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ABSTRACT Spatial pyramid matching (SPM) is one of the widely used methods to incorporate spatial
information into the image representation. Despite its effectiveness, the traditional SPM is not rotation
invariant. A rotation invariant SPM has been proposed in the literature but it has many limitations regarding
the effectiveness. In this paper, we investigate how to make SPM robust to rotation by addressing those
limitations. In an SPM framework, an image is divided into an increasing number of partitions at different
pyramid levels. In this paper, our main focus is on how to partition images in such a way that the resulting
structure can deal with image-level rotations. To do that, we investigate three concentric ring partitioning
schemes. Apart from image partitioning, another important component of the SPM framework is a weight
function. To apportion the contribution of each pyramid level to the final matching between two images,
the weight function is needed. In this paper, we propose a new weight function which is suitable for the
rotation-invariant SPM structure. Experiments based on image classification and retrieval are performed on
five image databases. The detailed result analysis shows that we are successful in enhancing the effectiveness
of SPM for image classification and retrieval.

INDEX TERMS Spatial pyramid matching, rotation invariance, image classification, image retrieval.

I. INTRODUCTION
Over the last decade, bag of words (BOW) [1] has become
one of the most successful image representations to be used
in image classification and retrieval tasks. In BOW, local
descriptors, like scale invariant feature transform (SIFT) [2],
are extracted from all the images in a database, followed by
clustering the local descriptors of training images to obtain a
visual word dictionary. By encoding the local descriptor set
of each image with the visual word dictionary, each image
is represented by a histogram of visual words. Although
BOW is a popular approach, it lacks spatial information.
To overcome this issue, spatial pyramid matching (SPM) [3]
was proposed. SPM divides an image into multiple partitions
at different levels to form a pyramid of grid partitions, such
that nth pyramid level has 22n number of partitions. Each grid
partition is then represented by a histogram of visual words.
Concatenated histograms obtained from all the grid partitions
of a particular pyramid level is the image-level representa-
tion of that level. Level-wise similarity scores are obtained
by applying the histogram intersection kernel between the
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corresponding pyramid levels of two images. Finally, simi-
larity scores obtained from each pyramid level are aggregated
using a weight function to get the final matching between two
images.

SPM has established itself as a popular method in image
processing applications for its simplicity and computational
efficiency. Subsequently, many researchers have worked on
SPM to enhance its performance. Although several images
in a database could be similar except for the orientation of
their visual contents, research on effectively making SPM
robust to rotation is limited. Based on our knowledge, the only
such work is proposed in [4]. However, in [4], the proposed
method has limitations that will be addressed in this paper.
Specifically, the main contribution of this paper is to make
enhancements to [4] by addressing its limitations for more
effective image classification and retrieval.

The preliminary results of our work have been presented
in [5]. Since then, more work has been carried out. The
main difference between this paper and [5] are (1) Two
additional partitioning schemes are investigated in search
of better rotation-invariant image representation. (2) A new
weight function is proposed to accurately apportion the sim-
ilarity scores obtained from each pyramid level to the final
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similarity score. (3) To test the effectiveness of rotation-
invariant SPM, along with image classification, image
retrieval is also used as the measure of performance evalu-
ation. (4) More extensive image databases are used for the
experiments.

Recently, different deep learning architectures have shown
higher effectiveness in various image processing applications
compared to the traditional feature descriptors (e.g. SIFT [2],
HOG [6] ). However, the traditional feature descriptors have
their advantages. First of all, the deep learning architectures
are often huge with many layers of neurons with millions
of parameters and require large set of training images for
the appropriate tuning and weight adjustments. In contrast,
traditional feature descriptors can perform satisfactorily with
a small number of training images and fewer parameters need
to be tuned [7], [8]. In addition, deep learning is generally
treated as a black-box and therefore, it is still not clear what
visual information is being represented in the complex fea-
tures derived from a deep learning method. In some applica-
tion domains, e.g. in crime investigation and presentation of
evidence in the court, it is essential to explain how a computer
algorithm or method derives its results. Traditional feature
descriptors are easier to explain and visualize [9]. Due to the
aforementioned reasons, further research and development of
traditional feature descriptors are still important and essential.
Therefore, in this paper, our focus is to improve an existing
feature descriptor framework.

The structure of the rest of the paper is as follows.
Section II summarises the existing research works to improve
the traditional SPM. The limitations of existing rotation
invariant SPM [4] are discussed in Section III. Section IV
presents the investigation carried out to find the appropriate
partitioning scheme which is suitable to design a rotation
invariant SPM structure. A new weight function is proposed
in Section V. Section VI provides the details of experimental
study. Finally, Section VII concludes the paper.

II. RELATED WORK
In this section we discuss the concept of traditional SPM
(TrSPM) followed by a review of relevant literature and
TrSPM’s limitation towards rotation.

A. OVERVIEW OF TRADITIONAL SPM
A pictorial representation of TrSPM is given by Figure 1. The
main stages of TrSPM are as follows.

1) Image partitioning: To represent images using SPM,
each image is partitioned into increasing number of
grids in the increasing order of grid levels. At Grid
Level n, an image is partitioned into 22n numbers of
grid partitions. In Figure 1, image partitions are shown
for three grid levels (up to Grid Level 2) which is
optimum as per [3]. In general, grid levels are called
pyramid levels.

2) Image-level descriptor extraction: After partitioning
images in different grid levels, each of the partitions
is represented with a histogram of visual words using

FIGURE 1. The concept of TrSPM.

a fixed size dictionary. Representation of each parti-
tion is the same as representing each partition with
BOW. After that, histograms belonging to a particular
Grid Level are concatenated to form the corresponding
image-level descriptors.

3) Image matching: After representing grid levels,
the matching between two images at each grid level is
performed using histogram intersection given by (1).
Next, the match sores obtained by matching each grid
levels are summed up using (2) to obtain the final match
between two images.

M (A,B) =
r∑
j=1

min (Aj,Bj) (1)

where A and B are histograms with r bins, andAj (or Bj)
denotes the count of the jth bin of A or B.

K (Image1, Image2) =
L∑
i=0

(wiNi) (2)

where wi represents the weight associated with Grid
Level i given by (3), L represents the correspond-
ing numerical value of the highest resolution level,
Ni = mi − mi+1; mi and mi+1 represent the
matches found at Grid Levels i and i + 1 respectively.
As the matches found at Grid Level i also contains
all the matches found at Grid Level i + 1. Therefore,
the new matches found at Grid Level i is given by Ni.

wi = 1/2L−i (3)

B. RELEVANT LITERATURE
After [3], several works have been proposed to mod-
ify TrSPM. In this section, the main ones are discussed.
In TrSPM, spatial information is incorporated using grid
sampling (i.e. the way images are partitioned in different
grid levels). Subsequently, various researchers have proposed
other methods of sampling to achieve better representation.
It has been shown that the performance of SPM increases
as the number of grid levels is increased up to four [10].
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A different pyramidal structure was proposed in [11] and
it was later also adopted by [12] and [13], where the first
two levels are like the TrSPM, but the final level consists of
only three horizontal partitions. Grid sampling was extended
beyond the fixed spatial pyramids in [14] where a compre-
hensive set of grids are densely sampled over location, size
and aspect ratio. To improve the image representation, scene
geometry [15] is used as an input parameter for generating the
spatial pyramid definitions. Whereas, in [16] apart from the
geometric information, photometric aspects of the images are
also captured to distinguish different images more effectively.
A fast-deformable spatial pyramid matching algorithm [17]
was introduced for computing dense pixel correspondences
to enforce both appearance agreements between the matched
pixels as well as the geometric smoothness between the
neighbouring pixels. To characterise the image layout by
various patterns, randomized spatial partition is proposed
in [18] to extract the most descriptive image layout pattern
for each category and combine them thereafter by training a
discriminative classifier.

To increase the effectiveness of SPM, sparse coding [19]
was used in SPM framework. Based on SIFT and sparse
coding, a hierarchical spatial pyramid max-pooling method
was proposed in [20]. Another approach of sparse coding was
proposed in [21] where different weights are assigned to the
patches of different levels . Whereas in [22], the reconstruc-
tion error which is the result of sparse coding in SPM frame-
work is eliminated. When the database is very large or the
dictionary size is too high, the resulting image representation
turns out to be very high dimensional. As high-dimensional
descriptors are inefficient to process, many researchers have
focused on dimension reduction of descriptors by sacrificing
the overall performance to a least extent [13], [23]–[28].

C. LIMITATION OF TRADITIONAL SPM
TrSPM shows good performance in image processing appli-
cations and there are many subsequent improvements pro-
posed for it to achieve better performance in various aspects
as discussed above. However, it is not robust to any kind of
image or object rotation. This limitation is discussed in detail
with the use of Figure 2.

Consider the two images in Figure 2, both images contain
a common scene, but the second one is 180 degrees rotated
from the first one. A star object exists in both images. In the
first image, the star object exists near to the left top area but in
the second image, the same object exists near the bottom right
area. When matching these two images using the traditional
SPM, there is no problemwith thematching at Level 0. This is
because all descriptors representing the objects are still within
the corresponding partitions of the two images. However,
when matching at Level 1, the object of interest is in the first
partition of Image 1 but in the fourth partition of Image 2.
Thus, the TrSPM may indicate that the two images are very
different even though visually they are very similar. The same
limitation arises at Level 2 as well.

FIGURE 2. Limitation of TrSPM; Image 1: 0 degree rotated; Image 2 :
180 degrees rotated.

III. LIMITATIONS OF THE EXISTING ROTATION
INVARIANT SPM
To deal with the rotational issue of TrSPM, the main concern
is to preserve the spatially close descriptors in the correspond-
ing partitions of similar images with different rotations. To do
this, in [4] authors have proposed spatial pyramid ring (SPR)
approach which partitions images into circular concentric
rings in different pyramid levels.

Although the authors [4] have claimed that SPR addressed
the rotational issue, it still has limitations regarding the effec-
tiveness. Moreover, the result analysis is also not elaborated.
The limitations of SPR are given as follows.

1) In SPR, each of the concentric rings is captured over
the entire image region and at each level, the number
of rings is doubled to its previous level. Hence, at Level
4, there are 8 rings. The probability that the rings may
too small and sensitive to any object translation and
movement is very high. Therefore, we will investigate
the use of a linear increase of rings in the successive
pyramid levels.

2) In [4], there is no discussion of using a weight function
in the image matching process. Authors have either
used the same approach as in [3] or the match scores
obtained from the individual pyramid levels are given
equal importance to the final matching. In both cases,
image matching is not as accurate as it should be with
an appropriate weight function. Therefore, to apportion
the contribution of descriptors resulting from individ-
ual pyramid levels to the final matching between two
images, a suitable weight function is proposed in this
paper.

3) In SPR, it was aimed to address the SPM’s limitation
caused by image-level rotation. We have explained this
issue using Figure 2. The authors of SPR have used
conventional key point-based SIFT which is rotation
invariant. However, being a local descriptor, its rotation
invariance property is confined in an image patch or a
local image region only. Therefore, conventional SIFT
has a limited contribution to the image-level rotation.
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TABLE 1. Details of proposed partitioning schemes.

In contrast, dense SIFT descriptors which are extracted
at every location in an image, are likely to carry more
discriminative information [29] compared to the con-
ventional SIFT which sparsely captures information.
In addition, in the SPM framework, images are parti-
tioned in different pyramid levels. If conventional SIFT
is used, there is a high probability that some keypoints
are detected in one partition but the neighbouring pixels
required to describe the detected keypoints fall into
different partitions. This will result in a less informative
descriptor and therefore, the result provided in [4] is
unsatisfactory.

In this paper, we have enhanced the effectiveness of SPM.
This is done by investigating three concentric ring parti-
tioning schemes which are used to build effective rotation-
invariant SPM. In addition, a newweight function is proposed
for the better contribution of pyramid levels to the final match
score between two images. Also, dense SIFT is used as the
local descriptor and finally, the enhanced effectiveness of
SPM is evaluated for image classification as well as for image
retrieval.

IV. INVESTIGATION OF DIFFERENT
PARTITIONING SCHEMES
In this section, we will carry out a thorough investigation to
build a robust spatial pyramid structure which is effective
to match images with rotation. To do this, three different
concentric ring partitioning schemes which partition images
with reference to the image centre are investigated here.
The aim of these three partitioning schemes is to achieve
a rotation-invariant image representation. Specifically, these
partitioning schemes, unlike TrSPM, preserve spatially close
descriptors in the corresponding partitions of two images
at each level of the spatial pyramid. The three proposed
partitioning schemes which are given in Figure 3 are rect-
angular ring partitioning (RRP), circular outer ring partition-
ing (CORP) and circular inner ring partitioning (CIRP). For
each of these three partitioning schemes, Level 0 represents
the entire image and each higher pyramid levels have one
additional partition than the previous lower level. Details of
the partitioning schemes are provided in Table 1.

In Figure 3, it is visible that for RRP, CORP and CIRP
schemes, object of interest (star) is preserved in the same cor-
responding partitions of original and rotated images. In addi-
tion, the red circular object which exists at the image cen-
tre, by using all the three rotation-invariant (RI) partitioning
schemes, it is always preserved in a single partition irre-
spective of different pyramid levels. From here on, the SPM
structures built with RI-partitioning schemes will be referred
as RI-SPMs in the rest of this paper.

Among the proposed partitioning schemes, CORP and
CIRP are based on concentric circular rings similar to the
SPR. The authors of SPR [4] attempted to address the rota-
tional issue of SPM. However, the experimental results are
not satisfactory. Therefore, in this paper, we aim to investigate
the various way of building the concentric ring partitions to
make SPM rotation invariant and comprehensively compare
the effectiveness of them.

V. PROPOSAL OF A NEW WEIGHT FUNCTION
In TrSPM, image matching is performed using (2). The
similarity scores obtained at the higher pyramid levels are
given more importance than the lower levels as the higher-
level descriptors contain more location-specific information.
In practice, this is done by incorporating a weight function
given by (3) which we refer here as the conventional weight
function (CWF).

As per CWF, the weight associated with the similarity
scores at each level is inversely proportional to the square
root of the number of grids (or partitions) at that level. As the
number of image partitions at each level of RI-SPMs is
different compared to what it is in TrSPM, therefore, the way
spatial information is incorporated into the descriptors at
different levels of the RI-SPMs is very different from TrSPM.
For this reason, CWF is not appropriate to provide weight
assignments to the RI-SPM structures. Therefore, there is
a need for the proposal of a new weight function and the
motivation behind this is two-fold: (1) The proposed weight
function should be suitable to the RI-SPM structures. (2) The
proposed weight function should not violate CWF when
it is applied in the TrSPM scenario. By satisfying these
two conditions, we propose a new weight function which is
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FIGURE 3. Pictorial representation of three partitioning schemes.

named as the generalized weight function (GWF) and it is
given by (4).

wi = 1/
√
Pf /Pi (4)

where Pf is the total number of image partitions at the highest
pyramid level and Pi is the total number of image partitions
at the ith pyramid level. While proposing GWF, the focus is to
determine how much location-specific information (in terms
of the number of image partitions) individual level carries
with respect to the highest level which carries the maximum
location-specific information.

In the three-level TrSPM, if GWF is applied as per (4),
then the weights assigned to Levels 2, 1 and 0 are 1, 0.5 and
0.25 respectively. This set of weights is the same if CWF is
applied. Therefore, GWF satisfies CWF in TrSPM scenario.
In contrast, from Figure 4, it can be seen that in the RI-SPM
scenario, the weights assigned to the different levels using
GWF are completely different from what it is for CWF.

Most of the SPM related literature where different par-
titioning schemes are proposed compared to the traditional
SPM, still use the CWF as weight function. This may lead
to an improper degree of contribution of each partition to
the final matching. Therefore, GWF provides a pathway to
calculatemore accurate weights associatedwith the similarity
scores obtained at each SPM level.

VI. EXPERIMENTAL STUDY
This section presents the following studies: (1) The effective-
ness of three proposed RI-SPMs (where the number of image
partitions is linearly increased with the pyramid levels and
dense SIFT is used as the local descriptor) in representing

FIGURE 4. Comparison of weights to be assigned at different levels of
RI-SPMs as per GWF and CWF.

images for image classification and retrieval. (2) The effec-
tiveness of GWF compared to CWF in the RI-SPM scenario.

A. TEST DATABASES
To achieve the above-mentioned goals, the following
databases are used.

1) SCENE CATEGORIES DATABASE
Scene Categories database [3] (https://figshare.com/articles/
15-Scene_Image_Dataset/7007177) contains 15 different
classes of grayscale images. The number of images in the
classes varies from 200 to 400 and in total, the database
consists of 4485 images. The average size of the images in
this database is 300 × 250 pixels. A set of sample images
from this database is shown in Figure 5.
Along with the original, a rotated version of this database

is used here. To form the rotated database, each of the images
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FIGURE 5. Sample images from scene categories database.

is manually rotated by 30, 45, 60, 135, 150, 210, 225, 255 and
315 degrees. These rotated images along with the original
unrotated images are kept together in the rotated database.
Thus the rotated database consists of a total of 44,850 images.

2) 21 LAND USE DATABASE
This database (http://weegee.vision.ucmerced.edu/datasets/
landuse.html) consists of 21 different classes of images [30].
Each class consists of 100 images and overall, the database
contains 2100 images. Mostly, the images of this database are
of 256× 256 pixels. The main characteristic of this database
is that the images belonging to different classes are captured
with different camera angles. Therefore, images are naturally
rotated. A set of sample images from this database is shown
in Figure 6.

FIGURE 6. Sample images from 21 Land use database.

3) CALTECH 101 DATABASE
Caltech 101 database [31] (http://www.vision.caltech.edu/
Image_Datasets/Caltech101/) contains 101 object categories
and ‘Google background’ category. The number of images in
each category varies from 31 to 800 and in total, the database
consists of 9146 images. Image resolutions in this database
vary from very low to very high. However, most of the images
are of 300 × 300 pixels on average. A set of sample images
from this database is given in Figure 7.

4) CALTECH 256 DATABASE
Caltech 256 database [32] (http://www.vision.caltech.edu/
Image_Datasets/Caltech256/) contains 256 object categories.
It contains 30,608 images in total and each class has at least
80 images. This database is superior than Caltech 101 which
has issues like left-right alignment, rotation artefacts etc.
A set of sample images from this database is given in Figure 8.

FIGURE 7. Sample images from Caltech 101 database.

FIGURE 8. Sample images from Caltech 256 database.

B. DESCRIPTOR EXTRACTION AND DICTIONARY
CONSTRUCTION
SIFT descriptors are extracted from the training set images
of each database over a dense regular grid of 16 × 16
pixel patches with 8 pixels of spacing. By applying k-means
clustering on the training-image descriptor sets, separate
dictionaries for each database are formed. To increase the
discriminative power of image representation [33], the dic-
tionary size of each database considered is 1000. Next, all
the images of each database are partitioned by both RI and
traditional schemes. SIFT descriptors are extracted from all
the partitions at all levels and encoded by corresponding
visual words after comparing them with their respective dic-
tionaries. Now each partition is represented by a histogram
of 1000 bins which is the image-level descriptor of the
corresponding partition. Experiments were performed on a
computer with an Intel Core i7 processor running at 3.2 GHz
using 16 GB of RAM.

C. IMAGE CLASSIFICATION
LIBSVM [34] is used for SVM based classification over
Matlab platform. The kernel function which SVM classifiers
use is histogram intersection. 10-fold cross-validation is per-
formed on each database by randomly splitting individual
databases to 10 training and test sets. To obtain a fair result,
in each iteration, the training and test sets are completely
different from each other. The final classification accuracy
is the average accuracy over 10 iterations. In the results,
legends ‘RRP’, ‘CIRP’ and ‘CORP’ represent the RI-SPM
built with the corresponding RI-partitioning schemes. TrSPM
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represents traditional SPM [3] and SPR represents the exist-
ing rotation invariant SPM [4].

1) IMAGE CLASSIFICATION RESULTS TO COMPARE THE
EFFECTIVENESS OF RI-SPMs WITH THE EXISTING
ROTATION INVARIANT SPM (SPR)
In this section, the performances of RI-SPMs using the three
partitioning schemes are compared with the performance of
SPR [4]. For a fair comparison, the same settings of [4]
are used to evaluate SPR. The performance of SPR is also
compared with the performance of TrSPM. The comparison
result is provided in Table 2.While evaluating three RI-SPMs,
it is observed that the classification accuracies stop increas-
ing at Level 6 and the highest classification accuracies are
obtained at Level 5. For the three RI-SPMs, results are only
provided with GWF. A detailed performance comparison
between GWF and CWF is provided in the latter section. For
the results in Table 2, 21 Land Use database is used for the
testing as this database has images with in-built rotation.

TABLE 2. Comparison of classification accuracies (%) between SPR,
TrSPM and RI-SPMs on 21 Land use database.

From the results, it is clear that the three RI-SPMs under
investigation perform better than SPR. Moreover, the classi-
fication accuracy of SPR is even worse than TrSPM. This is
because, in SPR, conventional SIFT is used. The partitioning
approach in SPR is coarse and causes descriptors to become
over-discriminative. Moreover, there is no use of appropriate
weight function. Due to these reasons, later in the result
analysis, the performances of RI-SPMs are only compared
with the TrSPM and not SPR.

2) IMAGE CLASSIFICATION RESULTS TO COMPARE THE
EFFECTIVENESS OF RI-SPMs WITH TrSPM AND TO
VALIDATE THE EFFECTIVENESS OF GWF
In this section, image classification results are provided to
compare how robust RI-SPMs are with respect to the TrSPM.
Also, the effectiveness of GWF compared to CWF to the
proposed structures of RI-SPM is investigated. Image clas-
sification is performed for both RI-SPMs and TrSPM using
the databases considered. Experiments are conducted in two
ways, i.e. ‘Single-level’ and ‘Pyramid’. In the ‘Single-level’
experiment, descriptors of a level are tested separately and
in the ‘Pyramid’ experiment, the descriptors up to a level
are tested together. The experiments on the RI-SPMs are
conducted up to Level 6 and for the TrSPM, the experiment is
conducted only up to Level 2 (as according to [3], Level 2 is
optimum for the TrSPM).

Performance comparison of all the three RI-SPMs along
with TrSPM in terms of classification accuracies for all five
databases considered are given in Table 3. The table contains
only the highest classification accuracies of each SPM using
both GWF and CWF. From the results, it is clear that the

classification accuracies of all three RI-SPMs are higher than
the TrSPM.

In addition, for each RI-SPM on each database, GWF
performs better than CWF. This is because GWF provides
more appropriate weights to the pyramid levels of RI-SPMs
compared to the CWF. The performance progression of RI-
SPMswith the increase of pyramid levels is shown in Figure 9
for the Scene Categories database. As it is already observed
that GWF performs better compared to CWF in the RI-SPM
scenario, therefore, to avoid redundancy, in Figure 9 pyramid
performances are shown only with GWF. The performance
progression of RI-SPMs on other databases follow a similar
trend as in Figure 9.

FIGURE 9. Level wise classification accuracies on scene categories
database.

3) COMPARISON OF CLASSIFICATION ACCURACIES WITH
THE EXISTING POPULAR METHODS
To the best of our knowledge, the experiment settings we
have used to test our proposed methods are the same as the
experiment settings followed in the TrSPM. In the literature,
some of the existing popular methods have been compared
their classification accuracies with the TrSPM. So, it would
be a fair comparison if we compare our proposed method
(RRP with GWF) in terms of classification accuracy with the
existing popular methods with reference to the TrSPM based
on the databases we have considered in this paper. These
comparisons are given in Tables 4, 5, 6, 7 for Scene Cate-
gories, 21 Land Use, Caltech 101 and Caltech 256 databases
respectively and by observing these tables, we can conclude
that proposed method outperforms all the other compared
methods.

D. IMAGE RETRIEVAL
In this section, image retrieval results are shown in terms of
mean average precision (MAP) values and recall-precision
curves. Retrieval performances are shown to compare the
effectiveness of RI-SPMs with TrSPM. Individual images
are used as a query to retrieve similar images from the
corresponding database. Image-level descriptors (pyramid
of histograms) of query image find the similarity with the
image-level descriptors of the database images using (2).
For the sake of simplicity, to apportion the contribution of
similarity scores obtained from each level to the final sim-
ilarity score, only GWF is used as it is already proven that
GWF performs better compared to CWF. For the experi-
ment, each image in the database is used as a query to
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TABLE 3. Comparison of classification accuracies (%).

TABLE 4. Comparison of classification accuracies (%) on Scene
categories database.

TABLE 5. Comparison of classification accuracies (%) on 21 Land use
database.

TABLE 6. Comparison of classification accuracies (%) on Caltech
101 database.

TABLE 7. Comparison of classification accuracies (%) on Caltech
256 database.

retrieve the rest of the images from the individual databases.
MAP and recall-precision curves are used here to evaluate
the image retrieval performances. To obtain the MAP and
recall-precision curves, for each query, the top k images are
considered.

Table 8 shows the MAP values for the top k retrieved
images. Also, Figure 10 shows the recall-precision (R-P)
curve for Rotated Scene Categories database. To avoid
redundancy, R-P curves are not shown for other databases.
However, they follow the similar trend as Figure 10. From
the analysis of MAP values and R-P curves, it is clear
that irrespective of databases, RI-SPMs perform better than
TrSPM. Furthermore, for the Rotated Scene Categories and
21 Land Use database, the performance gaps are broader
between RI-SPMs and TrSPM compared to the other three

FIGURE 10. Recall-Precision curve on rotated scene categories database.

FIGURE 11. Intra-class images from scene categories database exhibit
rotational behaviour.

databases. This is because the images of Rotated Scene Cat-
egories and 21 Land Use databases are affected by rotation
and RI-SPMs effectively dealt with the rotational issue that
TrSPM failed to do.

E. QUALITATIVE ANALYSIS
It can be observed from the result analysis that the per-
formance of three RI-SPMs is consistently higher than the
TrSPM for all the databases considered here. RI-SPMs are
expected to perform better for Rotated Scene Categories
and 21 Land Use databases. In contrast, for the other two
databases, RI-SPMs also perform better than TrSPM. This
is because some classes from these databases contain a cou-
ple of images with similar objects but the objects exhibit
rotational behaviour. For example, consider sample images
in Figure 11 from the Scene Categories database where two
images from (a) ‘Living room’ and (b) ‘Office’ classes are
shown. The images from the ‘Living room’ class contain
a ‘couch’, and with respect to the centre of the image ‘couch’
positions are almost 180 degrees apart from each other. The
same thing happens to ‘Office’ class images where ‘com-
puter’ is the object of concern. Therefore, RI-SPMs have
always performed better than TrSPM.

Here, with the help of a retrieval example, the effectiveness
of RI-SPMs are further analysed. Specifically, an image,
which has a ‘storage tank’ as the distinct object, from 21 Land
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TABLE 8. Comparison of MAP (%) based on top k retrieved images.

FIGURE 12. Retrieved images based on a query.

Use database is used as the query to retrieve images using
three RI-SPMs as well as TrSPM. The retrieval results are
provided in Figure 12 where the top 6 retrieved images are
shown. Based on the relevance with the query, the retrieved
images are labelled accordingly. The query image is rotated
by 180 degrees and used as one of the database images which
can be also retrieved by the query image. The motivation
for rotating the query image and use it as a database image
is to test the effectiveness of three RI-SPMs and TrSPM
by investigating whether the rotated version of the query
image is retrieved by any of the SPMs or not. As expected,
Figure 12 clearly shows that, compared to the three RI-SPMs,
TrSPM performs worst as no image with ‘storage tank’ is
retrieved. Specifically, within the top 6, retrieved images
using TrSPM, the rotated version of the query is not found.
Whereas, the rotated version of the query is retrieved by all
the three RI-SPMs as the top-ranked image.

The classification accuracies and the retrieval perfor-
mances for each of the three RI-SPMs show a consistent
trend for all the databases. RRP is based on concentric rect-
angular rings and CORP and CIRP are based on concentric
circular rings. Although the three RI-SPMs perform better
than the TrSPM, RI-SPM with CIRP performs worse. This is
because, when an image is partitioned using CIRP, some parts
(corner parts) of the image are not considered from Level 1
onwards and in some cases, the content not captured within
the circular rings may play an important role to characterise
that image. Therefore, the image representation using CIRP
carries less information and results in lesser performance. The
performances of RI-SPMs structured with RRP and CORP
are comparable. The dense patches onwhich SIFT descriptors
are extracted are of square-shaped. Therefore, theoretically,
RRP which is based on rectangular concentric rings is more
appropriate to build an RI-SPM. Thus, RRP is our recom-
mended approach.

VII. CONCLUSION
In this paper, the performance of spatial pyramid matching
is enhanced. The three RI-SPMs investigated are robust to
any kind of rotational changes that occurred in an image and
perform better than the TrSPM. Among the three RI-SPMs,
the one built with RRP is selected further to work with. Our
proposed weight function, GWF assigns appropriate weights
to the similarity scores obtained at each level of RI-SPMs.
Our experiment results show that GWF apportions the simi-
larity scores obtained from each SPM level, more accurately
than that of CWF. Since SPM is widely used, our proposed
improvement will have a significant positive impact on a
wider number of applications.
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