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ABSTRACT In this paper, automatic extraction of multi-context and multi-scale land use/land cover
vegetation from high-resolution remote sensing images is tackled, aiming to solve typical challenges in
classifying remote sensing images at a pixel level. To solve small inter-class differences and large intra-
class differences between the vegetation and background, we introduce a vegetation-feature-sensitive focus
perception (FP) module. Considering the intrinsic properties of vegetation objects, we established an
adaptive context inference (ACI) model under a supervised setting that includes a context model to represent
relationships between a center pixel and its neighbors under semantic constraints, as well as the spatial
structures of vegetation features. Comparative experiments on the ZY-3 and Gaofen Image Dataset (GID)
datasets demonstrate the effectiveness of our proposed automatic vegetation extraction model against the
baseline Deeplab v3+ model. Taking precision, kappa coefficient, mean intersection over union (miou),
precision rate, and F1-score as the evaluation indexes, the results showed an improvement in the precision
by at least 1.44% and miou by 2.47%, over the baseline Deeplab v3+ model. In addition, the ACI module
improved the precision and miou by 2% and 3.88%, and the FP module improved the precision and miou
by 1.13% and 1.65%. These results and statistics of these comprehensive experiments illustrated that our
adaptive and effective vegetation extraction model could satisfy different requirements of land use/land cover
mapping applications.

INDEX TERMS Context inference, focus perception, high-resolution remote sensing images, land use, land
cover, image segmentation, vegetation mapping.

I. INTRODUCTION
A. MOTIVATION AND OBJECTIVE
Currently, heterogeneous high-resolution remote sensing
images (HRRSI) acquired from different geographical areas
promote the development of large-coverage and multi-
temporal land use/land cover mapping. Particularly, the auto-
matic extraction of vegetation using the HRRSI dataset,
can be used to overcome problems caused by deteriorating
environmental quality [1], [2], the loss of prime agricultural
lands [3]–[5], the destruction of important wetlands, and
so on [6]–[9]. However, classification of HRRSI is exposed
to new challenges and potentials in different applications,
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such as urban planning, precision agriculture, and resource
management.

We investigated vegetation land use/land cover mapping
problems as well as their related challenges. Land cover com-
monly represents the physical properties of a land’s surface,
while land use corresponds to the activities or functions for
which humans utilize land, which are inherently related, but
are nevertheless conceptually distinct [10]. Therefore, images
are always ambiguously classified base on land use criterion
rather than uniquely classified base on land cover criterion
during mapping. However, to satisfy requirements to infer the
land properties for land use or land cover applications, it’s
indispensable to combine heuristic, empirical, or physically-
based models integrated with ground-knowledge or user
interpretation [11]. Diverse imaging conditions such as

21036 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1324-8430
https://orcid.org/0000-0002-3090-2406
https://orcid.org/0000-0002-6741-6815
https://orcid.org/0000-0003-4349-0460
https://orcid.org/0000-0002-4315-024X
https://orcid.org/0000-0003-1430-653X


Z. Zhan et al.: Vegetation Land Use/Land Cover Extraction

FIGURE 1. Illustration of the ZY-3 dataset. (a), (b), (c) and (d), (e), (f): vegetation examples in
mountainous and urban areas, respectively; (g), (h), (i) and (j), (k), (l): binary labels in mountainous
and urban areas, respectively.

photographic distortion, variations in scales, and changes of
illuminations [9] affect HRRSI datasets. In the meantime,
there exists diverse patterns of spectral reflection, temporal
changes, and spatial distributions of vegetation objects repre-
sented bymultiple spatial positions, sizes, shapes, and mutual
relationships [8]. Thus, it is necessary to analyze the attributes
of images before conducting vegetation extraction.

Based on shape, size, boundary, spatial context relation-
ships, and seasonal changes in vegetation, we classify veg-
etation objects in images into mountainous areas, urban
areas and plain areas and describe them according to their
surroundings and location. Taking Figure 1 for example,
forest and cultivated land with different levels of cover-
age in mountainous (Figure 1a, 1b, and 1c) and urban areas
(Figure 1d, 1e and 1f), exhibits complex and confusing spec-
tral, shape, and texture attributes. Forest and cultivated
lands in mountainous areas have irregular geometric shapes
with a large coverage, with different spectral reflectance
in shady and sunny parts. Cultivated land in urban areas,
however, is relatively fragmented with imprecise boundaries.
Figure 2 shows cultivated land in plain areas containing reg-
ular geometric shapes with smooth and delicate textures,
including long stripped fields, small roads, and canals without
typical vegetation features. In Figure 2 vegetation (e.g. farm-
land, forest, meadows) and non-vegetation (e.g. eutrophic
waters) objects possess similar spectral responses in the same
image, which are hardly distinguishable. The spectral hue
value of vegetation varies with soil, humidity, crop type and
changes seasonally, although textures and shapes in themulti-
temporal images almost never change. Therefore, intra-class
differences sometimes may be large and inter-class differ-
ences may be small. This phenomenon together with intrin-
sically complicated spatial distribution patterns of vegetation
objects make vegetation extraction challenging [12].

To solve the problems evident in the Figure 1 and
Figure 2 examples, Dusseux et al. [13] used a time series of
HRRSI to precisely identify land cover and land use classes
at the field scale for inter-annual and intra-annual grassland
monitoring in agricultural areas. This will also be useful in
change detection applications [14]. Furthermore, data fusion
based on temporal series from Synthetic aperture radar (SAR)
and optical images are widely used [15]–[19]. Optical images

FIGURE 2. Illustration of the Gaofen Image Dataset (GID) [8]. (a), (e)
and (c), (g): lake and farmland areas around Wuhan, Hubei Province,
acquired on September 2, 2015 and June 26, 2016, respectively; (b),
(f) and (d), (h): corresponding multi-class labels (The green is farmland,
the red is building, and the black is unknown areas).

capture chemical, physical, and biological attributes of
objects, while radar images reflect the shape, textural, struc-
tural, and dielectric properties. Consequently, methods using
information from different sources will increase the discrim-
inability of land cover/land use objects.

Besides, improvements in the spatial resolution simplify
the mixed pixel problem inevitable in standard multi-spectral
image processing. However, it also makes the problem of
high intra-class and low inter-class variability more serious,
which in turn involves a high level of classification errors.
Therefore, a tradeoff between the spatial and spectral reso-
lution should be considered [20], [21]. Methods integrating
spectral and spatial information have already been verified
as useful [22]–[24]. We inferred that integrating spectral and
spatial context informationmight more accurately distinguish
between various types of vegetation and other land use/land
cover features.

Hence, HRRSI classification methods became a hot
research direction. Ma et al. [25] developed a detailed review
of supervised methods for land cover mapping approaches
in land use and land cover classification. And deep learning
methods are also used for classification of remote sensing
images [26]–[28]. Zhu et al. [29] developed a detailed review
of deep convolutional neural networks (CNNs). As we know,
Traditional and deep learning-based methods have revealed
their widespread usage in land use classification.

Therefore, we introduce several typical deep learning
methods aimed at solving semantic segmentation task for
public benchmark datasets. Up to now, several benchmarks
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datasets for evaluating the land use/land cover mappingmeth-
ods have been proposed [8], [30], [31], but these still cannot
fully satisfy the requirements of practical land use/land cover
applications. To better solve the HRRSI vegetation extrac-
tion application, we reviewed HRRSI classification methods
based on deep learning tools below, which can provide some
insights for constructing our vegetation extraction model.

To make better use of contextual relationship of HRRSI,
there are many researches on public datasets. For ISPRS
datasets [31], Marmanis et al. [32] set up two separate paths
for intensity and range data with the same layer architecture,
verified the effectiveness of integration of several networks;
Volpi and Tuia [26] presented a CNN-based system relying on
a downsample-then-upsample architecture; Chen et al. [33]
proposed SNFCN and SDFCN frameworks with dense-
shortcut connection structures; Zhang et al. [34] proposed
dual dilated and non-dilated networks using multi-label man-
ifold ranking (MR) method and embedded single stream
optimization method, which illustrated the effectiveness of
spatial context modeling and position information in HRRSI
classification. For DeepGlobe datasets [30], Sun et al. [35]
proposed a stacked U-Nets with multiple output and a
hybrid loss function to address the problem of unbalanced
classes of training data for road extraction from satel-
lite imagery. Ghosh et al. [36] presented a dilated stacked
U-Nets. However, improvement can be realized if more
prior information such as orientation and texture might be
considered.

Particularly in vegetation classification, since vegetation
objects have relatively higher near infrared (NIR) reflectance
and low visible reflectance, a vegetation extraction technique
using conventional red and NIR bands to calculate the Nor-
malized Difference Vegetation Index (NDVI) index has been
well-established and applied for vegetation monitoring [37].
Furthermore, remote sensing of vegetation is realized using
passive sensors to obtain electromagnetic wave reflectance
information from canopies [38].

Apart from NDVI index, Li et al. [39] proposed a
temporal-attention CNN-GRU approach to differentiate sub-
tle phenological differences between crops. Zhong et al. [40]
developed DNNs to classify summer crops using EVI time
series images. Sidike et al. [41] proposed a deep progressively
expanding neural network for mapping different types of
vegetation objects including various crops, weeds, and crop
residues. Farooq et al. [42] used a Convolutional Neural Net-
work (CNN) to learn middle and high level spatial features
for weed classification. Zhang and Verma [43] presented
an adaptive texton clustering model and ANN classifiers
for segmenting vegetation from real-world roadside image
scenes. Chen et al. [44] proposed an improved CNN to extract
fine spatial distribution information. There are few vegeta-
tion context-reasoning models for fully automatic vegetation
extraction pipelines; particularly cases in which only several
bands of information are available. In addition, integrating
attention mechanisms with high-level and low-level semantic

information from features maps for vegetation extraction
remains to be studied further.

In our research, we integrated adaptive context
inference (ACI) and focus perception (FP) modules into
a semantic segmentation framework to automatically and
adaptively extract vegetation in HRRSI, based on the various
requirements of land use/land cover vegetation mapping
applications.

B. CONTRIBUTIONS
Tomake full use of limited information to solve the vegetation
land use/land cover problem, we extracted the agricultural
forestry land and urban green space from HRRSI, using our
proposed vegetation land use/land cover extraction method.
We also conducted comprehensive experiments on ZY-3 and
GF-2 HRRSI datasets to validate the effectiveness of our
proposed approach. In summary, the main contributions of
this paper are as follows:

(1) We introduced a FP module to extract sensitive fea-
tures from different types of vegetation and an integrated
attention mechanism containing high-level and low-level
semantic information to solve the problem of small inter-
class and large intra-class differences;

(2) We established an ACI model under a supervised set-
ting to satisfy the inference of spatial structure relations,
based on the data-driven pattern recognition methodol-
ogy;

(3) We conducted comparative experiments to analyze the
influences of different modules on vegetation extraction
results, as well as an ablation study and parameter sensi-
tivity analysis on ACI module, which finally gave some
conclusions about different modules’ influences.

The remainder of the paper is organized as follows. The
existingwork is described in Section 2, including the develop-
ment of semantic segmentation, structural reasoning, and the
attention mechanism. The baseline model Deeplab v3+ [45],
the ACI module, and the FP module of our proposed method
are described in Section 3. The experimental setup, dataset
description, and our evaluation metrics are presented in
Section 4. The vegetation extraction results and experimental
performance metrics for full-image and difficult local areas
on ZY-3 and GF-2 HRRSI are illustrated in Section 5 and
Section 6. Section 7 concludes the study.

II. RELATED WORK
A. DEVELOPMENT OF SEMANTIC SEGMENTATION
Fully convolutional neural network-based approaches have
made remarkable progress in semantic segmentation tasks.
Long et al. [46] conducted a deconvolution operation and
pre-defined parameters to fuse feature maps from differ-
ent intermediate layers for final prediction refinement, but
this could not simultaneously aggregate local and contex-
tual information in convolutional featuremaps. Subsequently,
Noh et al. [47] learned the parameters of deconvolution layers
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from training data in an end-to-end system. Wang et al. [48]
proposed dense up-sampling convolution (DUC) to directly
predict the full-resolution probability map by convolution.

To alleviate the low resolution of feature maps, Yu and
Koltun [49] conducted dilated convolution to increase the
resolution of CNN feature maps and improve semantic seg-
mentation accuracy. Yu et al. [50] identified the gridding
problems of dilated convolution and proposed hybrid dilated
convolution (HDC) to remove abnormal artifacts. PSPNet
[51] and DeepLab system [52], [53] perform spatial pyramid
pooling at different gird scales or dilation rates (called Atrous
Spatial Pyramid Pooling, or ASPP). However, Chen et al. [54]
pointed out that the pyramid poolingmodule in PSPNet might
lose pixel-level localization information. Moreover, dilated
convolution calculated sparsely in an ASPP module might
cause grid artifacts. The existence of objects at multiple scales
and the resolution reduction of a feature map remain to be
further investigated.

B. STRUCTURAL REASONING
To incorporate structural reasoning into semantic segmenta-
tion, conditional random field (CRF) methods have been pro-
posed that consider image segmentation predictions among
the highly correlated pixels [54]–[57]. To introduce prior
information into semantic segmentation, Chen et al. [54]
used a CRF to model the compatibility between the predicted
labels. Liu et al. [58] pointed out that a simple global aver-
age pooling operation significantly improves the accuracy.
Pinheiro et al. [59] proposed DeepMask to utilize global
information through a fully connected layer. Zhao et al. [51]
combined separable convolution operation using a pyramid
pooling module in PSPNet to approximate large convolu-
tion kernels with an enlarged receptive field. Liu et al. [60]
incorporated high-order relations and a mixture of label con-
texts into a Markov Random Field, this proposed ParseNet
delivers accurate performance results, which can represent
various types of pair-wise functions. Zheng et al. [57] inte-
grated the desirable properties of both CNNs and CRFs,
and proposed CRF-RNN to express a CRF as a recurrent
neural network (RNN) and plug it into a deep convolutional
neural network (CNN) as an end-to-end system. Marvin and
Cipolla [61] proposed reformulating the inference model
in terms of convolutions, which solved the slow training
and inference speeds of CRFs, as well as the difficulty
of learning the internal CRF parameters. In this way, all
the parameters of a convolutional CRF could be optimized
through back propagation, although a more sophisticated
CRF architecture might capture additional global context
information. Deeplab v3 + encodes multi-scale contextual
information at multiple rates and effective field-of-views in
the spatial pyramid poolingmodule. and also captures sharper
object boundaries by gradually recovering spatial infor-
mation through the encoder-decoder structure [45]. Effec-
tive spatial context inference models remain to be studied
further.

C. ATTENTION MECHANISM
An attention mechanism captures visual feature dependen-
cies in the spatial and channel dimensions. Specifically,
approaches adopting an attention mechanism usually consist
of two stages: descriptor extraction and feature aggregation.
For a given size of image, the descriptor extraction stage
extracts convolution feature maps expressed as C-dimension
andHW-size descriptors, each of which captures local details,
but lacks a global view. The feature aggregation stage often
uses different pooling strategies to aggregate local and con-
textual information to generate another set of descriptors.
Finally, each descriptor contains global contextual informa-
tion, as well as local details.

Recently, many attention models have been proposed
for various tasks. Squeeze-and-excitation networks model
channel-wise relationships to enhance the representational
power of a neural network [62]. Non-local neural networks
have been employed to calculate a correlationmatrix between
each spatial point-pair in a feature map to guide dense con-
textual information aggregation [63]. A self-attention mecha-
nism was first introduced in DANet as a position and channel
attention module to model spatial and channel interdepen-
dencies and the rich contextual dependencies among local
features, which significantly improved segmentation results
[64]. Therefore, to tackle the small inter-class differences
and large intra-class differences caused by the deformation of
object features and interference with noise, we can strengthen
the distinguishability of object and background features,
as well as the similarity within the same category.

III. METHODOLOGY
As shown in Figure 3, the proposed approach consists of two
novel components, a FP module to extract sensitive features
from different types of vegetation and an ACI module to
refine the boundary location of extracted segments in the
framework of a fully convolutional neural network. The upper
part of our framework shows the integration of the Deeplab
v3+ model and FP module. The bottom half of the figure
illustrates how the ACImodule is embedded into the semantic
segmentation framework. Furthermore, the original baseline
Deeplab v3+model is introduced in Section 3, part A, details
of the FP module and ACI module are illustrated in Section 3,
part B and Section 3, part C.

A. DEEPLAB v3+ MODEL
Deeplab v3+ [45] is one of the recent state-of-the-art
approaches based on the feature net (e.g., ResNet101 [65]).
We refer to its architecture and set the output resolution of the
feature net ‘‘Res4’’ in Figure 3 as one in sixteen of the original
image size. Since each descriptor in ‘‘Res4’’ lacks contextual
information, it applies the ASPP module on ‘‘Res4’’ and gets
new feature maps fASPP. To incorporate global information,
it also applies global average pooling, 1 × 1 convolution,
and bilinearly up-sampling on ‘‘Res4’’ in sequence to get an
image-level feature.
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FIGURE 3. Flowchart of the ACI and FP vegetation land use/ land cover extraction method.

In this paper, to model the relationships between
the center pixel and its neighbors under semantic con-
straints as well as different spatial structures of vege-
tation features, we considered the intrinsic property of
vegetation objects and established an ACI model, inte-
grating with the ASPP module and the global aver-
age pooling into an encoder-decoder framework, shown
in Figure 3.

B. FOCUS PERCEPTION
Taking the Resnet [65] as the backbone, our vegetation
extraction model is designed according to the configuration
in Deeplab v3+ [45], which consists of an encoder part,
decoder part, ASPP part, and global image-level feature
extraction. The ASPP module used in the Deeplab v3+ [45]
extracts different scales of feature information to incorpo-
rate neighbor scales of context features, but cannot select
features channel-wise, as in SENet [62] and EncNet [66].
The original pixel-based scene context used to encode high-
dimensional representations may suffer from spatial resolu-
tion loss. Therefore, we adopted the attention mechanism
and spatial pyramid to extract precise dense features for
pixel labeling, and the whole flowchart of our FP module is
illustrated in Figure 4.

Since target scales of extracted vegetation are diverse and
fuzzy, we can excavate vegetation-sensitive attributes of dif-
ferent layers of neural networks. Through the feature pyramid
attention (FPA)module on top of the high-level output of fully
convolutional neural network architecture, we embedded dif-
ferent levels of context information, and combined the global
attention up-sampling module as the decoder module of the
segmentation model.

In detail, we applied channel reduction (CR) on low-level
image features (green solid lines) and attention-weighted
multiplication followed by global average pooling (GA) on

FIGURE 4. Illustration of the FP module.

the high image feature (brown solid lines), and then concate-
nated these global contexts and local contexts (range solid
lines) to learn the vegetation-sensitivity features (purple solid
line).We performed 3∗3 convolution on the low-level features
to reduce the channels of feature maps from CNN (CR)
and performed 1∗1 convolution with batch normalization
and ReLU non-linearity on the high-level features (GA),
and then multiplied the global context with the low-level
features to produce the weighted low-level features, which
were added with a gradually up-sampled global context.
To avoid too high computational burdens, we conducted a
global perception deconvolution operation on each decoder
layer to pay attention to vegetation-sensitivity features at a
pixel level after extracting high-level features from CNNs.
Then, the extracted global context of high-level features can
serve as guidance for low-level features to weight and select
category localization details.
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C. CONTEXT ADAPTIVE INFERENCE
When modeling the contextual information between the
actual land cover types, boundary confusion exists between
the vegetation feature and other features, so it is hard to obtain
accurate boundary location information. In the meanwhile,
the spatial distribution of vegetation is variable in different
images, as shown in the Figures 1 and 2. To solve this
problem, we model relationships between neighboring pixels
in the label space, and operate context inference during the
training stage. An ACI loss function is introduced to auto-
matically obtain segments respectful of spatial structures and
small details, inspired by the adaptive affinity field (AAF)
loss function [67]. The total loss function consists of the
unary cross-entropy loss (introduced by Deeplab v3+model)
and the ACI loss, which are denoted by Lunary and LACI ,
respectively [67].

S∗ = argmin
S

max
w

Lunary + LACI (1.1)

Firstly, to model the spatial structures with diversity in
size, shape, and context, we constructed a context model to
represent relationships between the center pixel and its neigh-
bors. Consequently, the ACI loss depend on the weighted
summation of the KL (Kullback-Leibler) divergence of both
the intra-class and inter-class part [67]:

LAAF =
∑
c

∑
k

(wbckL
bck
affinity + wbckL

bck
affinity)

s.t.
∑
k

wbck =
∑
k

wbck=1 and wbck ,wbck ≥ 0 (1.2)

L icaffinity =


L ibcaffinity=DKL (̂yj(c)||̂yi(c))

if yi(c) = yj(c)
L ibcaffinity=max{0,m− DKL (̂yj(c)||̂yi(c))}

otherwise


(1.3)

However, for the intra-class and inter-class part,
we adopted inverse strategies.We expected that the intra-class
part would be as small as possible, while the inter-class part
was as large as possible. Lbckaffinity and L

bck
affinity have been defined

by [67], where wbck and wbck denote weight coefficient for
the non-boundary and boundary part, and m in (1.3) is the
threshold of KL divergence.

Secondly, to solve the intrinsic property of vegetation
objects whose spatial structure cannot be exhaustively
expressed in fixed patterns, we established an ACI model
under a supervised setting to make the segmentation network
adapt to the various sizes of different objects and satisfy the
inference of spatial structure relations based on a data-driven
pattern recognition methodology. In Figure 5, squares filled
with white or yellow stars, round rectangles, or squares are
neighboring pixels of the yellow or white hexagon center
pixel, with the size of 1, 2, and 3, respectively, each of
which contains eight corners. Since there are infinite relations
between the center pixel and its neighbors, we cannot list
all the patterns to provide a fixed representation, so it is

FIGURE 5. Illustration of reasoning process of ACI module with different
values of neighborhood size.

indispensable for our context model to adaptively implement
structure reasoning during the training stage.

In Figure 5, we illustrate two cases of ACI for the vegeta-
tion and background:
(1) The center pixel of the left one is yellow, and the majority

of neighborhood pixels of the first, second, and third
circle are the background (6 vs. 2), vegetation (5 vs. 3),
and vegetation (7 vs.1), so a vegetation object will be
misclassified as background if we only use an affinity
field of size 1. On the contrary, we can strengthen the
integrity of the vegetation object if we use an affinity
field of size 1, 2, and 3 and adaptively implement context
reasoning;

(2) As for the right one, the center background pixel is
denoted as a white hexagon and its majority neighbor-
hood pixels of the first, second, and third circle are back-
ground (6 vs. 2), background (7 vs. 1), and vegetation
(7 vs.1), so if we only choose size 3, we may misclassify
this object as vegetation.

Since updating the parameters of the network depends on
the back propagation of gradients, which can be calculated
by derivatives, we conducted a detailed analysis of the KL
divergence associated with the loss function and derivation
of differential formulas of the ACI loss function in terms
of variables p and q, which stand for the prediction and the
ground truth label, respectively.

We derived the first derivative of KL divergence as in Equa-
tion (1.4), and obtained Equation (1.5) and (1.6), in which p
and q stand for the distribution of two independent variables.

DKL(P||Q) = p log
p
q
+ p log

p
q

= p log
p
q
+ (1− p) log

(1− p)
(1− q)

p, q ∈ (0, 1)

(1.4)
∂f (p, q)
∂p

= log(
p
q
·
(1− q)
(1− p)

) (1.5)

∂f (p, q)
∂q

= −
p
q
+

1− p
1− q

(1.6)

Through analyzing Equation (1.5) and (1.6), when p and q
are dissimilar, we can draw the conclusions presented below:
(1) If p > q, then ∂f (p,q)

∂p > 0, ∂f (p,q)
∂q < 0, and we can

increase the p and decrease the q to make the difference
between p and q more obvious, leading to the KL diver-
gence being larger;

(2) If p < q, then ∂f (p,q)
∂p < 0, ∂f (p,q)

∂q > 0, and vice versa.
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Based on these proofs, we can verify the effectiveness of
KL divergence’s influence on the distinguishing of the two
distributions.

Furthermore, we can use the mathematical principle to
verify the influence of the ACI loss function [67] on the
boundary location accuracy’s improvement. We conducted
comprehensive experiments using different hyper parameters
of the loss function, to verify and analyze the parameters’
effects on the vegetation extraction performance.

IV. EXPERIMENTAL SETUP AND DATASET DESCRIPTION
A. IMPLEMENTATION DETAILS
Due to the limited GPUmemory and lack of finely-annotated
labels, we decided to trade-off the receptive field size in
favor of a larger batch size. We used the poly learning rate
policy and set the base learning rate as 0.001. We used the
Nadam Optimizer (Adam with Nesterov momentum) and
trained the network for 30,000 iterations, with a learning rate
of 2.5×10−4. To speed up the experiments for the validation
of ZY-3 datasets and GID datasets, we downsized the crop-
size to 256∗256 (512∗512) and batch-size to 8, so that a single
NVIDIA Quadro P5000 GPU and 16s Inter(R) Xeon(R) CPU
E5-2620 v4 @ 2.10 GHZ were sufficient for training. The
training iterations for all experiments can be further improved
by increasing the iteration number. Momentum and weight
decay were set to 0.9 and 0.0005, respectively.

For data augmentation, we adopted random mirroring and
random resizing between 0.5 and 2 for all datasets. We did
not upscale the logits (prediction maps) back to the input
image resolution; instead, we followed [45]’s approach by
down-sampling the ground-truth labels for training (in this
code, output_stride= 8). Since we aimed to obtain the differ-
ent modules’ impact on vegetation extraction, for inference,
we did not average the scores from left-right flipped and
multi-scale inputs (scales = 0.5, 0.75, 1, 1.25, 1.5, 1.75),
but set the down-sample ratio before feeding it into the ACI
module as 1/8, as [45] did.

B. DATASET DESCRIPTION
By comparing the features with different attributes of veg-
etation species in the images (ZY-3 and GF-2), we found
that the second-level vegetation classes were impossible to
distinguish accurately and vegetation was only classified into
agricultural and forestry land and urban green space. Agri-
culture and forestry land include cultivated land, garden land,
woodland, and grassland, whereas urban green space includes
artificial green space, nurseries, flower gardens, and ribbon
green trees, without further division.

1) ZY-3 DATASET
Experiment 1 used the ZY-3 multi-spectral images from
abroad and areas, including green, red, and near-infrared
bands, with a ground resolution of 5.8 meters. In detail,
the overseas images cover the northern part of Laos, the
Fengsali Province, and the German-Heidelberg area, and

contain various representative land use categories of vegeta-
tion, buildings, roads, bare soil, etc. The images are evenly
distributed, and the complexity of land cover types is lower
than that of the territory images. Images cover the northern
and southern areas of Qingdao, Changsha, Bohai, Harbin,
Hefei, etc., and contain land use categories of vegetation,
buildings, roads, and water bodies. Additionally, the images
have abundant spectral information of different land cover
types and obvious spectral information on vegetation.

We automatically annotated several ZY-3 remote sensing
images using different colors (red for vegetation and black
for background). We created vegetation datasets in which
the vegetation labels covered farmland, forest, and meadows,
as well as other sub-classes of vegetation defined in the Geo-
graphical National Survey Standard [12]. The background
type covered build-up, waters, roads, and other land cover
types without obvious vegetation features in images. Finally,
we made binary datasets as follows: 27108 image patches of
the size 256∗256 were employed for training and 6778 for
validation. An example of the dataset is shown in Figure 1.

2) GID DATASET
In this paper, we use partial GF-2 satellite images from the
released GID dataset [8] to train an automatic vegetation
extraction CNN model, only including red, blue and green
bands (We did not use the infrared band as ZY-3 did due
to the lack of available band data). In the GID dataset,
five representative land use categories are annotated: built-
up, farmland, forest, meadow, and waters. These land use
categories are labeled with five different colors: red, green,
blue, cyan, yellow, and blue, respectively. Areas that do not
belong to the above five categories or cannot be artificially
recognized are labeled as unknown, and are represented using
a black color. We used the multispectral images following
the same strategy as [8], ignoring the unknown area and only
computing the accuracy of the deterministic area.

We created a vegetation binary label dataset for
129 GF-2 images, in which vegetation types covered farm-
land, forest, and meadow and background types covered
built-up and waters. Considering the difference in the spatial
resolution between ZY-3 (5.8m) and GF-2 (1m), we adopted
larger image patch for GF-2 and smaller image patch for
ZY-3, to make the real land-cover area of each image patch
consistent. In total, we chopped 21,672 image patches of
the size 512∗512 without overlapping areas for training and
5418 for validation. An example of the dataset is shown
in Figure 6.

Considering the inconsistence in bands used to train the
vegetation extraction model, the model trained for ZY-3 is
not available on the GID dataset, and vice versa.

Because the image size of HRRSI is usually 3–4 times the
size of indoor/outdoor images, the HRRSI inevitably have to
be cropped into little patches before feeding them into the
network. Besides, we adopted an efficient inference pipeline
to extract vegetation and significantly relieve the boundary
effect caused by the cropping and sticking process. Here,
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FIGURE 6. Illustration of GID training and validation dataset. The first,
second, and third row illustrates the binary label, multi-class label, and
original images, respectively.

FIGURE 7. Illustration of the voting strategy used for sticking little
patches into a full image.

we present an example to illustrate the weighted average
strategy’s efficiency in eliminating the stitching seam caused
by stitching images. In Figure 7, we illustrate three adjacent
probability maps’ weighted average sticking process, where
the numbers in squares represent the statistical overlapped
times. Instead of the sticking strategy where the back pre-
dicted label covers the previous predicted label, we obtained
the predicted probability map of each little image patch, and
conducted a voting strategy which used the weighted average
probability result as the final prediction. The weight matrix
was composed of the statistical times standing for overlapped
levels in order to eliminate the boundary effects caused by the
disagreement of adjacent predictions.

C. EVALUATION METRICS
We assessed the experimental results with the Kappa coef-
ficient (Kappa), overall accuracy (OA), and class-specific
accuracy. The accuracy rate indicates the number of true pos-
itive samples in the samples that are predicted to be positive,
which is also known as the precision rate.

precision rate = TP/
(TP+ FP) (1.7)

The recall rate indicates how many positive examples in
the samples are predicted correctly.

recall rate = TP/
(TP+ FN ) (1.8)

F-Measure is the weighted harmonic average of the preci-
sion and recall rate. In our research we use F1-score, which
is derived from F-measure.

F1 = Fα2=1 =
(α2 + 1)P ∗ R
α2(P+ R) α2=1

=
2PR

(P+ R)
(1.9)

V. EXPERIMENTAL ANALYSIS OF THE ZY-3 DATASET
AND ABLATION STUDY
In this part all experiments are based on original ZY-3 test
images. To verify the effectiveness of methods integrated
with the ACI module under different parameter configura-
tions and the FP module, we showed the results of baseline
and different methods in Figure 8. As for the ACI module,
we set comparative experimental groups to investigate the
influences of theACImodule on vegetation extraction results.
Configurations of these groups are shown in Table 1. In this
table, ‘‘Margin value’’ means the margin used to calculate the
boundary loss value between pixels with different categories,
denoted as m (in equation 1.3) and set as 3, 2, 1, or 0.5;
‘‘learning rate ratio’’ means the ratio between parameters’
learning rate from traditional network and the ACI module,
set as 1:1 or 1:0.1; ‘‘kernel size’’ means the size of the
ACI module, set as ‘‘s3’’ and ‘‘s357’’. ‘‘s3’’ means radius
distance’s values of 1 (equal to kernel size 3) and ‘‘s357’’
means we averaged ACI losses of radius distance values of 1,
2, and 3 (equal to kernel size 3, 5 and 7).

TABLE 1. Definition of methods with or without an ACI module and FP
module (in accordance with Figure 8, 9 and 10).

To further analyze the detailed qualitative vegetation
extraction of two challenging image patches extracted
from the full test image, we illustrate their results in
Figures 9 and 10, and reported statistical evaluation indexes
of methods in Table 3 and 4, whose arranged sequence is also
explained in Table 1.

For land use and land cover classification, land use areas
are always more complete and based on a global perspective,
while land cover areas are often incomplete and based on
local details. Because land use is mainly based on human’s
utilization, and land cover corresponds to physical properties,
which has been mentioned in Section 1.

In this section, we split the detailed analysis into three
parts. We analyzed the effectiveness of the ACI module under
different parameter configurations in part A and FP module
in part B. In part C, we analyzed the interaction between these
two modules.
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FIGURE 8. Complete vegetation extraction results of different methods based on the ZY-3 dataset (Yue Nan): (a) - (i) are results from
methods described in Table 1; (j) parallelepiped classification method [68]; (k) ground truth label; (l) original image.

A. PARAMETER ANALYSIS OF THE ADAPTIVE CONTEXT
INFERENCE MODULE
From a global perspective, though the baseline’s over-
all performance in Figure 8(g) is relatively acceptable,
in many cases, it may misclassify buildings and roads in
urban areas into vegetation, as well as increasing intra-
class difference and decreasing inter-class differences. Com-
paring Figures 8(f) and 8(i) with Figure 8(g), the ACI
module can improved the baseline’s performance in such
situation. Furthermore, we compare the traditional paral-
lelepiped classification method proposed by Q. Liu and
M. Tang [72] in Figure 8(j) with our vegetation extraction
result in Figure 8(f), which the former cannot avoid this
phenomenon either described above. In Figures 8(a)–8(f),
the results of methods with ACI module under different
parameter configurations exhibit refinement of the segments’
boundary, such that different requirements of land use/land
cover applications can be satisfied.

1) RATIO BETWEEN PARAMETERS’ LEARNING RATE
In Table 2-4, comparing the statistics of ‘‘a’’ and ‘‘c’’ con-
figurations for the full-images in Figures 8(a) and 8(c),
little patch 1 in Figures 9(a) and 9(c), and little patch 2
in Figures 10(a) and 10(c), the precision, kappa coefficient,
miou, precision rate, and F1-score of method under ‘‘a’’
configuration are relatively higher than those ofmethod under
‘‘c’’ configuration.

This indicates that a higher ratio (1:1) between the param-
eters’ learning rate from traditional network and the ACI
module can obtain a more complete boundary compared
with the lower one (1:0.1). This infers that a higher ratio
leads to a greater emphasis on the learning of the ACI
module and directs the vegetation model to predict more
complete segments under semantic constraints in the label
space, making it more suitable for the land use principle,
while the smaller ratio is more suitable for the land cover
principle.
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FIGURE 9. Vegetation extraction results of difficult image patch 1 from ZY-3 dataset (Yue Nan). (a) - (i) are results from methods described in Table 1;
(j) ground truth label; (k) parallelepiped classification method [68]; (l) difficult area 1 cropped form original test image.

FIGURE 10. Vegetation extraction results of difficult image patch 2 from ZY-3 dataset (Yue Nan). (a) - (i) are results from methods described in Table 1;
(j) ground truth label; (k) parallelepiped classification method [68]; (l) difficult area 2 cropped form original test image.

2) MARGIN TO CALCULATE THE
BOUNDARY LOSS VALUE
For areas highlighted by a yellow circle, the distribu-
tion of vegetation shows a linear shape along with the
road. In terms of the abundancy of details and complete-
ness of segments, Figure 9(d) is better than Figure 9(e)
and worse than Figure 9(b). Since margin values for
Figures 9(b), 9(d), and 9(e) are 2, 0.5, and 1, respectively,
a smaller margin value may cause the vegetation extrac-
tion results to be more scattered and less complete, lead-
ing to a reduction in the statistics of the ACI module in
terms of the land use principle. As for Table 2-6, when
comparing the statistics of ‘‘b’’, ‘‘d’’, and ‘‘e’’ configu-
rations for the images in Figures 8-10(b), 8-10 (d) and
8-10 (e), configuration ‘‘d’’ (m = 0.5) and ‘‘e’’ (m = 1)
exhibit a relatively worse performance than ‘‘b’’ (m = 2).

Here we can speculate this phenomenon based on the
derivation formulas in Section 3.4, the ACI constraint calcu-
lated between pixels of different label categories is designed
to distinguish the pixel label categories on both sides of the
foreground and background targets. Given smaller value of
parameter m in Equation (1.3), the value in equation (1.3) that
used to impose boundary punishment of the inconsistency of
the center pixel and the neighbor corner pixel in the label
space will be clipped to zero. These phenomena will make the
learning about these two kinds of parameters invalid, hence,
the network will not excessively rely on the effects of the ACI
module. Therefore, when we consider the land use principle,
a relatively high value of margin m is more suitable. On the
contrary, a relatively low value of margin m may lead to
the vegetation predictions more scattered on the land cover
principle.
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TABLE 2. Overall statistics of predictions of different methods (in
accordance with Figure 8).

TABLE 3. Overall statistics of predictions of different methods (in
accordance with Figure 9).

3) SIZE OF THE ACI MODULE
For areas consisting vegetation and buildings (white circle
and green rectangular areas), the baseline in Figure 9(g) and
parallelepiped classification method in Figure 9(j) misclas-
sify most of the background as vegetation. The integrity of
the vegetation boundary can be arranged from low to high as
Figures 9(f), 9(a), 9(d), 9(b), 9(e), 9(c), and 9(g), so improve-
ment of the baseline’s performance can be verified effectively.
For areas highlighted by yellow and white circles as well
as green rectangular areas, when the boundary between the
foreground and background objects is ambiguous, a wide
transition bond exists in these two objects with different
categories.

For areas consisting of vegetation and background of roads,
water, and buildings (blue rectangular areas), Figure 10(a)’s
result is more similar to the land use principle and the bound-
aries are more complete, while Figure 10(c) is more compati-
ble in terms of the land cover principle. For background areas
consisting of linear roads highlighted by white and green

TABLE 4. Overall statistics of predictions of different methods (in
accordance with Figure 10).

ovals, Figures 10(c), 10(f)’s results are more similar to the
original image in terms of land cover and others are more
consistent with the land use principle.

We can conclude that the optimal size of the ACI varies
with the size of the target to be extracted. By learning the
ACI constraint, we can guarantee label consistency between
the center pixel and the distant corner pixel. The collection
of pairwise bonds inside a segment ensures that all the pixels
are predicted for the same category and pushes network pre-
dictions on two pixels of different ground-truth labels apart
to obtain clear segmentation boundaries.

As for Table 2-4, when comparing the statistics of con-
figuration ‘‘a’’ (s = 3, 5, 7) and ‘‘b’’ (s = 3), ‘‘a’’
achieves a relatively better performance than ‘‘b’’. In other
words, a larger radius distance will give rise to enhance-
ment of the pixel consistency in the label space. In this
situation, the ACI model identifies obvious boundaries,
while ambiguous boundaries or those with less details
may be ignored. Therefore, the radius distance should be
adjusted according to the considered object, and empirically,
the core size that can obtain the best performance is ‘‘s357’’,
means we need to averaged ACI losses of radius distance
values of 1, 2, and 3.

4) CONCLUSIONS ABOUT THE PARAMETER
CONFIGURATIONS
Because vegetation extraction results can be evaluated on
the basis of land cover, or land use standard, our adaptive
and effective vegetation extraction model can be applicable
to satisfy various requirements of real applications through
controlling the parameter configurations in Table 5.

B. EFFECTIVENESS OF THE FOCUS
PERCEPTION MODULE
In Table 1-4, we can verify the effectiveness of the FPmodule,
comparing the evaluation indexes for Figures 8(g) and 8(h),
Figures 9(g) and 9(h), and Figures 10(g) and 10(h).
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FIGURE 11. Full-image vegetation extraction results of different methods based on the GID dataset (E114.0, N30.5 in Wuhan, Hubei Province, China).
(a) Original image; (b) ground truth label; (c) - (f) are results from methods described in Table 6.

TABLE 5. Analysis of parameter configurations.

The configurations with ‘‘g’’ are better than the configu-
rations with ‘‘f’’. Taking Figures 8(g) and 8(h) as exam-
ple, the method with the FP module improve the baseline’s
evaluation indexes by 1.13%, 2.12%, 1.65%, 6.83%, and
0.94%, respectively, due to its ability to place an emphasis
on the evident spatial position and channel and make full
use of effective information, without causing too high com-
putational burdens. It can consequently improve the vegeta-
tion extraction results of images with in-evident vegetation
features.

C. ANALYSIS OF THE INTERACTION
BETWEEN TWO MODULES
From statistical viewpoint, Table 2-4 illustrated overall statis-
tics of methods with or without an ACI module and FP
module, and the ground-truth labels are provided under the
land cover principle. Taking the precision, kappa coefficient,
miou, precision rate, and F1-score as the evaluation indexes,

methodwith the ACImodule and the FPmodule in Figure 8(i)
can improve the baseline in Figure 8(g) by 1.44%, 2.79%,
2.47%, 5.81%, and 1.4%, respectively. For the ACI module
under the ‘‘f’’ configuration in Figure 8(f), it can improve the
baseline by 2%, 4%, 3.88%, 4.72%, and 2.17%, respectively,
even though the recall rate is relatively decreased. For the FP
module alone in Figure 8(h), it can improve the baseline’s pre-
cision, kappa coefficient, miou, precision rate, and F1-score
by 1.13%, 2.12%, 1.65%, 6.83%, and 0.94%, respectively,
while decrease the recall rate by 5.32%. In summary, except
for the recall rate, all of the evaluation indexes are improved
when using methods with ACI module or FP module.

Although the effectiveness of the ACI module and the
FP module, the performance is not likely to increase when
integrating these two modules in terms of all measures, as we
can find the evaluation indexes for Figures 8(f), 9(f), and 10(f)
is higher than those for Figure Figures 8(i), 9(i), and 10(i)
which is explained as follows. And the same phenomenon can
be found for Figure 9(f) and 9(i) while the evaluation indexes
for Figure 10(f) are lower than those for Figure 10(i). Thus,
we can conclude that the integration between the ACI module
and the FP module are not always positive, which we try to
analyze as follows.

The FP module focuses on vegetation features while
the ACI model focuses on the integrity and regularity of the
boundary. These two modules can dependently improve the
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FIGURE 12. To illustrate the effectiveness of the ACI module. (a) original
image of GID dataset (E114.0, N30.5 in Wuhan, Hubei Province, China);
(b) ground truth label; (c) - (f) are results from methods described
in Table 6.

TABLE 6. Definition of methods with or without an ACI module and FP
module.

overall accuracy in particular aspects, but may conflict with
each other when used together. However, based on the statis-
tics of the results compared with those of the baseline, the
data are still valid and consistent with previous conversations
on qualitative detail analysis.

VI. EXPERIMENTAL ANALYSIS OF THE GID DATASET
In this section, we aim to verify the effectiveness of our
methods on GID dataset. This section is split into three parts,
global and local vegetation results are shown in Figure 11
(Part A) and Figure 12 (Part B), respectively, and we illus-
trate the global statistics of methods in Table 7 (Part C).
Totally, the arranged sequence of Figures 11 and 12 as well
as Table 7 is explained in Table 6.

A. FULL-IMAGE VEGETATION ANALYSIS
OF THE GID DATASET
For the GID dataset, we took experimental analysis of the
ZY-3 dataset as a guideline, in order to choose appropriate
parameter configurations of the ACI module and evaluate the
vegetation extraction results. Based on different comparative
experimental groups of the ZY-3 dataset, we finally chose the
learning rate ratio value of 1:0.1 and 1:1, themargin value of 3
and the size value of 3, 5 and 7.

In Figure 11(c), the vegetation extraction results of the
baseline in some complicated urban areas are not completely

correct compared with the land use ground truth label,
and some omission areas (especially the left bottom part)
exist, which can be improved to some degree through
adding the FP module in Figure 11(f) and ACI module in
Figures 11(d) and 11(e).

B. DIFFICULT AREA’S VEGETATION EXTRACTION
OF THE GID DATASET
In Figure 12, further detailed qualitative vegetation extraction
analysis of four image patches are shown. The sequence of
these little images corresponds to Table 6. Through inter-
preting the vegetation extraction results of the difficult local
image patches extracted from the original test GF-2 HRRSI,
we can verify our proposed approach’s ability to improve the
performance of vegetation land use mapping, compared with
the baseline method.

From the local perspective, our vegetation results of these
difficult and challenging areas can better satisfy the require-
ments of land use or land cover applications. Taking the
baseline’s results in the third column for example, Figure 1(c)
illustrates scattered segments, the top part of Figure 2(c) is
omitted, and Figures 3(c) and 4(c) misclassify some building
and road objects into vegetation.

Besides, it is difficult for the baseline method to accu-
rately extract urban green space and urban grassland
in Figure 12 (2a) and (3a), which are intermingled with roads
and residential buildings in terms of their regular shapes and
textural features. Thus, it is necessary to model different
spatial structures of vegetation features, such as the size,
shape, and context.

After introducing a FP module, we extracted sensitive
features of different types of vegetation and decoupled the
evident features from the external features of vegetation, and
the problem of small inter-class differences and large intra-
class differences between vegetation and background could
be eliminated.

After constructing an ACI model, the integrity of pixels
with a consistent label category and the distinguishability of
pixels with different label categories improved, which can
be verified through comparing the results of the last two
columns with the third column in Figure 12. Taking vege-
tation binary classification for example, we can make full
use of the textural and shape information of non-vegetation
samples to improve the boundary location accuracy and then
indirectly improve the accuracy of the urban green space and
urban grassland extraction results.

C. STATISTICS OF THE GID DATASET
We have not reported the results of the method integrating the
ACI module and FP module. In Table 7, the overall accuracy
of the GF-2, the precision, kappa coefficient, miou, preci-
sion rate, recall rate, and F1-score are improved by 3.16%,
17.99%, 21.19%, 3.31%, 20.39%, and 16.63%, respectively,
under the ‘‘f’’ parameter configuration. As for the FPmodule,
it can improve the baseline’s precision, kappa coefficient,
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TABLE 7. Statistics of predictions of methods with or without an ACI
module (in accordance with Figure 11).

miou, precision rate, recall rate, and F1-score by 0.75%,
4.21%, 4.47%, 3.02%, 3.79%, and 3.89%, respectively.

As demonstrated by the comparison above, our adaptive
inference module is applicable to effectively refining the
boundary location of vegetation.

VII. CONCLUSION
In this paper, we present a novel method for the automatic
vegetation extraction of HRRSI through an adapted state-
of-the-art fully convolution neural network integrating an
ACI module and a FP module. Different from the traditional
methods using the NDVI index to extract the vegetation, our
methods can be employed effectively, even without sufficient
spectral information.

The proposed vegetation land use/land cover extraction
from HRRSI based on the ACI method has been evaluated
with two typical remote sensing datasets to prove its mean-
ings and effectiveness in automatic vegetation land use/land
cover extraction from HRRSI. Several conclusions can be
drawn from the experiments.

Compared with the baseline Deeplab v3+ [45] for
ZY-3 and GID, the precision, kappa coefficient, miou, pre-
cision rate, and F1-score of the method integrating the ACI
module are improved, at most, by 2%, 4%, 3.88%, 6.92%, and
2.17%, and at least, by 2.14%, 9.17%, 13.52%, 0.61%, and
7.97%, respectively, even though the recall rate is relatively
decreased for ZY-3, while increased by at least 13.15% for
GID, due to our context model’s ability to represent relation-
ships between the center pixel and its neighbors under seman-
tic constraints. The FP module has been verified to improve
the precision, kappa coefficient, miou, precision rate, and
F1-score by at most 1.13%, 2.12%, 1.65%, 6.83%, and 0.94%
and by at least 0.75%, 4.21%, 4.47%, 0.20%, 3.79%, and
3.89%, respectively. This phenomenon can be attributed to
the FP module’s capability to eliminate the problem of small
inter-class differences and large intra-class differences.

When we merged the ACI and FP module into the baseline
Deeplab v3+ [45], we could increase the precision, kappa
coefficient, miou, precision rate, and F1-score by 1.44%,
2.79%, 2.47%, 5.81%, and 1.4% for ZY-3 dataset, respec-
tively. Even though we cannot always guarantee a positive
interaction between these two modules due to their intrinsic
differences in improving the vegetation extraction perfor-
mance, we can still verify our method’s effectiveness for

improving the baseline Deeplab v3+ [45] through analyzing
the details of segments extracted in Figures 8–12.

Nevertheless, although the proposed method can perform
well for the vegetation extraction of HRRSI in an auto-
matic pipeline, it still has some unavoidable limitations.
When applied to new HRRSI whose distribution of the fea-
ture space is significantly different with the training data,
it may not guarantee an obvious improvement of the per-
formance. This will be explored in our future research by
incorporating the scene constraint or relation-augmented
information [69]–[71] during the training stage or reducing
the distribution differences between the target domain and the
source domain with transfer learning methods [72].
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