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ABSTRACT The electricity consumption will continue to increase despite the overall efforts and tendencies
of changing the old appliances to less energy intensive ones. The advancements of Electric Vehicles (EV)
and public mobility, electric heating, and the abundance of smart appliances that enhance the comfort of
modern life lead to an increasing consumption trend. On the other hand, prosumers raising the quota of
distributed generation and storage capacity will balance the electricity consumption trend. These changes
at the consumption and generation level lead to the necessity to increase the awareness and incentive the
consumers’ behavior to flatten the consumption curve and improve the savings. Such objectives could be
reached by properly setting the Time-of-Use (ToU) tariff rates to encourage the consumption at off-peak
hours when the rates are lower and unstress the grid loading. In this paper, we propose a methodology
for setting the Time-of-Use (ToU) tariff rates and peak/off-peak intervals using big data technologies and
machine learning, and verify the assumptions considering the large volume of consumption data of over
4200 residential consumers recorded in a smart metering implementation trail period that took place in
Ireland from January to December 2010. We calculate the contribution to the peak/off-peak of the total
consumption and use it in setting the ToU tariff rates starting from the flat tariff. Then, the consumers’
sensitivity to tariff change from flat to ToU is considered to identify the consumption change. The results
show that using ToU instead of flat tariff, the peak is reduced in average by 5 to 7.5% and annual savings are
around 4%. Also, by clustering the consumers a better allocation of the tariffs is possible. Thus, clustering
is proposed considering the importance of the tariff allocation in Demand Side Management (DSM).

INDEX TERMS Time-of-use tariff rates, contribution to consumption peak/off-peak, big data, machine
learning, tariff elasticity.

NOMENCLATURE
Symbol Description
Coff
cluster Consumption at off-peak hour for a cluster of

consumers
Cpeak
cluster Consumption at peak hour for a cluster of con-

sumers
1C% Consumption variation in percentage
coff Contribution to consumption off-peak coeffi-

cient
cpeak Contribution to consumption peak coefficient
Ch Hourly consumption

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwei Gao .

Ci Initial consumption
Cmod Modified consumption
hl+1 ÷ hk−1 Off-peak hours
α
off /peak
h × FT rate Off-peak/peak rate
PaymentFT Payment with flat tariff
PaymentToU Payment with time of use tariff
hk ÷ hl Peak hours
FT rate Rate of the flat tariff
E Tariff elasticity
1T% Tariff variation in percentage
Ctotal Total consumption

I. INTRODUCTION
The electricity tariff reforms are essential in the smart grid
context, are analysed and depicted in [1] considering their
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impact on the society welfare and implications to the energy
poverty and subsidy removal, since entire removal of sub-
sidies might not be a viable option when differences in the
elasticity of energy consumption among the various category
of consumers exist [2]. Hence, tariffs can encourage energy
efficiency and offer signals take advantages of opportunities
and cope with challenges in the smart grid context. The pro-
gressive tariffs that penalise high consumption and electricity
saving tariffs that incentive the consumption reduction are
analysed using the price elasticity and incentive elasticity,
indicating that progressive tariffs such as ToU tariffs are
more efficient in terms of savings confirming the consumers’
loss aversion [3]. Such tariffs could be further investigated
from the consumption peak point of view considering that
reduction of the peaks alleviates the stress on both generators
and grid, avoiding onerous investment.

With its seven-hour night rate cheaper than the day rate,
the first ToU tariff, known as Economy7, appeared in UK
in 1978 and it is still implemented today. Since then, with
the advancements in smart metering, suppliers are already
offering new tariffs such as Interval Tariff in Spain, Offerte
Biorarie in Italy, TIDE tariff and Agile Octopus that became
the first 30-minute tariff in UKproving that consumers reduce
consumption peak and shift electricity usage of EV owners
out of the peak hours. ToU tariffs design varies and influences
the effectiveness by several factors such as: the tariff ratio
between peak and off-peak hours, the length of the peak
period, the number of tariff periods [4]. ToU tariffs along
with critical peak pricing tariffs [5] such as Tempo in France
and real-time tariffs are significant instruments used in DSM.
Designing the tariff rates is a tariff-based DSM stimulus
and a sensitive issue as it may motivate or demotivate the
consumers to behave accordingly [6].

The impact of ToU tariffs is investigated in [7] emphasizing
their influence on load curves of residential consumers in
grid areas with RES, heat pumps and storage facilities. The
response of energy storage facilities to tariff system and their
effect of peak shaving on the distribution grid is analysed
using Monte Carlo method in the context of higher EV and
heat pumps penetration. The operation of storage facilities
showed that ToU tariffs have little effect on the consumption
peak, requiring other measures to reward flexibility. There
is a similarity between [7] and our approach in the sense
that we both investigate the effect of the ToU tariffs on the
consumption peak, but our methodology is aiming to set a
tariff to respond to the consumers’ actual contribution to the
consumption peak/off-peak.

Also, a Monte Carlo method is applied [8] for simulating
the residential demand considering tariff elasticity and PV
generation. 1100 households’ smart-metered consumption is
used to identify the impact of constant and variable tariffs
derived from the wholesale market and retailers’ rules and
RES availability. The results reveal useful insights in the
future tariff design, discouraging purely sales-driven tariffs
devised by retailers or variable tariffs totally driven by a
wholesale market, since they proved not be suitable for grid

critical situations. These results support our article focusing
more on the demand side strategies and demand contribution
to the peak/off-peak.

Shifting the consumption from peak to off-peak hours is
essential to avoid grid congestion and infrastructural onerous
investment that negatively impacts the environment. ToU
tariffs and smart metering systems could incentive the con-
sumers to change the consumption behavior scheduling the
appliances’ operation at lower rate intervals. Thus, designing
the ToU peak/off-peak rates and setting the intervals are
important steps in getting adequate demand response [9]. The
major risk is to design a ToU tariff that leave the consumers
indifferent. Offerte Biorarie tariff offered in Italy has two time
slots, with a very narrow difference in rate between them
that does little to incentivize consumers to change the con-
sumption behavior and shift the electricity usage at night [10].
Since our approach is focused more on the consumers’ con-
tribution to the peak/off-peak consumption, comparing with
other approaches that are more focused on market-driven
prices [11], this risk is mitigated.

Usually, ToU tariffs are applied by the electricity suppliers.
Also, innovative is the designing and testing of tariff rates
or day-ahead/dynamic tariffs for distribution service even if
the actual tariff is flat. This initiative is already analysed in
other European countries [12] due to the benefits of ToU
tariffs on sustainable development of the grid by avoiding
peaks that rarely occur for only short time intervals and
require onerous reinforcement of the grid [13]–[16]. For ToU
tariff model, the contribution of each cluster of consumers
on peak/off-peak proposed in this paper and tariff elasticity
will be considered as they should be motivated by adequate
rates to consume more/less at off-peak/peak. Implementing
such tariffs will challenge and impact distribution system
operators [10], [11], consumers and regulatory bodies.

By stimulating consumers to use the programmable appli-
ances at off-peak hours, the difference between the peak
and off-peak load is reduced, avoiding costly investment in
grid capacity that would have been transferred in the elec-
tricity tariff. The consumption optimization process can be
further improved from day-ahead to real-time that corrects
to some extent the controllable appliances deviation from
the day-ahead schedule [20]. On 24-hour data set, savings
of up to 17.5% can be obtained for the entire community
of 11 houses when a ToU tariff is applied. Evaluated for
each house, the payment gain after optimization with the ToU
tariff can reach up to 33.5%, but there are houses with small
negative gains that underline that not any consumption curve
can be optimized, the optimization requiring a certain level of
flexibility. On a one-year dataset, the payment gains with the
ToU tariff are of 6.65% [21] show a decrease of 29% of the
average consumption peak after shifting for a single house.
In terms of electricity payment, the savings for 2014-2016
are up to 20.5% in relation to the standard tariff. According to
optimization algorithms proposed in [22], consumption peak
decreases between 9.1% (at hour 22) and 33% (at hour 19),
complemented by 6.12% savings with a ToU tariff. This way,
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the end consumers benefit from direct savings, peak reduction
and improving activity of the grid operators that can better
plan their resources [23].

Using a set of flat and ToU tariffs, [24] propose a model
for calculating the Pareto-optimal shares of the capacity and
energy for various sets of decision variables, underlining the
impact of the tariff structure and stressing on the importance
of the tariff design process. Also, using a quadratic transfer
cost, [25] set the optimal ToU tariff from the consumers
and producers point of view, emphasizing that the ToU tariff
brings benefits for both producers and consumers. With a
Gaussian Mixture Model clustering technique, [26] group
the consumers into clusters and investigate the effects of
ToU tariffs on the demand response, in terms of savings
and peak reduction. [27] aim at setting the ToU tariff for
domestic customers starting from flat rate. Implementing the
ToU tariffs lead to peak reduction that varied from 4.2 to
9.5% and savings that also varied from 3.2 to 5.1% [27].
A review on the designing of ToU tariffs and the consumers’
willingness to take advantage of such tariffs, providing four
interesting conclusions, is presented in [28]. One of them is
that comparing the real time pricing tariffs with ToU tariffs,
the latter proved to be more popular.

[29] show that 93% of the analyzed electricity consumers
are loss-averse caring more about avoiding losses than mak-
ing savings; hypothesis also confirmed by [3]. Thus, the ToU
tariffs analyses should also concentrate on evaluating the
losses [30]. When setting the ToU tariffs, one of the most
significant aspect is the tariff-elasticities of demand. [31]
propose a quadratic programming and stochastic optimiza-
tion techniques for setting the ToU tariff, addressing the
tariff-elasticities of demand. Also, [32] show that the electric-
ity generating companies require less capacity for base-load
and peak-load under the TOU tariff than under the flat tariff.
The reduction in the demand of the base-load and peak-load
periods was not significant, although the demand during the
peak hours decreased.

Zhou et al. propose a TOU tariff and a stepwise power
tariff model combination to stimulate consumers to shift the
flexible consumption in response to electricity tariff targeting
at both energy conservation and peak load shaving [33].
The similarity with our approach consists in the analysis of
residential demand response considering the tariff elasticity.

Starting from the assumption that flat tariffs do not reflect
the real costs that consumers incurs to an electricity sup-
plier, [34] investigate a prediction-of-use tariff that considers
a baseline consumption and charges the actual consumption
and deviations from the baseline consumption prediction.
This approach, validated using a large data set of residential
consumers in the U.K., demonstrated that joining consumers
together when buying electricity using a polynomial time
algorithm leads to efficient buyer groups. There are some
similarities with our approach since we also assume that the
flat tariff does not reflect the costs that consumers incurs to
an electricity retailer and efficiently groups the consumers.
While [34] charge the deviations from prediction, we stress

the importance of charging the contribution to the consump-
tion peak/off-peak and giving a signal to adjust this contribu-
tion to obtain a lower tariff rate.

Thus, special attention in this paper is focused on under-
standing the contribution of the consumers to peak/off-peak
consumption so that to properly design the rates. Hence,
the proposedmethodology will consider the consumers’ type,
seasonal or monthly behaviour and electricity tariff elasticity
to incentive the consumption at off-peak and discourage the
consumption at peak hours.

To the best of our knowledge, the proposed methodology
of setting the ToU tariffs represents a novel approach that
focuses on the impact that groups of consumers has on the
load curve or their contribution to the consumption peak and
off-peak level. Therefore, we start from the flat tariff and
compute the contribution for groups of consumers (clusters)
and use this contribution to set the tariff rates that will be
customized for each group; that is the group that has the
highest contribution to the consumption peak will be charged
more at peak hours. By keeping the payment with flat tariff
and with ToU tariff equal, the peak and off-peak intervals
can be set in the nearness of the peak/off-peak hours. Then,
we test the impact of the ToU tariffs using the tariff elasticity
with a large data set comprising more than 4,200 residential
consumers and totalizing 157,992,996 records that require a
NoSQL database and machine learning algorithms.

Thus, setting the ToU tariff as proposed in our methodol-
ogy gives an economic signal to reward the consumption at
off-peak hours and penalize the consumption at peak hours
leading to valley-filling and peak shaving. The methodology
also requires overlapping or matching the load curve pattern
with off-peak and peak intervals and update or recalculate the
tariffs to consider the changes that inherently appear during
seasons or in consumers behavior.

The paper is organized as follows. We give the definition
of the mathematical model of setting the ToU tariff rates
and peak/off-peak intervals and the research methodology
in section 2. Input data and process flow are described in
section 3. Simulations, results and conclusion are given in
section 4 and section 5, respectively.

II. RESEARCH METHODOLOGY
The methodology for setting the ToU tariff rates consists
in 5 steps as in Figure 1. The electricity consumers from a
specific area are classified into several categories: residential,
industrial, small andmedium enterprises and other categories.
Due to the fact that consumers activities depend on their type
and influence the load profile, the consumers are separated
by categories.

Then, 24-hour profiles for each consumer are calculated
and clustered grouping the consumers based on the simi-
larities on the hourly load [35]. A data mining technique -
clustering is the grouping of data into subsets based on
similarities. In each group, the members are similar, but
between groups, the members are different. It is an unsu-
pervised machine learning algorithm for grouping data that
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FIGURE 1. Methodology for setting the ToU tariff rates.

identifies commonalities or similarities in the data. Therefore,
clustering is useful when analyzing large data sets. There are
different clustering algorithms.When choosing the clustering
algorithm, the type of variables is essential. Hence, there are
algorithms intended strictly for numerical variables or cate-
gorical variables or a combination of the two types of vari-
ables. Clustering methods are known as hierarchical methods
that build clusters gradually [36] and partitioning algorithms
that learn clusters directly. The partitioning algorithms are
computationally faster than hierarchical methods and tend to
provide tighter clusters, leading to better results in terms of
precision [37]. K-means is a relocation technique, a subdivi-
sion of the partitioning algorithms, that show clusters through
centroids. K-means is more sensitive to outliers and perfectly
suited for numerical variables, with a statistically meaningful
representation. Therefore, k-means is very efficient for pro-
cessing large data sets with numerical variables.

The contribution to the peak/off-peak of the total con-
sumption or the cluster’s consumption can be calculated
and used as input data when setting the ToU tariff rates.
Starting from the Flat Tariff (FT) in per unit (p.u.), red
line, the algorithm sets the ToU tariffs rates (blue line from
Figure 1) based on the contribution, increasing the FT at
peak hours and consequently decreasing the FT at off-peak
hours.

Then the peak intervals are identified by overlapping the
daily load curve with the ToU tariff allure so that payment
with ToU tariff equals payment with the Flat Tariff (FT).
Sometimes the ToU tariff representation does not overlap
the load profile that is not efficient in term of demand

FIGURE 2. Flat tariff and ToU tariff graphical representation.

response. Usually, this is the consequence of the fact that the
consumption evolved, and the tariff schema did not follow the
consumption trend.

The mathematical model for setting the ToU tariff rates
is defined in the following paragraphs. First, let’s define the
24-hour electricity consumption payment considering the FT:

PaymentFT =
∑24

h=1
FT rate × Ch (1)

PaymentFT− electricity consumption payment in case of
flat tariff implementation;
FT rate− hourly flat tariff (constant);
Ch− hourly consumption.
Second, wewill define the 24-hour electricity consumption

payment considering the ToU tariff, including the contribu-
tion to consumption peak/off-peak:

PaymentToU =
24∑
h=1

α
off /peak
h × FT rate × Ch (2)

α
off
h = 1− coff (3)

α
peak
h = 1+ cpeak (4)

PaymentToU− electricity consumption payment in case of
ToU tariff implementation;
α
off /peak
i × FT rate− off-peak/peak rate;
coff− contribution to consumption off-peak coefficient;
cpeak− contribution to consumption peak coefficient.
The two contribution coefficients for a cluster of con-

sumers are calculated as below:

coff =
Coff
cluster

Ctotal
× 100% (5)

cpeak =
Cpeak
cluster

Ctotal
× 100% (6)

Coff
cluster− consumption at off-peak hour for a cluster

of consumers;
Cpeak
cluster− consumption at peak hour for a cluster of con-

sumers.
Ctotal− total consumption.
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Following the load profile, the peak hours are identified
when payment with FT equals payment with ToU tariff.
Hence, we can set the intervals for lower/higher rates so that:

PaymentFT = PaymentToU (7)

Therefore, setting the intervals for lower and higher tariff
rates is given below:

peak hours : hk ÷ hl → Upper Rate→ α
peak
h

(8)

off − peak hours : hl+1 ÷ hk−1 → Lower Rate→ α
off
h

(9)

As expected, the electricity consumption will diminish
as the tariff increases. The consumer’s sensitivity to tariff
change can be measured by the tariff elasticity that is the
percentage change in consumption divided by the percentage
change in tariff.

E =
1C%
1T%

(10)

E− tariff elasticity;
1C% - consumption variation in percentage;
1T% - tariff variation in percentage.
Considering the tariff elasticity, the modified consumption

when ToU is applied is calculated below:

1C% =
Cmod − Ci

Ci
× 100% (11)

1T% =
αoff /peak × FT rate − FT rate

FT rate
= α − 1 (12)

Cmod =
[
1− E ×

(
αoff /peak − 1

)]
× Ci (13)

Cmod− modified consumption;
Ci− initial consumption.
The outcome of the algorithm consists in the evaluation

of the consumption peak and savings for consumers as a
consequence of using ToU tariff.

INPUT DATA AND PROCESS FLOW
The Irish Commission for Energy Regulation carried out a
project aiming to identify the customers’ behaviour in the
context of smart metering implementation with a set of four
ToU tariffs and one weekend ToU tariff, and other DSM
stimuli. Their secondary objective was to identify a tipping
point for ToU tariffs that would significantly bring change in
the electricity usage. Hence, small and medium enterprises
(SME), residential consumers and others were considered in
a one-year trial period from January to December 2010.

In this paper, we preponderantly analysed the residential
consumers, as they aremore numerous and required a NoSQL
data management solution. Also, we encountered more insuf-
ficient or incomplete data for SME and others. Thus, the
consumption data consisted in 6 data files in.txt format, with
3 fields, such as: customer identifier, date and time, and
consumption data for each 30 minutes. The data files consist

in 157,992,996 records. The data files are correlatedwith aux-
iliary data, matrix allocation of ToU tariffs, data manifests,
and so on.

The attempts to use several relational databases failed
either in the import or when querying or updating data due
to a very large amount of data. Hence, a NoSQL solution is
used as an alternative. Thus, MongoDB is chosen as a data
storage solution [38] and the Python language was selected as
a solution for handling, manipulating and analyzing the data
as in Figure 3. MongoDB provides faster reading speed and
is better suited for rapid growth when the structure of the data
sources is not clearly known from the beginning (compared
with other NoSQL databases like CouchDB). On the other
hand, CouchDB offers mobile support and more replica-
tion advantages, that are not provided by MongoDB. But
CouchDB’ advantages are not essential for our objective [39].
In terms of popularity, based on rankings [40], MongoDB is
more popular, its rank is better than other competitors.

FIGURE 3. Data process flow.

Starting from the input consumption data of the resi-
dential consumers, we obtained 4 clusters (from 0 to 3).
From the initial input data stored in a (4225×171) dataframe
formed by 4225 rows and 171 columns (meterID, residen-
tial_tariff_allocation, recommended and 168 hourly con-
sumption values for a week, H0÷H167), we compute
a new (4225×26) dataframe formed by 4225 rows and
26 columns (METERID, CLUSTER, 24-hour consumption
values, H0÷H23) as in Figure 4. Based on the consumption
similarities, the consumers are grouped in 4 clusters with
k-means. Then, the load profiles are calculated as average
hourly consumption of each cluster.

FIGURE 4. Load profile calculation by clusters.
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The clusters are similar in shape, with clear morning,
noon and evening peaks and afternoon and night off-peaks.
However, their profiles significantly differ in amplitude.
Cluster 2 (green) is the highest and with the most sinuous
curve, whereas cluster 1 (orange) has a rather flat profile.
We can also easily notice that on average the night off-peaks
of clusters 2 (green) and 3 (red) are higher than the evening
peak of cluster 1 (orange). Although, cluster 2 records the
highest consumption, its members totalize 9.3% of the data
sample as in Figure 5. The biggest number of members are in
cluster 0 (blue) almost 35%, while the second biggest cluster
has 25% of the total members. Also significant is cluster 1,
with the lowest load profile, having more than 31% of the
total members.

FIGURE 5. Segmentation of members for each cluster.

The variability of the consumption profiles at peak hour
can be analysed by box plotting the consumption data for each
cluster as in Figure 6. The highest variability of data belongs
to cluster 2 while the lowest belong to cluster 1. Half of the
data in case of cluster 2 is spread from 1.4 to 1.8, one whisker
that goes up to 2.3 and the other one to 0.8, and biggest outlier
to 3.4.

FIGURE 6. Box plotting the consumption at peak hour for each cluster.

Considering that each consumer contributes to certain
extent to the consumption peak and off-peak, when designing

the electricity tariffs, it is reasonable to incentive the con-
sumers that consume more at off-peak hours by decreasing
the tariff rate and discourage the consumers that consume
more at peak hours by increasing the rate. Hence, starting
from the regular tariff rates that would be applied to all
consumers, the peak and off-peak rates could be adjusted to
reflect the contribution of each group of consumers accord-
ing to the particular level of consumption from the total
consumption.

In Figure 7, the contribution to the evening consump-
tion peak recorded at H18 of individual consumer is plot-
ted as a Load Duration Curve (LDC), rearranging all the
loads of the chronological curve in the order of descend-
ing magnitude. The corresponding contribution to the night
off-peak recorded at H4 is also plotted for the sameMeterIDs.
We can easily notice that some members of cluster 2 majorly
contributes to the total consumption peak. The MeterID’s
coefficient that has the highest contribution to the peak is
almost 0.1.

FIGURE 7. Individual contribution to the consumption peak (a) plotted as
a duration curve and off-peak (b).

Similarly, in Figure 8, the contribution to the night con-
sumption off-peak recorded at H4 of individual consumer
is plotted as a LDC. The corresponding contribution to the
evening peak is also plotted for the same MeterIDs. We can
easily notice the consumers that significantly contribute to
the total consumption off-peak belong to all clusters. The
MeterID’s coefficient that has the highest contribution to
the off-peak is almost 0.5. However, the two contributions
should be differently treated. Hence, the contribution to the
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FIGURE 8. Individual contribution to the consumption peak (a) and
off-peak plotted as a duration curve (b).

consumption peak should be discouraged imposing higher
rates, whereas the contribution to the consumption off-peak
should be encouraged with lower rates.

The data is further analyzed using the pivot table facilities.
The total consumption of each cluster for peak and off-peak
hours is depicted in Figure 9.

FIGURE 9. Total electricity consumption of each cluster at peak and
off-peak hours.

Although, there are differences among clusters, interest-
ing is to notice that the contribution of each cluster to
the peak (left) and off-peak (right) is relatively similar
(Figure 10).

The highest contribution to the peak and off-peak too
belongs to cluster 3 (red), while the lower contribution
belongs to cluster 2 (green) that has also the smallest number
of members. Nonetheless, somemembers of cluster 2majorly

FIGURE 10. Contribution of each cluster to the peak (a) and off-peak (b).

contributed to the peak as shown in Figure 7. Starting from
these contributions, it is obvious that members of cluster 3,
for instance, should be charged with the highest rates at peak
and lowest rates at off-peak hours such as tariff D from [41],
as cluster 3 has the highest contribution to peak and off-peak
hours.

III. SIMULATION AND RESULTS
For each cluster (from 0 to 3), starting from off-peak and peak
hours, the contribution is calculated according to Table 1.

TABLE 1. Contribution coefficients to consumption peak/off-peak at the
cluster level.
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Then, the off-peak/peak rates are calculated in Table 2
according methodology described in section 2.

TABLE 2. Peak/off-peak rates at the cluster level.

Based on the peak/off-peak rates, four ToU tariffs are
calculated and graphically represented in Figure 11, where
tariff T0 is recommended for cluster 0 and so on.

FIGURE 11. Calculated ToU tariffs.

Starting from the ToU tariffs, we calculated the elec-
tricity consumption payment with FT and ToU tariff as
in Table 3 and Figure 12. The payment is calculated in three
modes: as initial consumption (Ci) times flat tariff (FT),
initial consumption times ToU tariff (ToU) and modified
consumption (Cmod) times ToU tariff as demand response
(DR). Due to different tariff rates and tariff elasticity effect on
the consumers’ behaviour, the electricity payment decreases
when ToU tariff is implemented. Also, the consumption curve
is modified according to Figure 13.

TABLE 3. Electricity consumption payment evaluation.

Considering only cluster 3, as the cluster with the high-
est contribution to consumption peak/off-peak, we notice a
similar effect of ToU tariff on the consumption curves as
in Figure 14.

Considering the calculated T3 tariff rates for cluster 3,
we evaluate the electricity consumption payment as

FIGURE 12. Electricity consumption payment.

FIGURE 13. Daily load curve for entire data sample.

FIGURE 14. Daily load curve for cluster 3.

in Table 4 and Figure 15. The payment is also calculated in
three modes: as initial consumption (Ci) times flat tariff (FT),
initial consumption times ToU tariff (ToU) and modified
consumption (Cmod) times ToU tariff as demand response
(DR).We notice that the payment decreased as a consequence
of changing the consumers’ behaviour and different rates that
encourage the consumption and night.

In both cases - entire data sample or cluster 3, the consump-
tion peak decreased by 5% (when E = 0.2) or 7.5% (when
E = 0.3). The savings varies from 4% for entire data sample
to 2% for cluster 3. When assessing the payment for each
month, we obtained the results presented in Table 5.
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TABLE 4. Electricity consumption payment evaluation for cluster 3.

FIGURE 15. Electricity consumption payment.

TABLE 5. Monthly electricity payment assessment.

For all months, the payment with ToU was lower than the
payment with FT. The difference in percentage varied from
almost 3 to 6%.

IV. CONCLUSION
In this paper, we proposed a methodology of calculation of
ToU tariff rates and setting the intervals for applying the
peak/off-peak rates, considering its significance of shaving
the consumption peak to a sustainable environment and devel-
opment of the power systems. The proposed methodology
is based on the contribution of clustered consumers to the
consumption peak and off-peak, considering the effect of the
tariff elasticity on the consumers’ behaviour. The results were

proved by considering a large data set recorded by smart
meters at 30 minutes from a 1-year trial period that took
place in Ireland. The data set totalizing 157,992,996 records
required big data solutions (NoSQL) and machine learning
algorithms developed in Python that compute the ToU tariff
rates at different intervals at the convenience of the electricity
supplier. The main outcome has two components: peak shav-
ing of about 5% when the tariff elasticity is 0.2 or 7.5% when
the tariff elasticity is 0.3. Also, the savings were recorded,
varying from 4% for entire data sample to 2% for cluster 3.
At the month level, the payment with ToU tariff was always
lower than the payment with FT, the difference in percentage
varying from 3 to 6%.

The advantage of our approach in calculating the ToU tariff
is that it relies on the real contribution of the consumers
to the consumption peak/off-peak, easy to understand and
transparent. One of the limitations of our approach is that it
depends on the tariff elasticity that can vary and influence the
results in terms of peak reduction and savings.
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