initiation brake action.
The total duration could reach 2.74 s. However,s this number
varies for different drivers. We use the settings by Wei et al.
[22], i.e., the perception time is 1.3 and the response delay
is 0.4 s. Thus, the total delayed reaction is 1.7 sec. For CAV,
the delay consists of a communication delay, and computer
processing time. Compared with HDVs, the reaction delay
could be reduced drastically.We symbolize the reaction delay
of HDV as τHDV and the reaction delay of CAV as τCAV.
Given the trajectory of the leading vehicle, the parameters
τ and djam would determine the trajectory of the following
vehicle and, in-turn, determine the headways.

The vehicles accelerate when the green starts. According
to Akçelik and Besley [1], the acceleration from zero speed
to the terminal speed (usually the speed limit) is not constant
and could be described by the following formula:

a (t) =
(1+ 2m)2+

1
m

4m2 amax
t
ta
(1− (

t
ta
)
m
)
2

(1)

In Eq. (1), t is the moment from the beginning of accelera-
tion, m is a parameter, amax is the maximum acceleration, and
ta is the acceleration duration. The resulting velocity profile
and trajectory profile are given by the following equations:
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vinit in Eq. (2) is the initial speed. When the vehicle begins
to accelerate, the initial speed is 0. The acceleration profile
given by Eq. (1) satisfies many requirements, such as zero
acceleration and jerk at the start and end of the process.
Using the result of m = 0.587 in Akçelik and Besley [1],
FIGURE 3, FIGURE 4, and FIGURE 5 give the distance
profile (measured from the stop-line), acceleration profile,
and speed profile for the speed limits of 50km/h and 70km/h.
The maximum acceleration is 2.8m/s2 and 2.9m/s2, respec-
tively. It can be observed in FIGURE 3 that the moment when
the first vehicle passes the stop-line depends on the context
parameters. When the starting wave propagates to upstream,
the vehicles in the queue pass the intersection, consecutively,
and the headways gradually change.

To investigate the evolution of the headway and uncover
its influence on the mixed HDVs and CAV flows, we use the
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FIGURE 3. Distance profiles using model in Akçelik and Besley (2001).

FIGURE 4. Acceleration profiles using model in Akçelik and Besley (2001).

FIGURE 5. Speed profiles using model in Akçelik and Besley (2001).

Newell simplified car following model to construct the tra-
jectories of the vehicles. These procedures are shown in FIG-
URE 6. The first vehicle (ID=0) enters the road at moment t0.
The road speed limit is ṽ. The expected arrival moment at the
stop-line is t′0, which is within the green domain and, hence,
the vehicle with ID=0 could pass the intersection. The fol-
lowing vehicle is with ID=1, and enters the road at moment
t1. Its expected arrival time at the stop-line is t′1, which
encounters a red duration. This expected trajectory does not
intersect with the spatial-temporal translated trajectory of the
vehicle with ID=0. Therefore, the vehicle with ID=1 is not
influenced by its leading vehicle, but it is influenced by the
red signal. The deceleration profile (including the distance
profile, deceleration rate and speed profile) could also be
derived by Eq. (2) and Eq. (3), using speed limit as the initial
speed and negative acceleration.When the speed limit and the
maximum deceleration are given, the deceleration distance is

FIGURE 6. Newell car following for acceleration and deceleration.

FIGURE 7. One snapshot of the trajectories.

also known and, therefore, the trajectory of the vehicle with
ID=1 could be obtained by combing the deceleration distance
profile and the upstream free-flow trajectory. After the vehi-
cle stopped, the speed reaches 0. After the onset of green,
the vehicle with ID=1 accelerates with a known profile given
by Eq. (2) and Eq. (3). The trajectory of vehicle ID=1 is then
obtained. The vehicle with ID=2 intersects with the spatial-
temporal translated trajectory of vehicle ID=1 and, there-
fore we join the free-flow trajectory before the intersection
point and the translated trajectory after the intersection point,
allowing the trajectory of the vehicle with ID=2 to be derived.
In this way, each trajectory could be solved one by one.

It should be noted that, when constructing a deceleration
profile, the speed may change instantly, rather than gradually.
This is caused by a shortcoming of the Newell car following
model when describing non-equilibrium behavior. However,
as we are concerned with the headways, the deceleration
profiles do not influence the moments when a vehicle passes
the stop-line. Also, note that, in FIGURE 6, with different
parameters, such as τHDV and τCAV, we have different trajec-
tories representing various vehicle properties. The resulting
headways also reflect different vehicle types.

We use the setting of τHDV = 1.7 and τCAV = 0.1 to
simulate the departure trajectories; the results are given in
FIGURE 7. The stop-line is located at the spatial coordinate
of 400m. The speed limit is 50km/h. Bold lines are HDVs
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FIGURE 8. Headways series for two cycles.

and thin lines are CAVs. Compared with HDVs, the CAVs
follow more closely. The shockwave generated by the two
types of vehicles are also given, and it shows that the wave of
CAVs propagates faster than that of HDVs. In FIGURE 7,
the first five vehicles are CAV, while there are four HDV
followers. The headways generated by such mixed arrival
flows are given in FIGURE 8, which contains the headways
series of two cycles. A headway is defined as the ‘‘time dif-
ference between the moments when two neighboring vehicles
pass the stop-line’’. Note that these vehicles must acceler-
ate from 0 speed, i.e. these vehicles must experience a full
stop, otherwise the headways are influenced, not only by
the signal but also by the arrival law. The moment when
a vehicle passes the stop-line can be interpolated from the
spatial-temporal trajectory. These trajectories are generated
by the above accelerationmodel and theNewell car-following
model. Therefore, we have the headways series. The first
cycle data in FIGURE 8 coincides with that of the platoons
in FIGURE 7.

In FIGURE 8, we can observe that the first cycle headways
series begin from about 2 sec and decrease drastically to
1.00 sec. For the second cycle, the headways series begin
from about 2.6 sec and, then, also decrease to about 2.4 sec.
It can be easily inferred that the first four vehicles in the
queue in cycle 2 are HDVs. Hence, the CAVs and HDVs
generate different headways characteristics, even though the
acceleration profiles are the same. It can also be observed
that there are two possible headways when the vehicles are
accelerated enough. The higher one is 2.25 sec while the
lower one is about 0.6sec. It is easy to tell that the former one
is HDV and the latter one is CAV. Actually, stable headways
can be calculated from τ + djam/ṽ. Using τHDV = 1.7,
ṽ = 50km/h and djam = 7.5m, we have a stable headway
at 2.24sec. Using τHDV = 0.1, we have a stable headway at
0.64 sec.

Next, we investigate the startup loss time, which is defined
and calculated using the method shown in FIGURE 9. Dif-
ferences between the headways and the stable headways are
indicated by using δt1, δt2, . . . etc., after reaching a certain
number, δtn = 0. The startup loss is defined as

∑n
i=1 δti.

The headways depend on the speed limit ṽ and maximum
acceleration amax. FIGURE 10 shows the startup loss time

when amax = 2.9m/s2. The startup loss time increases lin-
early with the speed limit, due to the fact that the acceleration
duration also increases when the maximum acceleration is
fixed. However, this conclusion should not be generalized
since acceleration profiles may differ from vehicle to vehicle.
Also, it can be concluded that the startup loss times are the
same for pure HDVs flow and pure CAVs flow at signalized
intersections, as the curves for pure HDV and CAV overlap
accurately.

FIGURE 11 gives the headways distributions when flows
are mixed - half HDVs and half CAVs. The red and green
durations are both 100 sec, and we simulated 30 cycles and
collected the headways. It can be seen that the headways have
two clusters: one around 2.24 sec and one around 0.64 sec.
The former one is for HDVs and the latter one for CAVs.

Next, we compute the intersection capacity when the flow
is mixed HDVs and CAVs, under fixed signal settings. Sup-
pose the intersection is a common four-leg intersection and
that four phases are: north-bound (NB) through and south-
bound (SB) through, NB & SB left, WB & EB through,
and WB & EB left (for simplicity we neglect the right-
turn movements). Suppose that, after a certain number n,
startup loss diminishes to zero, i.e., δn+1 = 0 and δn > 0.
Suppose that the percentage of HDVs and CAVs are pHDV and
pCAV, respectively (we assume the percentage are uniform
for all coming flows). The startup loss of location i for HDV
and CAV are δi,HDV and δi,CAV, respectively. Expectation of
startup loss is calculated as:

E
(
tstatup loss

)
=

n∑
i=1

(
pHDVδi,HDV + pCAVδi,CAV

)
=

n∑
i=1

pHDVδi,HDV +
n∑
i=1

pCAVδi,CAV

= pHDV
n∑
i=1

δi,HDV + pCAV
n∑
i=1

δi,CAV

= (pHDV + pCAV)
n∑
i=1

δi,CAV

=

n∑
i=1

δi (4)

In the equation above, we use the constraint that pHDV +
pCAV = 1. The expected headway is simply calculated as
pHDV∗hHDV + pCAV∗hCAV . The capacity for the intersection
could be calculated as (note that there are two lanes departing
flow during green signals):

CAP = 2 ∗
C − 4 ∗ E

(
tstatup loss

)
pHDVhHDV + pCAVhCAV

= 2∗
C − 4

∑n
i=1 δi

pHDVhHDV + pCAVhCAV
(5)

C in Eq. (5) is the cycle length. CAP depends on the cycle
length and vehicles ratio. The results given by Eq. (5) includes
8 lanes. The capacity per lane could be obtained by dividing
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the result by 8. It is plotted in FIGURE 12. With the same
speed limit, a shorter headway brought by CAV could dras-
tically lead to higher capacity at the signalized intersection.
In all cases, the capacity at pCAV = 0.9 is doubled when
compared with pCAV = 0.1. Many researchers proposed that,
when the traffic flow is 100% CAV, a traffic signal is not
necessary (Mirheli et al. [15]). This is an encouraging result,
as a signal could work throughout a flow mixture range and,
at the same time, the benefits are not inferior to the signal-free
models.

D. DEPARTURE VEHICLE TRAJECTORY INTERPOLATION
This section presents the method to solve the first step prob-
lem, i.e. derive the departure profile at upstream intersection
i, i.e. Di,W,HDV(t) and Di,W,CAV(t), with the loop detector
data installed at the entrance location. At the entrance loca-
tion or the location where the coordination begins (e.g., the
western approach to intersection i in FIGURE 1), the vehicles
arrive in sequence. Since the intersection could detect the
arrival of vehicles, once a vehicle arrives (regardless if it is
CAV or HDV), the intersection could predict the arrival of
that vehicle at the stop-line using the Newell car following
model and the Akçelik acceleration model. The arrival could
be formulated as a cumulative vehicles curve Ni,W,TH(t)
for through-movement at the western approach to intersec-
tion i. Similarly, we have other approach demands: Ni,E,TH(t),
Ni,S,TH(t), and Ni,N,TH(t). We also get other turning direc-
tions demands: Ni,W,L(t), Ni,W,R(t) for left-turn and right-
turn, respectively.

There are two cases for arrival: the vehicle could be either
CAV or HDV. We split the demand Ni,W,TH(t) into two
sub-arrival cumulative vehicle numbers: Ni,W,TH,HDV(t) and
Ni,W,TH,CAV(t). We have Ni,W,TH (t) = Ni,W,TH,HDV (t) +
Ni,W,TH,CAV(t), ∀t . Besides, some CAVs could operate in a
platoon mode via corporative adaptive cruise control (CACC)
technology. These CAVs are characterized by shorter head-
ways, therefore, we further split the arrival of CAVs
Ni,W,TH,CAV(t) into two types: CAV type 1 Ni,W,TH,CAV1(t)
and CAV type 2 Ni,W,TH,CAV2(t). CAVs arrival type 1 had
only one vehicle, while type 2 is a batch arrival, which
means that more than two vehicles are arriving together and
the headways among these vehicles are identical. If there
are neighboring two type 1 CAVs, the headway or distance
between the two CAVs are different from the type 2. This is
because the type 1 CAV operates under ACCmode while type
2 CAVs operate by CACC.

Once the intersection is aware of the arrival of the vehicles,
the Newell car following, plus the Akçelik acceleration pro-
file model could be used to track the trajectory of the vehicles
and, hence, get the departure time from the stop-line. The
departure times serve as the input to the next road sections.
Without a loss of generality, we focus on the arrival-departure
process of the western approach through movement at inter-
section i in FIGURE 1. Arrival at the upstream road entrance
is Ni,W,TH(t), while departure is Di,W,TH(t). We extend the
method displayed in FIGURE 6 to several red signals, which

are shown in FIGURE 13. The vehicle with ID=3 enters the
road at moment t3, i.e., point A. The figure also gives the
spatial-temporal shifted trajectory of the vehicle with ID=2.
The expected trajectory of the vehicle with ID=3 intersects
with the spatial-temporal shifted trajectory of its leading vehi-
cle and, therefore, the vehicle needs to decelerate to maintain
the spatial-temporal distance determined by the Newell car-
following rules. Therefore, at point B (shown in FIGURE 13)
the vehicle begins to decelerate, according to the Akçelik
deceleration profile. When the driver decelerates at any time
earlier than tB, the resulted trajectory does not intersect with
the spatial-temporal shifted trajectory of the vehicle with
ID=2.

With this rule, we could numerically determine spatial-
temporal point B. Therefore, the new expected departure
moment from the stop-line is tH, which is indicated by point
H in the figure. H is the intersection point by the spatial-
temporal shifted trajectory of the vehicle with ID 2. However,
time tH is within the red duration and, hence, the vehicle
needs to decelerate. At point D, the vehicle decelerates and,
at point E, the speed reaches zero while the vehicle is located
at the stop-line. When the road speed limit and vehicle max-
imal deceleration are given, the deceleration profile is fixed.
Hence, it is assumed to have been known prior. When green
begins, the vehicle accelerates again, according to theAkçelik
acceleration profile. From this figure, we can also see that
the trajectory of the vehicle consists of several parts: part
AB is free flow state, part BC is deceleration state, part CD
is obtained by spatial-temporal shifted trajectory, part DE is
deceleration profile, part EF is standstill state, and part FK
is the acceleration state. Combining the above parts together,
the complete trajectory of this vehicle could be revealed. The
departing moment for this vehicle is also known by interpo-
lating the trajectory. Note that, if the expected trajectory does
not intersect with the spatial-temporal shifted trajectory of
its leading vehicle, then the expected trajectory is exactly the
ultimate experienced trajectory.

Therefore, given the signals for each cycle (r1, g1, r2,
g2..), the arrival moment of each vehicle, and the vehicle
type (HDV, CAV1, or CAV2), the departure profile could
be constructed using the method described above. Note that
the departure profiles Di,W,TH,HDV(t), Di,W,TH,CAV1 (t) , and
Di,W,TH,CAV2(t) cannot be expressed analytically.
To facilitate the delay calculation, we define the

queue length curve Qi,W,TH (t) which is Qi,W,TH (t) =
Qi,W,TH,HDV (t) + Qi,W,TH,CAV1 (t) + Qi,W,TH,CAV2 (t).
Qi,W,TH (t) is defined over Ni,W,TH (t) and Di,W,TH (t). Its
definition is given in:

Qi,W,TH (t)=max
{
0,Ni,W,TH

(
t−
di−1,i
ṽ

)
−Di,W,TH (t)

}
(6)

Similarly, we could also define Qi,W,TH,HDV (t) and
Qi,W,TH,CAV1 (t) and Qi,W,TH,CAV2 (t). Eq. (6) assumes that
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FIGURE 9. Definition and calculation of startup loss.

the moment when one vehicle joins the queue (if there is any)
is the expected departure time from the stop-line.

E. MIXED FLOW PLATOON DISPERSION MODELING
This section presents the methodology to solve the second
step problem, with the development of a platoon dispersion
model to capture the expected arrival profile at downstream
intersection i+1, N′i+1,W,CAV(t) and N′i+1,W,HDV(t).
Without a loss of generality, we focus on the western

approach through movement at intersection i, and western
approach through movement at intersection i + 1, as shown
in FIGURE 1, since the two movements are coordinated
movements. In the following subsection, we refer to the
stop-line of the western approach at intersection i, as the
‘‘upstream stop-line’’, and refer to the stop- line of the
western approach at intersection i+1, as the ‘‘downstream
stop-line’’. The departure profile at the upstream stop-line is
denoted as Di,W,TH(t) while the arrival of the downstream
stop-line is denoted as N ′i+1,W,TH(t). The departure pro-
file, which is discharged from the stop-line at the western
approach through lane experience, a platoon dispersion. The
reason for such dispersion is due to the heterogeneity in vehi-
cle speeds. However, the CAVs are controlled by computer
algorithms, so their speeds could be accurately controlled.
Therefore, there is no dispersion of CAVs, although the dis-
persion exists for HDVs. The distance between intersections
i and i+1 is di,i+1, and the speed limit is vmax. We assume
that the cumulative departure curve Di,W,TH(t) is known
and Di,W,TH (t) = Di,W,TH,HDV (t) + Di,W,TH,CAV1 (t) +
Di,W,TH,CAV2 (t). As the CAVs are assumed to operate at a
constant speed vmax, we have:


N ′i+1,W,TH,CAV1 (t) = Di,W,TH,CAV1

(
t −

di,i+1
vmax

)
(a)

N ′i+1,W,TH,CAV2 (t) = Di,W,TH,CAV2

(
t −

di,i+1
vmax

)
(b)

(7)

Eq. (7) indicates that the downstream arrival profile of CAVs
is just a temporal shift of the upstream departure curve. For
HDVs, we assume that the probability distribution function
(PDF) is fV(v) and the cumulative distribution function (CDF)
is FV(v). For each vehicle that departs, at instance t0, the
distribution of the arrival moment at a downstream stop-line
fAT (t) and cumulative distribution FAT,t0 (t) is:

FIGURE 10. Startup loss time versus speed limit.

fAT,t0 (t) = p
(
t0 +

di,i+1
v
= t
)
= p

(
v =

di,i+1
t − t0

)
= fV(

di,i+1
t − t0

) (8)

FAT,t0 (t) = p
(
t0 +

di,i+1
v

< t
)
= p

(
v >

di,i+1
t − t0

)
= 1− FV (

di,i+1
t − t0

) (9)

The departure time of nth vehicle could be expressed
as D−1i,W,TH,HDV(n) and, hence, its arrival moment dis-
tribution at the downstream stop-line is fV(di,i+1/(t −
D−1i,W,TH,HDV(n)). Note that D−1i,W,TH,HDV(n) could be inter-
polated from Di,W,TH,HDV(n), which is assumed known.
As the arrival moment at the downstream stop-line is ran-
dom, N ′i+1,W,TH,HDV (t) is also random. We use the sum
of cumulative arrivals at the downstream stop-line as the
predicted cumulative curve N ′i+1,W,TH,HDV (t), which could
be formulated as:

N ′i+1,W,TH,HDV (t)=
∑
k

FAT,D−1i,W,TH,HDV(K),
(t)

=

∑
k

[
1−FV (

di,i+1
t−D−1i,W,TH,HDV(k)

)

]
(10)

It should be noted that the results from Eq. (9) may not
have been discrete. Therefore, we need to interpolate the
arrival moment for a discrete number of cumulative vehicles.
Additionally, the speed distribution of the HDVs needs to
be specified. A family of speed distribution models could be
used, such as truncated normal speed distribution (Wu et al.,
[21]) and normal distribution (Pacey, [23]), and the travel time
distribution model, such as shifted geometric distribution of
travel time, could also be combined. After the downstream
arrival of the CAVs and the HDVs is derived, the total arrivals
could be calculated as:

N ′i+1,W,TH (t) = N ′i+1,W,TH,HDV (t)

+N ′i+1,W,TH,CAV1 (t)

+N ′i+1,W,TH,CAV2 (t) (11)

Next, we show an example of platoon dispersion with
different mixed flows, by using the truncated normal speed
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FIGURE 11. Headway histogram without HDV randomness.

distribution inWu et al. [21] as input to the platoon dispersion
model. We randomly generate the arrival flows that are given
two ratios: HDV ratio pHDV and CAV ratio pCAV. The red
duration is set to 500 sec in order to create a long enough
queue for discharge. The ratio of pHDV :pCAV is set to 1:9 and
9:1, respectively. The road length is 500m and the minimal,
maximal speed is 5m/s and 20m/s, respectively, which is
based on the calibration results from Wu et al. [21]. FIG-
URE 14 presents the discharging flow rate and the arrival flow
rate at the downstream stop-line (the distance specified above,
which is 500m). FIGURE 14(a) illustrates a case when major
vehicles are CAV, and FIGURE 14(b) shows a case when
major vehicles are HDV. For the same discharging flow1,
arrivals are different for various compositions of vehicles,
which lead to different reactions, such as delays, etc.

F. DELAYS AND STOPS CALCULATIONS
Given the cumulative curve, departure curves, and queue
curves, the performances index could be formulated. The
frequently used PIs include delays, stops, and queues. We
have formulated the queue already in Eq. (6). A delay is
defined as the difference between the expected travel time
and the actual travel time. For the nth vehicle in the arrival
sequence, the arrival moment is N−1i,W,TH (n), and the depar-
ture moment is D−1i,W,TH (n). As we project the number of
vehicle arrivals at the boundary of RSU to the arrivals at the
stop-line, the delays could be formulated as D−1i,W,TH (n) −
N−1i,W,TH (n). The total number of delays for this specific
movement becomes

∑
jD
−1
i,W,TH (j)− N

−1
i,W,TH (j), while the

total number of delays for intersection i is calculated as:

PID,i =
∑
A,D

∑
j

D−1i,A,D (j)− N
−1
i,A,D (j),A

∈ {E,W,S,N} ,D ∈ {L,TH,R} (12)

1Note that, in order to compare a downstream arrival with the same
upstream departure, we set the headways for different leading-following
vehicles to 2 sec. This could be seen from the stable vehicles counter of
upstream departures. The arrivals were randomly generated by using the
mechanism described in Section 3.1.2.

FIGURE 12. Capacity per lane for mixed flows.

FIGURE 13. The arrival and departure process.

The number of delays for the intersection system is simply
the summation over intersections and could be formulated as
PID =

∑
i PID,i.

The PI of stops is defined as how many stops a vehicle
experienced at the signal control horizon–the arrival and
departure moments of jth vehicle N

−1
i,W,TH (j) and D

−1
i,W,TH (j).

There are the following two cases:

1) if Qi,W,TH

(
N−1i,W,TH (j)

)
= 0 (whichmeans that there is

no queue and, hence, the jth vehicle does not experience
any stop);

2) if Qi,W,TH

(
N−1i,W,TH (j)

)
> 0 (the arrival and departure

times does not belong to the same cycle, so the number
of stops that the vehicle experienced depends on a
difference in the cycle index of the arrival and departure
moments. Define the cycle index function as K (t) =
k,
∑k

i=1 Ci ≤ t <
∑k+1

i=1 Ci, then the stops for vehicle

j are K
(
D−1i,W,TH (j)

)
−K

(
N−1i,W,TH (j)

)
+ 1.

Considering the above two cases, the stops index for the
intersection are formulated as:

PIS,i =
∑
A,D

∑
j

Qi,A,D
(
N−1i,A,D (j)

) (
K
(
D−1i,A,D (j)

)
−K

(
N−1i,A,D (j)

)
+ 1

)
(13)
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FIGURE 14. Platoon dispersion for different vehicles ratios. The
rectangular part is the discharging flow at upstream intersection. And the
irregular histogram are the dispersed flow rate at downstream location.

Similarly, we have the stops index for the whole intersection
coordination systems as PIS =

∑
i PIS,i.

Generally, there are many objectives pursued during
the signal optimization. For the intersection coordination,
the most used performances include green-wave band width
and the delay. Other performances indexes can be easily
considered using the parameters set in the above model. For
instance, the queue length at moment t is expressed directly
by Qi,W,TH (t). With the real-time queue length, the fuel
consumption and other emission related PI can be derived
indirectly. Thus although we mainly focus on the delay, other
PIs are easily to be considered.

G. INTERSECTION SIGNAL SETTINGS
1) CANDIDATE PHASE PLANS
For a common intersection with four legs, there are eight
possible phases, as shown in the following figure. The phase
plans (phase sequence within a cycle) generally include two
types, as given in FIGURE 15(b). The b.1 phase plan is
through-left alternative for the south-north bound and for
the east-west bound, respectively. On the other hand, the
b.2 phase plan serves all movements in just one approach for
each phase.

Emerging technologies, such as CAV, have enabled the
communication of signal phases and timing (SPaT) informa-
tion between the infrastructure and vehicles, thereby making
flexible phase plans preferred. According to Qi et al. [19],
based on candidate phases, there are a total of 49 possible

FIGURE 15. Candidate phases and two common phase plans.

phase plans. Plans b.1 and b.2 in FIGURE 15(b) are the two
most popular phase configurations, although any plan (among
the 49) could have be used.

2) SIGNAL PARAMETER SETTING
The signal optimization of coordinated intersections primar-
ily includes three steps: (1) determining the phase sequences
at each intersection; (2) optimizing the cycle length and green
duration; and (3) setting the offset.

With regard to the first step, in order to fully utilize the
potential of signal control methods, we use the following
phase plan configurations:

• Plan b.1, shown in FIGURE 15(b), is set first and, then,
the manager optimizes cycle length C and the corre-
sponding green duration.

• The traffic operator does not prefer any phase plan
(within the 49 plans), but selects the best one
based on some predefined PI, such as delays or
capacity;

With regard to the second and third steps of coordinated
intersection signal optimizations, we resort to particle swarm
optimization techniques, since the underlying traffic flow
dynamics is nonlinear. Note that, once the phase sequences
are determined, the resulting decision variables (cycle length,
green duration, offset) are all continuous variables. They are
bounded by minimal green gmin, maximal green duration
gmax. When the cycle length of the intersections is deter-
mined, all the coordinated intersections share a common
cycle length, the offset range is also determined, which is a
positive number that is smaller than that of the common cycle
length.
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H. COORDINATED SIGNAL OPTIMIZATION MODEL
A model to optimize signal parameters is presented in this
section, along with the arrival pattern of each movement as
input. Decision variables include the following: cycle length
C, duration for each phase gpi and the offset oki,i+1. We use
a modified particle swarm optimization (PSO) to obtain the
optimal signal solution. The modified PSO work as follows:

1) Set PSO parameters: the maximal iteration NIter, parti-
cles number Nparticle and maximal velocity Smax;

2) Set iteration counter Iter = 0, and randomly
drew a green duration and cycle length, as fol-
lows: a) uniformly drew green durations G′ =
{g′p11 , g

′
p12 . . . g

′
p21 , g

′
p22 . . . .o

′
1,2, o′2,3.., }∀ I, j for

each phase pij. The phase pij is the jth phase of intersec-
tion i, and oi,i+1 is the offset of intersection i+1 with
respect to intersection i. The cycle length at intersec-
tion i, then, is C′i = tlossnpij +

∑
i g
′
pij , where npij

is the number of phases for intersection i. b) As all
intersections share the same cycle length, the common
cycle length is C′ = max(C′i). c) As the sum of all
phase durations could exceed the cycle length Cmax, i.e.
C′ > Cmax, the transformed cycle length is, as follows:
C = max{Cmax,C′}. d) Calculate the green duration for
each phase using gpij = [C−tlossnpij ]g

′
pij/

∑
i g
′
pij , and

also got the offset oi,i+1 = min{max
{
0, o′i,i+1

}
,C}. e)

Repeat the above procedures and got Nparticle particles
Gj, j = 1, 2, . . .Nparticle. f) Then, compute the perfor-
mance index (either delays or stops, or both) for each
particle Gj, and indicate the above populations during
iteration Iter as G(Iter);

3) For each particle in Gj(Iter), the historical best solution
chosen is Ĝj and the global best of Iter is Ĝ. The above
two variables are updated during each iteration;

4) Calculate the velocity Sj of each particle Gj using
Sj(Iter + 1) = wSj(Iter) + c1(Ĝj − Gj(Iter)) +
c2(Ĝ − Gj(Iter)); update the candidate solution, using
G′j (Iter + 1) = Gj (Iter) + min(Sj (Iter + 1) ,Smax);
after that. use steps 2.b ∼d to get the Gj(Iter + 1);

5) If NIter is not reached, returned to step (3);

During the above process, if the candidate Gj(Iter)
becomes infeasible (when green duration exceeds the min-
imal and maximal boundaries), a large penalty is imposed
on the performance index. The parameters are set as follows:
w = 0.5, c1 = 0.5 and c2 = 0.5.

III. EXPERIMENT STUDY
A. SCENARIOS SETUP
As field data collection and experiment implementation is not
yet possible due to the lack of CAV real-world deployment,
real-world intersections were used as a target study area,
with simulated demand settings giving the field detected flow
rates. We selected two intersections in Hang Zhou, China to
validate the proposed algorithm. The two intersections were
XiHu Rd-Zhonghe Rd and Xi Rd-Yanan Rd (FIGURE 16 a

FIGURE 16. Scenario Setup: (a) XHu Rd-Yanan Rd, (b) XiHu Rd-Zhonghe
Rd, (c) The hourly flow rate.

and b). The geometry and the detectors are shown in the
following figure:

The distance between the two intersections was 712 m.
Right-turn movements were not controlled and, thus, not
considered. The detector output at the intersection was at
a 5 min-flow rate (shown in FIGURE 16c), which was an
aggregate of all detector data. This showed that there was
no apparent transition between flow rates. Therefore, we set
three levels of flow rate or demand levels–low, medium,
and high–which corresponded to 200veh/h, 400 veh/h, and
600veh/h, respectively. Note that the flow rate was defined
for one lane. There was a total of 16 movements, and the flow
rate of each movement needed to be defined. An experiment,
hence, could be carried out by sampling the demand, given
the flow rate. The sampling of the movement of a specific
flow is given in the follow section.

The speed limit of the selected road was 50km/h, which
was a common speed limit for an urban road network in
China. The upper and lower boundaries of the speed limit,
used in the platoon dispersion component, was 5m/s and
20m/s, or 18 km/h and 72 km/h.

1) BENCHMARK SIGNAL PLAN A
To analyze the results of our method, we chose a common
signal setting method as the first benchmark. We assumed
that the signal phases were given, (i.e., plan b1 in FIG-
URE 15). The phases were labeled as {p1, p2, p3 . . . .pn}.
The arrival flow rate for each phase (if there more move-
ments in one phase, we chose the maximal one) were
{qp1 , qp2 , qp3 . . . .qpn}. We assumed the saturation flow rate
was S=1800veh/h, and the cycle length was calculated
as C = min {ntloss/(1 −

∑
i qpi/s),Cmax}. This method

was documented in HCM [20] and was applied exten-
sively. The green duration for each phase was calculated as
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FIGURE 17. Demand settings for coordinated intersections experiment.

gpi = (C − ntloss)(qpi/s)/
∑

i (qpi/s). Given the signal
plans and duration of each intersection, the greatest cycle
length was then applied to all coordinated intersections. The
next step was to find the offset between intersections. The
MAXBAND method was used to calculate the best offset,
which tried to maximize the weight sum of the two-direction
bandwidths. As the cycle length and the green split were set
and the speed limit was assumed to have been fixed, they
could be easily inferred in the MAXBAND.

2) BENCHMARK SIGNAL PLAN B
Based on the analysis of capacity in mixed traffic flow,
it was found that the resulting headways were drastically
different from the pure HDV scenario. Therefore, bench-
mark signal plan B was set up to test the improvements
brought by a more accurate saturation flow rate S with for-
mula C = min {ntloss/(1 −

∑
i qpi/s),Cmax}. Note that we

had found that the lost time was identical for both types
of vehicle. As the saturation flow rate was the reciprocal
of a stale headway, we could use the stable headway for
different types of vehicle, as a start. The stable headway
was expressed as h = τ+djam/vf . Using τHDV and τCAV,
we had stable headways, hHDV and hCAV. Suppose the ratio
of HDV was πHDV, then the weighted saturation flow rate
could have been computed as S′ = πHDV(3600/hHDV) +
(1−πHDV)(3600/hHDV). Therefore, the cycle length became
C = min{ntloss/(1 −

∑
i qpi/Spi ),Cmax}, where Spi was the

weighted saturation flow rate. The split and the offset could
be calculated using the same method as in benchmark plan A.

3) DEMAND SETTING
The demands were the directional flow rate, or arrival flow
rate. As shown in the following figure, there were two inter-
sections. As the right-turn flows were generally not con-
trolled, we omitted the right-turn movement and only dealt
with left-turn and through movement. There was a total
of 16 movements (8∗2), 8 for each intersection. Four of these
movements were determined by the upstream departures,
which were then controlled by a coordinated signal. These

four movements (labeled in blue in FIGURE 17) were named
‘‘inner movements’’. The arrival flows of inner movements
were obtained by splitting departures from the upstream stop-
line. We assumed a equal split ratio for each departing move-
ment, i.e., the split ratio of the west-through movement in
FIGURE 17 was 0.5-0.5 (the right turn flow was omitted
since it was not controlled by the coordinated signal). Other
movements (12), named ‘‘exogenous movements’’ were set
as follows, with three levels of flow rate used–200veh/h,
400veh/h, and 600veh/h.

There was a total of 312 combinations (recall that we had
12 movements), which was a huge number. Hence, we used
orthogonal experimental design to set the arrival flow rates.
Taguchi orthogonal Array was employed for this purpose.
As there were three levels, we could adopt a L27(313)
array. This meant that there were 27 combinations that could
accommodate 13 factors. As we only had 12 movements,
the last column could be omitted. The orthogonal array is
given in Appendix A.

For each movement, we generated the vehicle arrivals,
based on the following parameters:

• There were three types of vehicle arrivals: HDV, CAV1,
and CAV2. The last type was a batch arrival, i.e., there
was more than one vehicle with smaller headway hCAV2;

• The interval between any two types of arrival was ran-
dom and interdependent, so we used ξ to indicate the
interval between neighboring arrival modes and fξ (t) to
indicate the distribution of the interval;

• The arrival type was independent of the historical arrival
mode, including its leading arrival mode. We used an
arrival mode matrix π = [πHDV, πCAV1, πCAV2] to
indicate the dependence probability. πHDV was the prob-
ability that the arrival mode was human-driven vehicles;

• For the last arrival type (CAV2), we used a Poisson
distribution to indicate the batch number. Thus, there
would be another parameter φ, which was the mean
number of arrivals for CAV2.

Therefore, after specifying the interval distribution fξ (t),
arrival mode vector π and φ, we were ready to draw samples
from the mixed process and take the samples as the input
demand. Given the three inputs, the mean number of vehicle
arrivals, or the flow rate, the calculation could be:

1) First, obtain the mean of the interval E(ξ );
2) The probability that the arrival mode was CAV2 was

πCAV2, and the mean arrival vehicles was φ. Therefore,
the time duration for these vehicles was E (ξ)+φhCAV,
and the flow rate for mode CAV2 was φ/(E (ξ) +
φhCAV2);

3) Therefore, the mean flow rate was πHDV/E (ξ) +
πCAV1/E (ξ)+ πCAV2φ/(E (ξ)+ φhCAV)

We used the logic above to sample the vehicles arrivals
(including its type, i.e., HDV, CAV1, or CAV2), input arrivals
to the system, optimize the signal, and output the results.

In order to investigate the influence of different pro-
portions of vehicles, for each flow rate q, we set three
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FIGURE 18. The convergence of the PSO algorithm.

FIGURE 19. Average time consumption of each iteration.

types of proportion as follows: (1) HDV:CAV1:CAV2=1:1:8,
i.e. π = [0.1, 0.1, 0.8]; (2) π = [0.1, 0.8, 0.1]; (3) π =
[0.8, 0.1, 0.1]. For easy reference purposes, we indicated the
above three ratio settings as 51, 52 and 53. In the equation
q =πHDV/E (ξ)+πCAV1/E (ξ)+πCAV2φ/(E (ξ)+φhCAV2),
when q and π were specified, there were two unknown vari-
ables: φ and E (ξ). When φ was 2, E (ξ) could be solved
from the above equation. It meant that the CAV2 type vehicles
arrived in a batchmanner, and themean vehicle batch sizewas
2. Because there were 27 plans for experiment on flow rate
levels, and we had 3 types of flow compositions, we needed
to carry out experiments for 81 (27∗3) demand types in total.
For each demand type, we optimized the signal using the PSO
and benchmark methods.

B. EXPERIMENT RESULTS
1) ALGORITHM COMPUTATIONAL EFFICIENCY
We initially investigated the model convergence. FIG-
URE 18 and FIGURE 19 give the convergence and the
computational efficiency of the proposed PSO algorithm.
The algorithm was coded on a common laptop with
Intel R©CoreTMi5-7300UProcessor and 16GBRAM. The par-
ticles number was set to be 100, and the algorithm was
coded in python and tested by Anaconda, a scientific ori-
ented package. FIGURE 18 shows the results when the delay
minimization was the objective. The delay was the average

delay of all vehicles. It was shown that, in the first few
iterations, the delays decreased significantly, whereas, after
the10th iteration, the average delay (which was historically
the best) did not change very much. Compared with the
average delay (about 62 sec/veh) that had been generated by
initial random signals, this value reached about 45 sec, which
meant that after 10 iterations, the solution outperformed the
initial plan by reducing delays by about 25%. FIGURE 19
shows that it takes about 2.5 sec for one iteration. Thus, the
time for 20 iterations was within 1 minute. Given that the
demand did not change very much during a short interval, and
the algorithm implementation could be improved by lower
level language, such as C++, this computational efficiency
was acceptable for real-time deployment.

2) ALGORITHM PERFORMANCES
For each flow level in TABLE 3 in Appendix A, we sampled
the flow rate, according to the demand setting, based on the
ratio of each type of vehicle, and then optimized the signals
using the proposed PSO method. We used the same demand
inputs to optimize the signal, using benchmark plans A and B.
For the two plans, we assumed that the phase sequences were
b1 in FIGURE 15. As we had 27 demand levels and 3 ratios of
vehicle types, there were 81 combinations. TABLE 1 summa-
rizes the results of the 81 combinations comparison between
the PSO and benchmark plan A. The column ‘‘Bhmk A51’’
meant that data for this column were the results of benchmark
signal plan A, using the ratio π = [0.1, 0.1, 0.8]. Row field
‘‘Demand 1’’ meant ‘‘Demand level 1’’ and was the 1st row
in TABLE 3. The value ‘‘40.81’’ was the delay per vehicle
that resulted from the signal plan.

It was observed that, under the same ratio and demand
level, the proposed PSO algorithm could always find a plan
that had better performance. Under the same demand level,
the delays varied for different ratios. The HDVs ratio in 51
was 0.1, hence only 10% of the coming vehicles were driven
by humans. The CAV2 type was 0.8 and, hence, 80% of the
vehicles were CAVs in a platoon mode. Therefore, under
ratio51, the delay was minimal, as compared with other two
ratios.

For instance, column ‘‘PSO 51’’ row ‘‘Demand level 1’’
had a delay of 9.77s, which was smaller than ‘‘PSO52’’ and
PSO 53. Also, we found that delays may not have increased
with the arrival flow rate, due to the fact that, when the
flow rate increased, more CAVs in the coming flow reduced
the headway and increased the capacity, so that the delay
decreased. This could also be revealed from the fact that the
column values had not increased. Another reason may have
been that the optimization in TABLE 1 had been implemented
upon the arrivals. Random generation of different demands,
thus lead to different results, which could be analyzed later.

Improvement was calculated as (benchmark delay
−PSO delay)/benchmark delay ∗ 100%. FIGURE 20
presents the results. The PSO performed better under every
demand level, and for each flow ratio. The maximum
improvement was about 70%while theminimal improvement
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TABLE 1. Comparison of the delays in 27 experiments, unit is SEC/VEH.

was 3%. On average, the proposed method could improve
35% under 51, 30% under 52, and 28% under 53.
We also found that, by using weighted saturation flow rate

in the PI was improved. The results were given in TABLE 2.
The difference between benchmark plans A and B was that
the latter used the weighted saturation flow rate, which was
determined by the ratio of HDVs and CAVs. By comparing
TABLE I and TABLE 2, we found that, by adjusting the
SFR (saturation flow rate) based on arrival demands, a better
PI could be achieved. For instance, when using the 1st row
demand level in Appendix A and the ratio was set to be 51,
the delay was 27.11 sec. Compared with the 40.81 sec for
benchmark plan A, the result was improved by 13 sec.

The improvement, by adjusting the SFR, could be calcu-
lated by using (benchmark A delay− benchmark B delay)/
benchmark A delay. By simply changing the SFR settings,
significant achievement could be realized, as shown in

FIGURE 20. Improvement by percentage.

FIGURE 21. Delay improvement by adjusting SFR.

FIGURE 22. Delay improvements by comparing PSO results and
benchmark plan B.

FIGURE 21. The minimum improvement was about 5%,
while the maximal improvement was 30%. On average, it was
estimated that the improvement was about 15%, with varying
results for different demand levels and ratios.

Using the results in TABLE 1 and TABLE 2, we could
calculate the difference between the PSO and benchmark
plan B (improvements were shown in FIGURE 22). These
results showed that PSO was generally more favorable, since
77 cases (of 81 cases) outperformed benchmark plan B.
The maximum improvement was about 60%. On average,
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TABLE 2. Results for benchmark plan B.

a 10%∼20% improvements could have been expected while,
in only 4 of the 81 cases, did the PSO perform worse than the
benchmark case did. Differences were all within 10%.

As arrivals were random, even under the same demand
levels, i.e., for the demand level defined by the 4th row in
TABLE 3, using the ratio settings π = [0.1, 0.8, 0.1], each
incoming vehicle had a time interval that was different from
that of the other vehicles, Monte Carlo simulation was carried
out, under the same demand level, by using the 4th row values
in TABLE 3 and π = [0.1, 0.8, 0.1]. It meant that the HDVs
accounted for only 10 percent of the flow rate. During each
Monte Carlo simulation, we generated the vehicle arrivals,
optimized the signals by using the PSO algorithm and com-
pared it with the benchmark plan A.

FIGURE 23 and FIGURE 24 present the results from
50 simulations. FIGURE 23 was the delay histogram for two
signal plans—the PSO generated plan and the benchmark
plan. It was shown that the average delay spanned from 35 sec

FIGURE 23. Comparison of results for PSO optimization and benchmark
plan A.

FIGURE 24. The delay improvement from Monte Carlo simulation.

FIGURE 25. Performances by setting different phase plans.

to 55 sec by the PSO plan, whereas this value spanned from
55 sec to 80 sec for the benchmark plan A. It could be
concluded that the proposed method could generate better
outcomes when the arrivals were random. FIGURE 24 shows
the delay improvement by the PSO plan, as compared to that
of benchmark. The average improvement was found to be
20.633 sec, whereas the minimum and maximum improve-
ments were 5.75 sec and 35.4 sec, respectively.
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TABLE 3. Demand settings which employs taguchi orthogonal design
array.

According to Qi et al. [19], there were a total of 49 phase
sequences for a typical four-leg intersection. For each plan,
we optimized the cycle lengths and green durations. The
average delays for different phase plans are shown in FIG-
URE 25. The first plan (with id = 1) corresponded to plan
b2 in FIGURE 15. The phase plan with id=4 corresponded
to plan b1 in FIGURE 15, which was also the default plan in
TABLE 1. It could be observed that various phase sequences

TABLE 4. continued.

led to different performances. The resulting delay spans were
from 40 sec/veh to about 100 sec/veh. The phase sequence,
with the best performance, was found to be the third plan.
Compared with the default plan, i.e., b1 in FIGURE 15,
the best plan reduced the delay by about 10 sec/veh.
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IV. CONCLUSION AND REMARKS
Advancements in connected and autonomous vehicle tech-
nologies have brought challenges to the modern-day traffic
control system which has been designed for HDVs only.
The difference between CAVs and HDVs is that the for-
mer behaves accurately, while the latter is random in nature
due to differences in human driving behavior that include
speed, headways, etc. This manuscript investigated coordi-
nated intersection signal design problem for mixed traffic
flows of Human-Driven Vehicles (HDVs) and Connected
and Autonomous Vehicles (CAVs). Three locations, namely
entrance location where the loop detector was located at,
and upstream intersection and downstream intersection were
defined. Two types of vehicle cumulative curves, namely
cumulative arrival profile and cumulative departure profile
were constructed.

The mixed-flow traffic dynamics were analyzed, and the
arrival-departure curves relationship was derived using a
combination of Newell car-following and Akçelik acceler-
ation model. A mixed-flow platoon dispersion model was
proposed to describe the vehicle’s progression between two
locations. Due to the nonlinear nature of the problem, a par-
ticle swarm optimization (PSO) method was employed to
obtain the optimal signal parameters, including the cycle
length, green duration, and optimal offset. The algorithm
was implemented and validated in a case study involving
two intersections, with the demand formulated and simulated
by the Markov chain. The results showed that the proposed
model could effectively decrease delays when compared with
current signal control methods.

APPENDIX A
See Table 3.
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