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ABSTRACT Minimally invasive surgery like laparoscopic surgery is an active research area of clinical
practice for less pain and a faster recovery rate. Detection of surgical tools with more accurate spatial
locations in surgical videos not only helps to ensure patient safety by reducing the incidence of complications
but also makes a difference to assess the surgeon performance. In this paper, we propose a novel Modulated
Anchoring Network for detection of laparoscopic surgery tools based on Faster R-CNN, which inherits
the merits of two-stage approaches while also maintains high efficiency of comparable speed as state-of-
the-art one-stage methods. Since objects like surgical instruments with a wide aspect ratio are difficult to
recognize, we develop a novel training scheme named as modulated anchoring to explicitly predict arbitrary
anchor shapes of objects of interest. For taking the relationship of different tools into consideration, it is
useful to embed the relation module in our network. We evaluate our method using an existing dataset
(m2cai16-tool-locations) and a new private dataset (AJU-Set), both collected from cholecystectomy surgical
videos in hospital, covering information of seven surgical tools with spatial bounds. We show that our
detector yields excellent detection accuracy of 69.6% and 76.5% over the introduced datasets superior to
other recently used architectures. We further verify the efficiency of our method by analyzing the usage
patterns of tools, the economy of the movement, and the dexterity of operations to assess surgical quality.

INDEX TERMS Laparoscopic surgery, tool detection, convolutional neural network, operational quality
assessment.

I. INTRODUCTION
Vision-based laparoscopic surgery, a representative mini-
mally invasive surgery, has attracted increasing attention dur-
ing the deep learning era. Unlike conventional incision pro-
cedure, it is performed through a small hole (incision) using
a variety of surgical tools with the help of the endoscopic
camera, and especially, the challenge of ablation and suturing
with tissue corresponds to specialized surgical instruments in
medical processes. Moreover, lacking personalized, objective
feedback on surgical skills and quality stands out as one of the
crucial problems behind laparoscopic surgery for surgeons.

To address this problem, analysis of the surgical video
recorded by an endoscopic camera has been gradually
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developed in recent years, which could assess operative
skills efficiently and objectively as well as is significant
for other potential applications in future clinical practice.
However, traditional assessment of surgeon video is man-
ual with great time-consume and effort of experts. Thus,
we propose a detection network to locate surgical tools accu-
rately for automated surgical video analysis in real-time to
assess performance faster and better. The assessment contains
some relevant tasks, such as analysis of tool usage patterns,
the economy of the movement, and the motion scope, which
could substantiate our method remarkable and impressive for
surgical tools detection.

Present works of frame-level surgical instrument detec-
tion in the video mostly come from the 2016 M2CAI Tool
Presence Detection Challenge (a satellite event of MICCAI
2016 in Athens), providing a dataset called m2cai16-tool
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with binary annotations [1]. The set can only be used to
detect whether surgical tools exist or not in videos, but
not enough to get their specific locations. Therefore, in our
work datasets with object coordinate annotations are needed
for the instrument detection tasks. To our best knowledge,
m2cai16-tool-locations dataset [2], extending the m2cai16-
tool dataset, is the only public dataset of medical tools with
spatial bounds. In addition, we propose a new dataset col-
lected from several private videos of laparoscopic surgery
performed at The Second Hospital of Jilin University, which
contains locations of instruments as well and can provide
a choice to verify effectiveness of our network architecture
more comprehensively.

The current object detectors can be divided into two cate-
gories: one-stage and two-stage. The former does not have the
stage of generating region proposals and produces the class
probability as well as object coordinates directly. The latter
first generates candidate boxes and then performs classifica-
tion and regression. Nomatter which method we choose, one-
stage detector or two-stage detector, anchors are all regard as
core issues with great importance for object detection. Most
existing schemes use the sliding window to generate anchors
(i.e., fixed reference boxes), which predefine anchors with
fixed scales and aspect ratios consistently for every spatial
location. However, different from sparse schemes generat-
ing a small number of sparsely distributed boxes, the above
dense anchoring schemes producing lots of anchors do not
show outstanding performance in practice with a few defects,
especially for targets of arbitrary shapes. First, it is hard to
find a suitable set of predefined aspect ratios to match objects
from different datasets, which are unevenly distributed on the
image. Meanwhile, the design of this work depends to a large
extent on the ability of the researchers themselves, which
makes it easy to cause errors. Second, a dense anchoring
scheme always corresponds to too many anchors distributed
in the background area, and at the cost of time and efficiency.
Third, recognition of objects with a large disparity in length
and width, such as surgical instruments, has great obstacles
for the usual anchor-based methods.

Therefore, to solve the difficulties above, we develop a
sparse anchoring scheme, called modulated anchoring, which
is a well-behaved method for the detection of laparoscopic
surgical instruments. Both motivated by the idea of unevenly
distributed anchors, the most similar approach to our work is
Guided Anchoring Region Proposal Network (GA-RPN) [3]
that decouples the process of generating anchors into two
phases, including location prediction and shape prediction.
However, there is a significant difference between them that
our method presents a new feature adaption module, namely,
modulated feature module. Getting the idea from the success
of recent deformable network [4] about concentrating more
on areas of interest, our module not only learns offsets during
the process of convolutional deformation but also adds a
modulation term to adjust the feature amplitude, performed to
adapt feature for complying with the consistent anchor design
guideline. In addition, considering the cooperative use among

some surgical instruments, relation modules are inserted into
our network. Different from original work [5], our relation
block extends the field to laparoscopic surgery, taking tools
relationship into account, and it turns out that the accuracy
can be further improved. In principle, we construct a Mod-
ulated Anchoring Network, exploiting semantic features to
perform tool detection. The related experimental results could
prove that the proposed framework is outstanding in practice
and the real-time requirements can also be well satisfied.

The main contributions of our work are as follows. (1) We
formulate a novel framework Modulated Anchoring Net-
work, leveraging semantic features to detect non-uniformly
distributed surgical tools of arbitrary anchor shapes effec-
tively and efficiently. (2) We propose a modulated feature
module that covers the modulation mechanism to enhance
modeling capacity incorporating the anchor shape informa-
tion into the feature map. In addition, to take cooperative
use of several surgical tools into consideration, the rela-
tion module is embedded in our existing network. (3) We
present a new dataset AJU-Set with spatial locations of
instruments, for laparoscopic surgery video understanding.
(4) The experimental results demonstrate that our framework
achieves remarkable performance in the instrument detection
tasks. Furthermore, accurate recognition contributes to post-
surgical quality assessment.

II. RELATED WORK
A. LAPAROSCOPIC SURGERY
With the widespread use of devices to record surgical pro-
cedures in minimally invasive surgery, automated analysis
of surgical tools in videos has become a popular research
area, mainly involving classification, segmentation, tracking,
detection, and other directions. Unlike the earlier meth-
ods [6]–[11], rely on various handcrafted features, the exist-
ing approaches mainly use deep learning to extract more
high-level features for surgical workflow recognition and tool
detection. The traditional analysis of surgical phases is based
on a number of statistical models, involving Conditional Ran-
dom Fields [12]–[15], HiddenMarkovModels [7], [16], [17],
Hidden semi-Markov Models [18], [19], Linear Dynamical
Systems [20] and so on. Recently several approaches [1],
[21], [22], apply a structure of convolutional neural network
(CNN) and recurrent neural network (RNN) to recognize
surgical phases, which works effectively and becomes one of
the mainstream structures in this field. Most present detec-
tion methods are frame-level tool presence detection from
the M2CAI 2016 Tool Presence Detection Challenge. These
methods [23]–[25], represented by the victory method [23]
regard the task as the problem of image classification to judge
the possibility of the existence of tools in the frame-level
without exploiting temporal information. To take long-term
relationships between continuous video frames into consid-
eration, some works such as GCNs [26] rely on Graph Con-
volutional Networks to learn better features as well as achieve
better performance.
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Several previous strategies [27], [28] perform surgical tool
localization in specific tasks of robot-assisted surgery videos.
And most of the existing robot-assisted surgeries are specific
surgical training tasks. But there are limitations to using
robotic arms in practice because of their relatively high cost,
and there may be differences between specific training tasks
and complete surgery. Laparoscopic surgery mentioned else-
where in the paper refers to complete surgery rather than
surgical training tasks unless otherwise specified. In fact,
what really locates the surgical tools in complete laparoscopic
surgical videos using the CNN is the method [2], which
proposes a new dataset containing spatial bounds of tools
from full-length surgical operations. Additionally, the net-
work only relies on Faster R-CNN [29] to detect instruments
and evaluate surgical skills, inspiring us to improve the detec-
tion accuracy by combining and adjusting some modular
structures built on the basic framework to locate instruments
and assess surgical performance more efficiently.

B. SEQUENTIAL OBJECT DETECTORS
Nowadays, the classical object detection methods based on
CNN include representative structures of one-stage [30],
[31] and two-stage [29], [32], [33]. However, a common
flaw in these methods is that there is a fixed receptive
field, which is problematic in predicting multi-scale targets.
Most of the state-of-the-art approaches focus on making
the network structure have more abundant features, such as
Scale-Transferrable Detection Network (STDN) [34], Single-
Shot Refinement Neural Network (RefineDet) [35] and other
methods to simulate the image pyramid, so as to better com-
bine the semantic features of high and low layers. Neverthe-
less, a large number of experiments show that these methods
are more suitable for the one-stage method, and tend to lead
to the challenge of category imbalance with the problem
that the candidate box size is fixed and cannot detect the
object whose aspect ratio changes greatly. Now several meth-
ods [36]–[38] are moving towards the direction of improving
the region proposal network (RPN). For example, Beyond
Anchor-based Object Detector (FoveaBox) [37] directly pre-
dicts the probability that it belongs to a certain kind of object
and the offset relative to a certain border for each point on
the feature map. There exists difficulty of above anchor-
free approaches that it is hard for them to deal with some
complex situations within a single stage, lacking anchors and
anchor-based refinement. Hence, we present a new anchoring
scheme, modulated anchoring, to promote the performance of
object detection.

C. RELATION MODELING
Since attention modules have been successfully applied to the
field of natural language processing recently, driven by this
tendency, more and more methods in the field of biological
image have added these modules and obtained significant
improvements. Before this, amounts of recent works employ
attention mechanisms to perform sequence modeling. As one
of the above, LSTM [39] incorporates contextual information

into a detection network to model object relations, but like
other algorithms, it remains exist constraint of sequential
computation and complexity of training. Besides, attention
mechanisms are also applied to human scenarios in a few
cases, whereas with the cost of introducing additional annota-
tions. Taking motivation from these prior works, Hu et al. [5]
develop a relation module to model relations between objects
with the advantages of plug and play and no additional super-
vision. So following this idea, relation modules are flexibly
inserted into our architecture, aim to consider collaboration
between surgical instruments. Moreover, since our network
focuses on unedited and complete surgical operations in
the laparoscopic surgery, there are bound to be things (e.g.,
changing anatomy, lens fogging, etc.) that block recognition
of the surgical tools. To alleviate this situation, getting the
idea from deformable convolution [4], [40], our work intro-
duces a deformable module into the backbone network. Intu-
itively, this module is seen as a special attention mechanism
to enhance the ability to focus on the relevant image areas,
with which the integrated post-operative assessment will be
facilitated in the long run.

III. DATASET
To the best of our knowledge, there are limited datasets
of automated surgical instrument analysis in frame-level
for public use. Particularly, most of existing datasets focus
on the presence detection of surgical tools derived from
the Challenges of Cholec80 [1] and M2CAI 2016 Tool
Presence Detection about cholecystectomy surgeries, pro-
vided by the University Hospital of Strasbourg/IRCAD
in France. The Cholec80 dataset contains 80 surgical
videos, labeled with the phase (at 25 fps) and tool pres-
ence annotations (at 1 fps). Another more popular dataset,
m2cai16-tool, including 15 videos of laparoscopic proce-
dureswith 23287 training samples and 12541 testing samples,
which are recorded at 25 fps and labeled to 1 fps for process-
ing. In fact, in addition to some proprietary robot-assisted
surgical tool datasets [27], the only publicly available and
comprehensive datasets we know having specific locations
of the tools are m2cai16-tool-locations by Jin et al. [2], that
utilizes the m2cai16-tool dataset with assistance of surgeon to
generate 2532 frames labels containing coordinates of spatial
bounds of instruments. Following the original partitioning
strategy, we adopt this dataset in our work by dividing it into
training set, test set, and validation set in proportion with
50%, 30%, and 20%. The detailed number of seven surgical
instruments covered in the dataset and the actual samples are
shown in Table 1 and top of Fig. 1 respectively.

Considering that the surgical process is affected by the
complex external environment, it is possible that the observed
results with only one dataset lack sufficient representative-
ness and comprehensiveness. For this reason, we gather
and construct a new dataset AJU-Set with more annotations
of spatial bounds of instruments, which is collected from
20 laparoscopic cholecystectomy surgeries videos at The
Second Hospital of Jilin University. Additionally, this dataset
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FIGURE 1. Top: different color bounding boxes correspond to seven surgical tools. Bottom: several samples of spatial detection results.

TABLE 1. Number of annotated instances for each tool on both datasets.

FIGURE 2. The detection results of some samples under the influence of
complex external environment.

consists of 3164 labeled frames, having the same recording
rate as well as labeling rate as m2cai16-tool-locations and
dividing the set by the same scale. Each tool is annotated
in video with the assistance of three professional surgeons
for accuracy. In total, there are seven kinds of surgical tools
covering grasper, bipolar, hook, scissors, clipper, irrigator,
and specimen bag. The number of distributions in each cate-
gory and some examples are separately shown in Table 1 and
Fig. 2.

IV. METHODOLOGY
The traditional methods of generating anchors provide exces-
sive region proposals with a fixed size and position, result-
ing in a large number of anchors containing background
areas outside the target and unrealistically to find appropriate
ratios of the anchor by manually predefined parameters to
match objects of various sizes. In this paper, we develop

a novel framework for recognition of laparoscopic surgery
instruments named as Modulated Anchoring Network based
on Faster R-CNN [29], which consists of a new anchoring
scheme modulated anchoring and the relation module. Refer
to the overall network structure shown in Fig. 3. The modu-
lated anchoring network is formed by three parts, i.e., anchor
location prediction branch, shape prediction branch, and
modulated feature module. The anchor location prediction
branch aims to yield a probability map to show where the
object center may exist. The anchor shape prediction branch
predicts the most likely shape of the object at the correspond-
ing position based on the positional possibility of the center
point mentioned above. Besides, to follow the consistency
criterion, that is, feature of the anchor should match its shape,
we propose a core component modulated feature module to
integrate the shape information of the anchor into the feature
map directly to meet our needs. Then we subtly embed the
relation module in the existing network structure to perform
joint reasoning on related objects. Below we will describe the
overall network framework in detail.

A. ANCHOR LOCATION PREDICTION
Suppose that the detection box of the object on image I is
represented as a 4-tuple of (x, y,w, h), where (x, y), w and h
denote the center, width, and height of the anchor, respec-
tively. Next, the anchor generation block for location and
shape prediction can be viewed as the following conditional
distribution:

p(x, y,w, h|I ) = p(x, y|I )p(w, h|x, y, I ) (1)

It indicates that the anchor generation process is decoupled
into two stages of location and shape prediction. After the
possible position of the target is determined, the shape can
get an appropriate result according to the location. Follow-
ing Fig. 3, the feature map fI with a size of W × H is
generated through the backbone network and input to the
modulated anchoring scheme. Then a probability map having
the same size with the feature map and whose each entry’s
value p (i, j|fI ) represents the possibility that the center of
the object exists at the corresponding position is derived
from the anchor location prediction branch. Specifically,
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FIGURE 3. Architecture of Modulated Anchoring Network. The multi-level features generated by the feature pyramid are input into
modulated anchoring, then the anchor generation module and the modulated feature module with a modulation mechanism output
anchor location, shape, and adaptive feature to the subsequent network. Besides, the relation modules are inserted into the last two fully
connected layers of the network to further enhance the detection effect.

through comprehensive consideration of speed and accu-
racy, we adopt a 1 × 1 convolution on the feature map
fI in this subnetwork and then convert it into a possible
value by the sigmoid function. Further, according to the
generated map of probability scores, the redundant candi-
dates are filtered out by a predefined suitable threshold ε
while ensuring that the recall remains stable to select an
active region in which the object may exist for the next
subnet.

B. ANCHOR SHAPE PREDICTION
Different from the traditional regression method, our anchor
shape prediction sub-network adheres to the criterion of
anchor center and feature alignment, predicting the opti-
mal anchor shape (w, h) without changing the given posi-
tion of object center getting from the position prediction
branch. In order to obtain the optimal width and height of
the box, there is a matter of fact that it is problematic and
complicated to directly predict the values of w and h, for
these two values vary widely. To that end, we present an inter-
mediate mapping transformation to reduce the output range
by referring to GA-RPN [3]. That is, the shape prediction
branch generates the feature map of two channels applying
the convolution of 1 × 1, which outputs the intermediate
variables dw and dh respectively, and then maps to w and h
through a transformation layer according to Eq.(2), where s
represents the stride, and σ is the proportion coefficient with
a value of 8 in our experiments.

w = σ · s · edw, h = σ · s · edh (2)

In total, the anchor shape prediction branch tends to work
out the best w and h values by solving two tasks, includ-
ing selecting the appropriate ground-truth bounding box that
matches the anchor and maximizing the IoU between them to
yield desired results. Concretely, we assume that the 4-tuple
form of prediction box Pwh regarding shape and position is
(x0, y0,w, h), and the 4-tuple corresponding to a ground truth
bounding box G is

(
xg, yg,wg, hg

)
, then define the following

formula for IoU.

mloU (Pwh,G) = max
w>0,h>0

IoU (Pwh,G) (3)

In theory, the IoU is calculated separately between the
prediction boxes of various possible shapes corresponding to
each position and all the ground truth bounding boxes, then
it is natural to determine the maximum as mloU (Pwh,G).
Whereas, whether it is traversing all likely locations as well as
arbitrary shapes relative to anchor, or the repeated calculation
of the formula about IoU is a challenging problem. To over-
come this dilemma, practice indicates that efficiency and
accuracy can be compromised by sampling several scales and
aspect ratios to simulate enumerate arbitrary shapes of bound-
ing boxes. In fact, in the experiment, we sampled 10 sets of
data (w, h) to achieve a simplified and approximate effect.

It is worth noting that this method produces one box per
position, which greatly reduces the number of anchors, and
is suitable for the scene where the target is not dense in
the image, such as the detection of surgical instruments.
Furthermore, the experimental part also validates the superior
efficiency of this shape prediction design.
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C. MODULATED FEATURE MODULE
For the traditional anchor generation methods, different posi-
tions in the same layer of convolution correspond to the
same scope of receptive field generating uniform anchors
with a fixed scale and aspect ratio. However, our newly
proposed anchor scheme provides non-uniform distribu-
tion boxes with learnable shapes, which inevitably induces
inconsistencies between the variable anchors and features.
In general, the position of feature corresponds to a large
anchor with a large receptive field, and a small anchor
should match a small region. Furthermore, such condition
of violating the consistent anchor design principle may
also plague subsequent classification and regression pro-
cesses. Hence, we propose a modulated feature module
to address the problem, that is, to directly integrate the
shape information of the anchor into the feature, so that the
newly obtained feature map can be adapted to the shape of
anchor for each position, and the transformation of feature is
computed as

F ′i = T (Fi,Wi,Hi) (4)

where T is a 3 × 3 deformable convolution to modify the
original feature map, Fi is the feature corresponding to the
original i-th position and (Wi,Hi) is the anchor shape with
respect to this location.

Concretely, motivated by deformable network [4], since
different spatial locations in the receptive field contribute
differently to the result of object detection, our new feature
adaption module not only learns offsets during the process of
convolutional deformation, but also adds a modulation term
to adjust the feature amplitude to more flexibly manipulate
spatial support regions. In the convolution kernel with i sam-
pling points, wi and si respectively represent the weight and
the predefined offset at the i-th position. x(s) and y(s) are fea-
tures of the position s corresponding to the input feature map
x and the output feature map y. The formula of modulated
deformable convolution can be expressed as the following
form:

y(s) =
K∑
i=1

wi · x (s+ si +1si) ·1mi (5)

where1si and1mi are respectively the offset andmodulation
amplitude of deformable convolution for position i on the
feature map. It has no definite limit to the 1si, and the 1mi
ranges from 0 to 1. Specifically, there is a key difference from
the previous deformable network [16] that our scheme pre-
dicts offset and modulation amplitude based on the shape of
the anchor rather than on the original feature map. As shown
in Fig. 3, the shape prediction branch outputs offset and
amplitude fields respectively through separate convolution
layers, and then we apply feasible deformable convolution
with the original feature map to obtain the adapted feature
map f ′I , which matches anchor greatly as well as facilitates
subsequent network process.

D. RELATION MODULE
Due to the fact that there is collaboration between different
surgical instruments in some scenarios, we apply Relation
Network [5] in the proposed framework to enhance the per-
formance of recognition. Specifically, the relation module
derives comprehensive features by integrating the object’s
regular image features and multiple relation features associ-
ated with other targets, keeping the input and output dimen-
sions unchanged, so it is easy to embed into the network
structure. As illustrated in Fig. 3, the relation module is
added to the two fully connected layers in sequence, followed
by subsequent classification and regression. Experimental
results show that the introduction of relational components
can further improve recognition accuracy.

E. TRAINING AND INFERENCE
1) BACKBONE NETWORK
Our detector is based on Faster R-CNN [29] framework using
the backbone of ResNet-101 [41] with FPN [42], which
inputs video frames of laparoscopic surgery and outputs
detection results of several surgical tools with bounding boxes
labeling. Additionally, the output of detection prompts us to
perform automatic surgical video analysis, which provides
insights into future work through a comprehensive assess-
ment of surgical skills.

2) TRAINING OBJECTIVE
The joint training objective for our structure is to minimize a
multi-task loss:

L = λ1Lloc + λ2Lshape + Lcls + Lreg (6)

Here Lcls and Lreg are conventional classification loss and
regression loss. Moreover, Lloc is the loss corresponding to
the anchor location prediction branch, and Focal Loss [43]
is adopted. Lshape is the loss of shape prediction branch,
which selects the modified version of bounded iou loss [44]
to optimize only the width and height of anchor. Both λ1 and
λ2 are trade-off coefficients for these two branches.

3) TRAINING DETAILS
It is experiential that leveraging high-quality proposals as
input contributes to training a more efficient and accurate
detector. Concretely, there is a vital premise for using high-
quality proposals that the distribution of training samples
and region proposals are consistent. Hence, a more rigor-
ous screening criterion of the proposal is performed in our
formulation by improving the IoU thresholds for positive
and negative samples and generating fewer candidate anchors
than the RPN-based approach.

F. DISCUSSION
In this section we compare the differences between Cascade
R-CNN [45] and our work. (1) Both the Cascade R-CNN
and our method are based on Faster R-CNN as the backbone
network. Cascade R-CNN is a multi-stage object detection
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TABLE 2. Results for two datasets of m2cai16-tool-locations and AJU-Set.

structure proposed to address the problem that the detection
performance decreases when the IoU threshold increases.
Different from the complex repetitive structure of Cascade
R-CNN, our structure is more concise and clear, by adding
function modules on the backbone network to generate adap-
tive anchors to achieve superior detection accuracy. (2) In
order to produce high-quality proposals, the Cascade R-CNN
consists of a series of detectors with rising IoU thresholds,
where the output of the previous detector is used as input
to train the next higher-quality detector. Compared with the
above scheme, the design of our structure determines that
the generated bounding boxes have higher quality, so it is
easier to select fewer but high-quality proposals by setting rel-
atively large IoU thresholds for positive and negative samples.
(3) Different from the Cascade R-CNN based on the RPN
to produce bounding boxes with fixed aspect ratios, a vital
highlight of our method is to generate anchors with learnable
shapes, which is more suitable for the scene of nonuniform
distribution of objects like surgical tool recognition.

V. EXPERIMENTS
A. EXPERIMENT SETUP AND IMPLEMENTATION
We evaluate our detector on the m2cai16-tool-locations
dataset [2] and our private dataset AJU-Set, which both
include a number of images for video frames containing
seven different kinds of surgical instruments. Since there
have been few previous studies on the recognition of surgical
instruments with limited data, we expand the above datasets
by means of random horizontal flipping. For the evaluation
of the following experiments, the standard mean average
precision (mAP) and average precision (AP) are considered
as the performance evaluation criteria for calculation.

To better balance the location and shape prediction
branches, parameters λ1 and λ2 were set to 1 and 0.1, respec-
tively. Using our laparoscopic surgery dataset, we take a
stochastic gradient descent approach to fine-tune our network
for 60K iterations and train our structure with a mini-batch
size of 50. We start the learning rate at 0.001 and decay it by
a factor of 10 every 10K iterations. All models in this paper
are trained on NVIDIA Geforce RTX 2080 Ti GPUs, and our
scheme achieves a real-time processing speed, which presents
superior identification performance.

B. BASELINE METHODS
We evaluate our approach to the localization of surgi-
cal instruments in laparoscopic surgery separately on the
m2cai16-tool-locations [2] and AJU-Set datasets. So far as
we know, we are the first to use a comprehensive network
model to detect surgical instruments in complete laparoscopic

surgeries, which presents a good start for future medical
analysis and research. As shown in Table 2, our method
gives the detection results for seven surgical tools on the two
datasets. Mtl denotes the dataset of m2cai16-tool-locations.
Affected by various environmental factors such as illumi-
nation and lens sharpness, the two datasets obtain different
detection performances respectively. From the second row,
it can be seen that both the clipper and hook achieve higher
detection accuracy in this dataset. The possible reason is
that clipper usually has good visibility when operated, which
makes it easy to recognize from the scene, and the hook
is used relatively frequently in laparoscopic surgery as well
as has a unique shape that contributes to distinguishing.
Moreover, from our observation of the third row, these two
tools bipolar and irrigator they get lower precision, reasonable
explanations are that they all have irregular shapes similar
to most medical tools and lack of enough data to learn
from. Overall, our approach shows excellent performance
for the task of laparoscopic surgery tool detection. Fig. 1
depicts the example frames of tool identity results on the
m2cai16-tool-locations dataset. The detection performance
of several samples from the AJU-Set involving adverse envi-
ronmental factors such as occlusion, illumination, and smog
refer to Fig. 2. It shows the remarkable recognition ability of
our scheme.

In addition, to further validate our method, we compare it
with existing one-stage and two-stage representative struc-
tures on the two datasets in Table 3. Generally, baseline
methods of one-stage, such as SSD, RefineDet, and STDN are
relatively less accurate than the two-stage methods like Faster
R-CNN, Cascade R-CNN, and our method. We infer the
reason that the two-stage approaches provide more accurate
region proposals for predicting the variety of surgical tools.
Moreover, it is exciting that ourmodulated anchoring network
outperforms the previous scheme [2] with 6.5% and is 6.1%
higher than the anchor-free method [37] on the m2cai16-
tool-locations dataset, and also achieves better precision in
AJU-Set. In summary, it demonstrates that our scheme per-
forms well in the detection task of surgical instruments.

C. ABLATION STUDY
In order to verify the effectiveness of each component in
Modulated Anchoring Network, we design several variants
and evaluate them on our datasets, shown in the lower half
of Table 3. Particularly, these variant models use the same
settings for a fair comparison. Here Basic Network means the
backbone network, that is, the remaining part after removing
the anchor generation module, modulated feature module,
and relation module from our framework. Note that AG
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TABLE 3. Comparison with the state-of-the-art detection methods and results of ablation study on m2cai16-tool-locations and AJU-Set datasets.

means anchor generation module and DL denotes applying a
deformable convolution layer directly after the anchor gener-
ation module. FA is the feature adaption module, where shape
prediction branch outputs offset field without modulation
terms. MFA represents a modulated feature module, that is,
the shape prediction branch predicts the offset as well as the
modulation term for each position, and then obtains adaptive
feature maps by applying a deformable convolution with
offset and modulation scalar on the original feature maps.

Basic + AG indicates that we increase anchor generation
module on the backbone network to predict the learnable
shape and location of the anchor, proving the effectiveness
of this module with the gain of 2.2% and 2.5% on the two
datasets. It can be seen from the ablation experiment that
the most obvious improvement is after adding the modu-
lated feature module, which leads to the gain of 3.6% and
4.9%. Specifically, the outstanding performance is not only
attributed to the use of a feasible deformable convolutional
layer but also because we can better integrate anchor infor-
mation into the feature by predicting offset and modulation
amplitude of the deformable convolution through shape pre-
diction branch. If the original feature maps with deformable
convolution or adjusting the feature only by offset are directly
used for prediction, which correspond to Basic + AG + DL
and Basic + AG + FA in the table, it is obvious that detec-
tion performances are worse than using MFA. In addition,
we compare the results of the last two rows in Table 3 and
find that the relation module further improves the mAP by
2.1% and 3.3%, indicating that the module fused rich feature
information around facilitates detection.

D. QUALITY ASSESSMENT OF SURGERY
Effective postoperative feedback can reduce the risk of com-
plications in patients and provide paradigms for other young
researchers. So the assessment of surgical techniques is a
very significant stage but the existing assessment methods

evaluated manually by experts are subjective as well as time-
consuming. For this reason, we utilize our network structure
to automatically evaluate surgical skills by tracking surgical
tools and analyzing the patterns, the range of trajectories,
the mobility economy of tools employed, following the med-
ical assessment criteria for laparoscopic surgery.

We use four testing videos from the AJU-Set to assess
surgical performance. As shown in the top of Fig. 4, the range
of movement is studied utilizing heat maps generated by the
position of bounding boxes of the surgical tools. Medical
experience suggests that skilled surgical procedures should be
operated more accurately in areas that are more concentrated
in a certain range, which also presents the economy of tool
movement. Through observation, it is obvious that the heat
map corresponding to video 3 is the one with the best surgical
performance among the four videos, showing the proficiency
and high efficiency of doctor’s operation.

Separating the gallbladder triangle is a very vital step in
the surgical procedure, which can lead to biliary injury and
complications if the surgeon has a slight deviation during
the operation. So in order to further intuitively evaluate the
mobility economy of tools, we select the gallbladder shearing
stage from above step in the testing videos to generate trajec-
tory maps of tool movement, presented in the bottom part of
Fig. 4. Specifically, the surgeon places clips using the clipper
to clamp the gallbladder artery and the cystic duct with the
grasper holding the gallbladder properly, after that cut cystic
duct with scissors. Due to the short time and small moving
distance of the scissors, here we only study the clipper and
grasper these two error-prone tool operations. The trajectory
maps clearly show that the two surgical tools in the shearing
stage of video 3 and video 4 are manipulated more smoothly
and accurately, and compared with the surgical tools in the
first two videos, there are no frequent movement, showing an
excellent economy of motion. This condition may be due to
the fact that the surgeons in the latter two videos are more
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FIGURE 4. (a) to (d) correspond to video 1 to video 4, respectively. The top part is the heat maps generated by the positions of the surgical
instruments, and the bottom part is the movement trajectories of tools during the shearing stage. These figures can be used to visually
reflect the execution skills and efficiency of the surgical procedures.

FIGURE 5. The yellow and green bands are derived from the prediction
box and the ground-truth box, respectively. In the tool usage timelines,
(a) to (d) correspond to video 1 to video 4. 1-7 represent the seven tools
of Specimen Bag, Irrigator, Clipper, Scissors, Hook, Bipolar, and Grasper.
Compared with other videos, video 3 indicates excellent hand dexterity
and smooth operation.

experienced, the position of the clips, the direction as well as
the force of controlling the grasper are more appropriate. The
above conjecture also gets confirmation during the expert’s
manual assessment of the surgical video.

In order to study the usage patterns of the instruments,
usage timelines in the testing videos are generated to quantita-
tively assess surgical skills. From Fig. 5, we can see that the
tools used in video 1 are switched relatively frequently and
the time intervals are slightly longer. A reasonable explana-
tion is that the surgical operation is somewhat unskilled, some
details of the operation part are not done well, so additional
operations are needed to remedy. For example, improper
traction causes additional bleeding to affect subsequent work,

FIGURE 6. The total use time of each tools in the four videos reflects the
skill and proficiency of the surgeon.

requiring bipolar for rapid hemostasis. From the timelines,
we can also draw conclusions that compared with the opera-
tion of video 1, video 3 is a smooth execution, more dexterous
and referable. Besides, through observation, we can see that
the overall change trend of the yellow band corresponding
to the prediction box and the green band corresponding to
the ground-truth box are consistent, and by analyzing the tool
switching frequency and the time interval, the two color bands
can reach a consistent conclusion of surgical evaluation,
which also indicates that inaccurate detection of individual
images does not affect the overall assessment result and the
pattern chart is a reliable method for surgical evaluation.

As shown in Fig. 6, in addition to the above pattern chart,
we also generate bar graphs corresponding to the total time-
lines of each tools used in the four videos to observe the
skill and proficiency of the operation of the surgeon. For
instance, we can clearly see that compared to other videos,
the longer time the bipolar appears in video 1 and video
2 indicates that more bleeding is caused by the unskilled
tissue handling and the bipolar has to be used many times
to stop the bleeding. The above conclusion is consistent with

23756 VOLUME 8, 2020



B. Zhang et al.: Surgical Tools Detection Based on Modulated Anchoring Network in Laparoscopic Videos

the pattern chart, which further verifies the effectiveness of
the method in Fig. 5.

Moreover, aim to verify the reliability of all the above
methods of evaluating surgical performance, we also ask four
experts to manually assess the performance of the four testing
videos from medical perspectives, and they all agree that
video 3 is the best performing surgical procedure, which is
consistent with our evaluation results.

VI. CONCLUSION
In this paper, we present a novel Modulated Anchoring Net-
work based on Faster R-CNN, which consists of an anchor
generation mechanism and the relation module. Unlike tradi-
tional schemes to provide anchors with fixed aspect ratios,
our structure employs semantic information to generate
adaptable shape anchors to detect surgical instruments that
appear in laparoscopic surgery videos more flexibly and
accurately. The modulated feature module with a modulation
mechanism is proposed to expand the scope of deformable
convolution to incorporate the anchor information into the
feature map, and the relation module is embedded in our
network to consider relationships of different tools. For this
specific tool spatial detection task, our framework achieves
excellent detection accuracy of 69.6% and 76.5%mAP on the
m2cai16-tool-locations and AJU-Set datasets respectively,
which is 4.5% and 4.6% higher than the current state-of-
the-art method Cascade R-CNN, and also performs better
than other comparablemethods.Moreover, accurate detection
results can further contribute to analyzing the tool usage pat-
terns, trajectory range, and economy of motion from medical
perspectives to assess the quality of surgery comprehensively.
For the future work, we expect that a reliable medical eval-
uation system in three-dimensional space can be established
to better analyze laparoscopic surgery and provide learning
reference for inexperienced beginners.
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