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ABSTRACT In this study, optimal reactive power regulation in distribution networks is achieved through
the use of distributed reactive power regulators that can 1) perceive their own voltage magnitude and the P/Q
flows in the connected branches, 2) communicate with nearby regulators, and 3) adjust the reactive power
injections into the grid to minimize system power losses and maintain the bus voltages of nearby loads.
Compared with many existing distributed reactive power regulation strategies, the proposed method can
estimate and maintain the bus voltage of unmeasurable load buses within the limitations. Furthermore, this
method releases the hardly achieved bus voltage angle requirement, which makes it practical for real-world.

INDEX TERMS Distributed reactive power regulation, distributed optimization, branch flow measurement,
linear model approximation.

I. INTRODUCTION
Distributed renewable generators (DGs) are deployed world-
wide in distribution networks to produce clean, inexpensive
electrical power [1]. By using inverters, DGs can provide var-
ious ancillary services, such as harmonic compensation [2],
voltage support [3], and reactive power (VAR) regulation [4].
In this study, we focus on reactive power regulation.

The main objective of reactive power regulation is to
reduce the active power loss in the distribution network and
to keep the node voltages within the security limits. Tradi-
tionally, these objectives are accomplished to some extent
by local reactive regulation [5]–[7], but it has been sug-
gested that these strategies may not be able to guarantee
the desired regulation due to the lack of communication [8].
A centralized reactive power regulation strategy can over-
come this barrier by solving a centralized optimal reactive
power flow (OPF) problem with a central coordinator that
receives all the required measurements of the grid [9]–[11].
Nevertheless, an online centralized reactive power regulation
strategy requires detailed power flow along with feeders,
which is difficult for the distribution system to achieve in
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real time. For offline strategies, it is also a great challenge
to predict the power curve of stochastic DG outputs. These
difficulties make centralized optimization impractical in the
real world.

In terms of both effectiveness and practicability, the reg-
ulation strategies of distributed OPF methods are used to
achieve optimal regulation with limited measurement and
communication requirements.

The distributed OPF methods decompose the systematic
optimization target into decoupled subproblems that can be
solved by agents based on partial information. To achieve the
decomposition, the OPF problem should be formulated for
semidefinite programming (SDP) [12]–[14] or second-order
cone programming (SOCP) [15], [16] so that the sparsity of
the coefficient matrix can be utilized. A well-designed dis-
tributed OPFmethod exhibits performance close to that of the
centralized OPF method with much fewer data requirements
and is therefore preferred in practice.

The distributedOPFwas achieved via linear approximation
in many earlier works. In this case, the detailed power system
model and power flow predictions are no longer needed, but
measurements at all the buses in the distribution network are
still required to maintain bus voltages [13], [17]. The latest
reports further relax the above requirements, in which only
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DGs require phasor measurements at their own connection
node and can communicate with adjacent ones; by approx-
imating voltage phasors as a linear function of the injected
reactive power, the function between reactive load demands
and the total system losses can be formulated as a linear
function of the imaginary parts of the DG node voltages,
which can be calculated at each node [18]–[22]. However,
synchronous phasor measurement devices in distribution sys-
tems are still costly, which prevents the above method from
practical applications. Furthermore, these methods can main-
tain only the voltage of DG buses that can be measured.

To cope with the above problem, a distributed optimal
reactive power regulation method that does not require the
bus voltage phasor is proposed in this study, where DGs
are able to perceive their own voltage magnitude and P/Q
flows in the connected branches, communicate with nearby
DG buses, and adjust the reactive power injections into the
grid, while their common objective is to minimize the total
power losses of the system with maintained bus voltages.
The proposed method can work under practical conditions,
and only RTU measurements such as branch flow and bus
voltage magnitude are obtained. The load bus voltage, which
cannot be obtained by DG buses, can also be maintained by
the estimation method proposed in this paper.

The remainder of the paper is organized as follows.
Section II presents a generalized LinDistFlow model to
formulate the distribution system reactive power regulation
problem by considering the load voltage limitation and power
loss. Section III proposes a distributed method to solve the
reactive power regulation problem based on branch flows.
Section III tests the performance of the strategy with a
numerical simulation under different circumstances. Finally,
Section VI presents the conclusions of this work and future
research directions.

II. PROBLEM FORMULATION
A. REACTIVE POWER REGULATION MODEL FOR
DISTRIBUTION NETWORKS
To avoid an electromagnetic loop, distribution networks are
radial in operation with one single system bus (SB) connected
to the power transmission system. Hence, the topology of
such networks can be described by a tree under graph theory,
where each branch designates an electric line, while each
node represents a bus bar.

Consider a radial distribution network that consists of N =
m + n + 1 buses corresponding to a tree with m + n + 1
nodes, in which the root node indexed by 0 denotes the SB,
m nodes indexed by G = {G1,G2, . . . ,Gm} denote buses
connected to DGs (DG buses), and n nodes indexed by L =
{L1,L2, . . . ,Ln} denote buses connected to only loads (load
buses). All the nodes are interconnected by N − 1 branches,
where the branch indexed by i denotes the distribution line
connecting node i and its parent node. Then, the reactive
power regulation problem considering the bus voltage limi-
tations and reactive power constraints of DGs can be defined

by the optimization problem in (1):

min
QG

Ploss

subject to Qg,min < Qg < Qg,max , ∀g ∈ G

Vmin < Vi < Vmax , ∀i ∈ L ∪ G (1)

where Ploss denotes the total active power loss of the system,
the decision variable Qg ∈ QG denotes the reactive power
generation of the DG connected to bus g ∈ G, and Vi
denotes the voltage magnitude of bus i. Ploss and Vi can be
written as a quadratic function and a linear function of QG,
respectively. Under the approximation model in the following
parts, the problem can be solved much more easily.

B. LinDistFlow APPROXIMATION OF THE REACTIVE
POWER REGULATION MODEL
The LinDistFlow model [23], which is the linearization of
the DistFlowmodel, is a widely used approximation model of
distribution systems with a mainline and no laterals, as shown
in Fig. 1 [24]. Since the branch flow is much larger than
the power loss, it can be approximated as the total power
injections from the downstream nodes of the branch. Since
the nodal voltages are close to the voltage of the system bus
when the system is operating in a steady state, the voltage
drop of a branch can be approximated as a linear function of
the branch flow.

FIGURE 1. Distribution systems with no laterals.

Under such approximation, the LinDistFlow model can be
formulated as (2):

PBri−1 =
∑

j∈[i,N ]
Pj

QBri−1 =
∑

j∈[i,N ]
Qj

Vj = V0 +

∑
i∈[1,j]

(
PBri ri + Q

Br
i xi

)
V0

Ploss =

∑
i∈[1,N ]

(
PBr

2

i + Q
Br2
i

)
ri

V0
(2)

where the impedance of branch i is defined by zi = ri + ixi.
PBri−1/Q

Br
i−1 denotes the branch flows of branch i − 1, while

Pj/Qj denotes the power injection on bus j. Vj denotes the
voltage magnitude. Specifically, SB is indexed by 0, whose
voltage is assumed to be V0 = 1.00 p.u.
In this study, we extend this model to radial systems with

laterals, the topology of which is similar to the example
shown in Fig. 2.

We denote the path set PATHi,j = {eij, vij}, where eij is
composed of all the branches (edges) in the path between
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FIGURE 2. An example of the topology of a radial system with laterals.

buses< i, j >, and vij is composed of all the buses (vertexes)
in the path set. For example, buses 7, 2 and 3 and branches
7 and 3 constitute PATH7,3 in Fig. 2.
The matrix Awith a size of (N −1)× (N −1) is introduced

to describe the topology of the system. The element at row i
column j of A is defined as:

Ai,j =

{
1, i ∈ e0,j
0, i /∈ e0,j

(3)

In this definition, Ai,j = 1 means node j is a downstream
node of branch i, and branch i is a part of the path from system
bus to node j. For example, only A6,6 equals 1 in the 6th row
of A since only node 6 is the downstream node of branch 6;
only A1,6 and A6,6 in the 6th column equal 1 since only branch
1 and 6 are in the path from system bus to node 6. Thus,
A can describe the sensitivity of bus injections to branch
flows, while AT can describe the sensitivity of branch voltage
drops to the bus voltage:

PBr = AP

QBr
= AQ

V = 1+ ATVBr (4)

where PBr/QBr denotes the active/reactive power vectors of
all the branches, while P/Q denotes the active/reactive power
vectors of all the buses except for SB,VBr denotes the voltage
drop vector of all the branches, V denotes the voltage magni-
tude vectors of all the buses except for SB, and 1 is an all-one
vector. Since the voltage drop of a branch is approximated as
a linear function of the branch flow, the LinDistFlow model
for radial systems with laterals can be given as:

VBr
= diag (r)AP + diag (x)AQ

V = 1+ ATdiag (r)AP + ATdiag (x)AQ

Ploss = PTATdiag (r)AP + QTATdiag (r)AQ (5)

where z = r+ ix is the vector of branch impedances.
Using the approximation given in [21] and [22] that all

the branches in the system are assumed to have the same
impedance angle θ , the model can be further simplified:

V = 1+HPcosθ +HQsinθ

Ploss =
(
PTHP + QTHQ

)
cosθ

H = ATdiag (|z|)A (6)

According to 3 and 4, the element at row i column j of H
can be formulated by:

Hij =
∑

k∈e0i∩e0j

|zk | (7)

where e0i∩e0j is the common part of e0i and e0j. For example,
H8,10 can be calculated by the total impedance magnitude of
branches 1 and 2.

To separate the components related to QG in V and Ploss,

H can be blocked as H =
[
M N
NT U

]
, whereM is an m× m

matrix, of which element is defined byMij = HGi,Gj , N is an
m × n matrix, of which element is defined by Nij = HGi,Lj ,
and U is an n × n matrix whose elements are defined as
Uij = HLi,Lj . Thus, the model can be reformulated as:

VG = 1+ (MPG + NPL)cosθ + (MQG + NQL)sinθ

VL = 1+ (NTPG + UPL)cosθ + (NTQG + UQL)sinθ

Ploss = PPloss + P
Q
loss

where

PPloss = (PT
GMPG + 2PT

GNPL + P
T
LUPL)cosθ

PQloss =
(
QT
GMQG + 2QT

GNQL + Q
T
LUQL

)
cosθ (8)

In (8), PPloss is the contribution of the active power injection
of the system to the active power loss, while PQloss is the
contribution of the reactive power injection of the system to
the active power loss. Since PPloss and Q

T
LUQL are irrelevant

to the decision vector QG, the optimization problem (1) can
be simplified to the following quadratic form:

min
QG

QT
GMQG + 2QT

GNQL

subject to QG,min < QG < QG,max

VG,min < VG < VG,max

VL.min < VL < VL.max (9)

where QG,min, QG,max, VG,min, VG,max, VL.min, and VL,max
are the vectors of all the limitations.
As a quadratic programming problem, Formulation (9) can

be solved with a distributed dual ascent algorithm, as shown
in Section III.

III. SOLUTION FORMS
A. CENTRALIZED DUAL DECOMPOSITION SOLUTION
The Lagrangian of 9 can be formed as:

J
(
QG, v

)
= QT

GMQG + 2QT
GNQL

+λTG,min
(
VG,min − VG

)
+λTG,max

(
VG − VG,max

)
+λTL,min

(
VL,min − VL

)
+λTL,max

(
VL − VL,max

)
+µT

min(QG,min − QG)

+µT
max(QG − QG,max) (10)
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where v = [λTG,min, λ
T
G,max, λ

T
L,min, λ

T
L,max, µ

T
min, µ

T
max]

T is
the vector of the Lagrangian multipliers of the constraints.
Thus, the partial derivatives of 10 can be calculated:

∂J
∂λG,max

= VG − VG,max

∂J
∂λG,min

= VG,min − VG

∂J
∂λL,max

= VL − VL,max

∂J
∂λL,min

= VL,min − VL

∂J
∂µmax

= QG − QG,min

∂J
∂µmin

= QG,min − QG

∂J
∂QG

= 2
(
MQG + NQL

)
+ sinθM

(
λG,max − λG,min

)
+ sinθN(λL,max−λL,min)+µmax−µmin (11)

Then, the optimization model can be solved with a dual
ascent algorithm with two iterative steps:

1) Update the Lagrangian multipliers with dual gradient
ascent.

v (t + 1) =
[
v (t)+ γ

∂J (t)
∂v

]
+

(12)

Here, ∂J(t)
∂v can be calculated by (11), [·]+ denotes a projec-

tion operator on the positive orthant, and γ denotes a suitable
positive constant.

2) Minimize the Lagrangian to update QG. Since (10) has
a quadratic form, the minimum value can be reached when
∂J
∂QG
= 0, and the optimal solution can be calculated:

QG (t + 1) = −M−1NQL (t)+ Q̃
v
G

Q̃
v
G =

sinθ
2

((
λG,max (t)− λG,min (t)

)
+ M−1N

(
λL,max (t)− λL,min (t)

))
+
M−1

2
(µmax (t)− µmin (t)) (13)

where Q̃
v
G is the contribution of v (t + 1) to QG (t + 1).

Alternately executing the given steps can drive the system
toward the optimal configuration, but the calculation depends
on the power injection and bus voltage measurements of all
the buses in the system. To overcome this limitation, the spar-
sity of matricesM−1 andM−1N will be utilized, as discussed
in the following subsections.

B. DISTRIBUTED SOLUTION EXPLOITING MATRIX
SPARSITY
According to 8, if we replace DG on bus Gi with a unitary
voltage source, connect all other DG buses to the ground and
open all the loads, then

[
M−1

]
ij is numerically proportional to

the magnitude of power injection in busGj. Thus, the sparsity

values of M−1 and M−1N are easy to obtain from circuit
theory considerations:
·
[
M−1

]
ij = 0 if there is at least one other DG in the path

between Gi and Gj.
Similarly, if we replace the load on bus Lj with a unitary

current source, connect all DG buses to the ground and open
all other loads, then

[
M−1N

]
ij is proportional to the current

injection to busGi in numeral. The sparsity ofM−1N can also
be obtained:
·
[
M−1N

]
ij = 0 if there is at least one other DG in the path

between Gi and Lj.
The above sparsity allow us to define the neighborhood

relationship between buses:
· Two buses are neighbors if and only if there is no other

DG bus in the path between them.
· For each DG busGi, define its neighborhoodN(Gi) as the

collection of all its neighbors. In particular, Gi itself is seen
as a member of N(Gi).

Fig. 3 is an example of a neighborhood where the busesG1,
G2, G3, G5, G6, and L1, L2, L3 are neighbors of G2, while G4
and L4 are not.

FIGURE 3. An example of a neighborhood.

Based on these definitions, we can transform (13) into a
distributed form:

QGi (t + 1)

= Q̃v
Gi −

∑
Gk∈N(Gi)

[
M−1

]
ik
wi,k (t)

Q̃v
Gi =

1
2

∑
Gk∈N(Gi)

[
M−1

]
ik

(
µGk ,max (t)− µGk ,min (t)

+ sinθ
∑

Lj∈N(Gi)
HGk ,Lj (λLj,max (t)− λLj,min (t))

)
+
sinθ
2

(λGi,max (t)− λGi,min (t)) (14)

where Q̃v
Gi is the contribution of v (t + 1) to QGi (t + 1), and

wi,k (t) =
∑

Lj∈N(Gi) HGk ,LjQLj (t) is the weighted sum of the
load reactive injections in N (Gi).
The equations in (14) indicate that the optimal reactive

power at a single DG bus can be calculated from measure-
ments of its neighborhood buses so that the communication
cost can be effectively reduced. However, the power con-
sumption and voltage of all the buses in the neighborhood are
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required, which could be relieved by the estimation methods
in the following part.

C. FURTHER RELIEF OF THE DATA REQUIREMENTS
To update the Lagrangian multipliers VL,min and VL,max
in 11, the measurement of bus voltages is required. To cal-
culate wi,k (t) in 14, the measurement of power injections of
load buses is required. Since these data are hard to obtain
for privacy and economic reasons, we will estimate them by
the measurements in DG buses in the following part of this
section.

1) ESTIMATION OF THE WEIGHTED SUM OF THE LOAD
REACTIVE INJECTIONS
wi,k (t) can be estimated by branch flows and the voltage drop
between DGs in a neighborhood.

The neighbors of each DG bus Gi and the branches inter-
connecting them constitute a subtree of the whole system, and
the root node of the subtree is denoted as Oi. For example,
O3 = G2 is the root node of N (G3) in Fig. 3. Thus, we can
divide HGk ,Lj in 14 into two parts:

HGk ,Lj = HOi,Lj + H
Lj
Oi−Gk

H
Lj
Oi−Gk = HGk ,Lj − HOi,Lj (15)

where HOi,Lj = e0,Oi is the total impedance of branches out-
side N (Gi) in e0,Gk ∩ e0,Lj and HOi−Gk ,Lj = eOi,Gk ∩ eOi,Lj is
the total impedance of branches insideN (Gi) in e0,Gk ∩e0,Lj .
Then, wi,k (t) can also be divided into two parts:

wi,k (t) = wouti,k (t)+ w
in
i,k (t)

wouti,k (t) =
∑

Lj∈N(Gi)
HOi,LjQLj

wini,k (t) =
∑

Lj∈N(Gi)
H
Lj
Oi−GkQLj (16)

Since Oi is the root node of N (Gi), e0,Oi will be the subset
of e0,Lj for every Lj ∈ N (Gi). Then, according to 7, we have:

HOi,Lj = HOi,Oi =
∑

k∈e0,Oi

|zk | , ∀Lj ∈ N (Gi)

wouti,k (t) = HOi,OiQL,N(Gi)(t) (17)

where QL,N(Gi) =
∑

Lj∈N(Gi) QLj is the total reactive power
demand in N (Gi). According to the power balance equation
under LinDistFlow approximation, N (Gi) is the opposite of
the total reactive power injected from DG buses into N (Gi),
which can be calculated by the branch flows and power
injections measured in the DG buses in N (Gi):

QL,N(Gi) = QBrOi + QOi + QGi −
∑

Gl∈N(Gi)\{Gi,Oi}
QBrGl (18)

where QBrGl is the branch flow from Gl to its parent node,
which can be seen as the reactive power injection of the
equivalent node ofGl and all its descendant nodes. According
to 17 and 18, wouti,k (t) can be accurately estimated.

According to 4 and 6,wini,k (t) can be estimated by the
voltage drop between Oi and Gj, which can be calculated by:

VOi−Gk = VN(Gi)L
Oi−Gk + V

N(Gi)G
Oi−Gk

VN(Gi)L
Oi−Gk =

∑
Lj∈N(Gi)

H
Lj
Oi−Gk (sinθQLj + cosθPLj )

VN(Gi)G
Oi−Gk = HGi

Oi−Gk

(
sinθQGi + cosθPGi

)
+

∑
Gl∈N(Gi)\{Gi,Oi}

HGl
Oi−Gk (sinθQ

Br
Gl+cosθP

Br
Gl )

(19)

where VOi−Gk is the voltage drop between Oi and Gk , which
can be calculated by the voltage measurements in DG buses.
VN(Gi)G
Oi−Gk is the contribution of the branch flow injected from
Gj ∈ N (Gi) into N (Gi), which can be calculated by the
branch flows measured in DG buses; VN(Gi)L

Oi−Gk is the contri-
bution of power injection on all the load buses to VOi−Gk ,
which can be calculated by VOi−Gk − VN(Gi)G

Oi−Gk . By denoting
the power factor of load Lj as cosφLj , where φLj is the phase
angle between the current and voltage injection of node Lj,
we have:

PLj = QLjcotφLj

VN(Gi)L
Oi−Gk =

∑
Lj∈N(Gi)

H
Lj
Oi−GkQLj (sinθ+cosθcotφLj ) (20)

By defining the power factor of the total power injection of
all the load buses in N (Gi) as cosφN(Gi), we have:

cotφN(Gi) =
PL,N(Gi)
QL,N(Gi)

VN(Gi)L
Oi−Gk =

(
sinθ + cosθcotφN(Gi)

)
wini,k (t)

+ cosθ
∑

Lj∈N(Gi)
H
Lj
Oi−GkQLj

× (cotφLj − cotφN(Gi)) (21)

Then, wi,k can be calculated by:

wini,k (t) = ŵini,k (t)+ res(wini,k (t))

ŵini,k (t) =
VN(Gi)L
Oi−Gk

sinθ + cosθcotφN(Gi)
res(wini,k (t))

=

cosθ
∑

Lj∈N(Gi)H
Lj
Oi−GkQLj (cotφN(Gi) − cotφLj )

sinθ + cosθcotφN(Gi)
(22)

In most countries, retail customers may be required to
correct their power factors to a standard (e.g., 0.95) or pay
an additional electricity tariff for a low power factor. In that
case, the power factors of load buses in a neighborhood will
have similar power factors. Then, res(wini,k (t)) can be ignored
so that wini,k (t) can be approximated by ŵini,k (t), which can
be calculated without the requirement of the measurement of
load buses. Then,wi,k (t) can be estimated aswouti,k (t)+ŵ

in
i,k (t).
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2) ESTIMATION OF THE LOAD VOLTAGE
Since there is no DG connected to load buses, load buses
will not undergo overvoltage. Thus, λL,max can be fixed to
all 0 vectors so that only the risk of low voltage needs to be
considered for the load buses.

To find the buses with low voltage, neighborhood N (Gi)
can be further segmented into n (Gi) different subneighbor-
hoods by cutting it off at bus Gi, where n (Gi) is the number
of branches connected with Gi. In this case, Gi will be the
only common node of all the subneighborhoods. For the
subneighborhood, the load bus Lj can be denoted as N

(
Lj
)
.

For example, N (G2) in Fig. 3 can be cut into 2 subneighbor-
hoods: N (L1) ={G1, G2, G5, L1, L3} and N (L2) = {G2, G3,
G6, L2}.

The load voltage will be estimated with a subneighborhood
as a unit. If the bus with the lowest voltage can meet the
voltage constraints, then the buses in the subneighborhood
will not offend the voltage constraints; thus, we do not need
to estimate the load voltage in a subneighborhood.

According to the network topology, subneighborhoods can
be classified into three types, as shown in Fig. 4.

FIGURE 4. Types of subneighborhoods.

Type I: As shown in Fig. 4-A, there is only one DG bus
that injects power flow into a type I subneighborhood where
all the buses at the edge of the subneighborhood are equipped
with DG. In that case, there will be no reverse flows in
the subneighborhood so that load buses will not be under
voltage if all the DG buses are in the same subneighborhood.
Hence, we do not need to estimate the load voltages in
a type I subneighborhood so that the Lagrange multipliers
corresponding to the lower bounds of the load buses in a type
I subneighborhood can be set to 0.

Type II: As shown in Fig. 4-B, branch flows are not in
the same direction in a type II subneighborhood, but every
load bus is directly connected with at least one DG bus with
a branch whose power flow can be measured directly by the
DG bus. In that case, the load voltage in the subneighborhood
can be calculated by the LinDistFlow model.

Type III:As shown in Fig. 4-C, the branch flows are not in
the same direction, and not all load buses are connected with
a DG bus directly in a type III subneighborhood. In this case,
the load voltages of some buses are determined by the load
distribution inside the subneighborhood.

To describe the load distribution, define dVN(Lj)L
as a

vector of all the dVLk = sinθQLk + cosθPLk , H
N(Lj)L
OLj−Lj

as

a vector of all the HLk
OLj−Lj

= HLj,Lk − HOLj ,OLj for each

Lk ∈ N
(
Lj
)
. Define the root node of N

(
Lj
)
as OLj and

denote its voltage as VOLj . Similarly, define dVN(Lj)G
as a

vector of all the dV Br
Gl = sinθQBrGl + cosθPBrGl and define

H
N(Lj)G
OLj−Lj

as a vector of all the HGl
OLj−Lj

= HLj,Gl −HOLj ,Gl for

eachGl ∈ N
(
Lj
)
\{OLj}. Since dVN(Lj)L

cannot be measured

directly, the estimate dV̂N(Lj)L
is used instead, where an

element is denoted as dV̂Lk . Then, the voltage of load Lj can
be estimated by:

V̂Lj = VOLj + V̂
N(Lj)L
OLj−Lj

+ V
N(Lj)G
OLj−Lj

V̂
N(Lj)L
OLj−Lj

=

(
H

N(Lj)L
OLj−Lj

)T

dV̂N(Lj)L

V
N(Lj)G
OLj−Lj

=

(
H

N(Lj)G
OLj−Lj

)T

dVN(Lj)G
(23)

where VN(Gi)G
Oi−Lj is the contribution of the branch flow injected

from all the DG buses into N
(
Lj
)
and V

N(Lj)G
OLj−Lj

is the contri-
bution of power injection on all the load buses to the voltage
drop between VLj and VOLj . The accent mark ‘^’ denotes the
estimation.
In (23), dVN(Lj)L

cannot be obtained directly, but the volt-
age of DG buses can constrain its value range. Similar to
the load voltage, for each DG bus Gh ∈ N

(
Lj
)
and Lk ∈

N
(
Lj
)
, define H

N(Lj)L
OLj−Gh

as a vector of all the HLk
OLj−Gh

=

HGh,Lk − HOLj ,OLj . Define H
N(Lj)G
OLj−Gh

as a vector of all the

HGl
OLj−Gh

= HGh,Gl − HOLj ,Gl for each Gl ∈ N
(
Lj
)
\{OLj}.

Then, dV̂N(Lj)L
can be constrained by:

∀Gh ∈ N
(
Lj
)
\{VOLj },VGh = VOLj + V̂

N(Lj)L
OLj−Gh

+ V
N(Lj)G
OLj−Gh

V̂
N(Lj)L
OLj−Gh

=

(
H

N(Lj)L
OLj−Gh

)T

dV̂N(Lj)L

V
N(Lj)L
OLj−Gh

=

(
H

N(Lj)L
OLj−Gh

)T

dVN(Lj)G
(24)

In addition, all the load buses absorb power from the
system, and the total demand in the subneighborhood can be
determined by the branch flows:

∀Lk ∈ N
(
Lj
)
, dV̂Lk < 0∑

Lk∈N(Lj)
dV̂Lk = −

∑
Gl∈N(Lj)

dVGl (25)

According to the LinDistFlow model, for all dV̂N(Lj)L
that

satisfy Eqs. (24)-(25), it is easy to prove that V̂Lj = VLj if
N
(
Lj
)
is a type II subneighborhood, and V̂Lj will higher than

the lowest VGh if N
(
Lj
)
is a type I subneighborhood. That

is, using (23) to estimate the lowest voltage in a type I or II
subneighborhood will not introduce any error, regardless of
the error of dV̂N(Lj)L

.

For a type III subneighborhood, the error of dV̂N(Lj)L
may

introduce error to the estimation of V̂Lj if there is no branch
directly connecting Lj and a DG bus and the equations in
(24) are not enough to determine dV̂N(Lj)L

. The estimation

VOLUME 8, 2020 24339



L. Zhong et al.: Distributed Reactive Power Regulation Considering Load Voltage and Power Loss

of the lowest voltage in a type III neighborhood will be more
conservative if the estimation of load distribution is more
clustered at a location close to DG buses, and it will be
more aggressive if the estimation of load distribution is more
clustered at the location far fromDGbuses. As a compromise,
we assumed that the power demand is distributed as evenly
as possible in the unmeasurable loads under the constraints
in Eqs. (24)-(25)

min
dV̂N(Lj)L

s2(dV̂N(Lj)L
)

subject to Eqs. (24)− (25) (26)

where s2(dV̂N(Lj)L
) denotes the variance in all the elements

in dV̂N(Lj)L
.

Substituting the estimates of wini,k (t) and VLj into 12 and
14, the reactive power regulation problem can be solved only
with the measurement of DG buses.

IV. REAL-TIME CONTROL SYSTEM
According to the distributed solution method given in
Section III, a real-time distributed reactive power regulation
system can be designed for a distribution system.

In this system, all the DG buses are assumed to be equipped
with reactive power regulators that can gather the local bus
voltage, bus power injection, and branch flows measured by
the CT on local buses. Regulators in a neighborhood can
communicate with each other and regulate the reactive power
injection of the local DG.

The control law for the regulator in eachDG busGi is given
below:

SECTION Algorithm
Executed at time step 0:
Initialize the local Lagrangian multiplier vector v(0) as

an all-zero vector.
Executed at each step t:
1. Gather the measurement of local power injection,

local voltage and branch flows.
2. Gather the measurements of DG voltages, DG power

injections and branch flows measured on DG buses
as well as the Lagrangian multipliers of DG voltages
and DG reactive power injections from the neighbor-
hood.

3. Estimate the load distribution for all subneighbor-
hoods in the neighborhood by 26.

4. Estimate all the load voltages by 23.
5. Update local Lagrangian multipliers by 12.
6. Calculatewouti,k and ŵini,k (t) by 17 and 22, respectively.
7. Estimate wi,k (t) as wi,k (t) = ŵini,k (t)+ w

out
i,k

8. Calculate QGi (t + 1) by 14.
9. Update the local reactive power reference by

QGi (t + 1).

V. CASE STUDY
The proposed algorithm has been simulated on a testbed
inspired by the IEEE 33-bus radial distribution system [25].
A schematic diagram of the test system is shown in Fig. 5.

FIGURE 5. Schematic representation of the IEEE 33-bus test feeder. Solid
points represent agents, while hollow points represent load buses.

FIGURE 6. Default load demands in the 33-bus system.

The default load injections of the system, as shown in
Fig. 6, are not distributed uniformly in each neighborhood,
and the power factors of the loads in each neighborhood are
not the same. These characteristics reflect the actual situation
of the real-world distribution system and will produce errors
in the estimations given by 22 and 26.

The voltage limit of the nodes is set to ±5% of the
nominal level 1.0; thus, the lower and upper bounds of the
bus voltage are 0.95 and 1.05 p.u., respectively. The DGs
are assumed to be installed at 8 buses, each with a default
capacity of 550 kVA.

In addition to the proposed method, a centralized opti-
mizer is used to give the optimum output of the case. The
DORPF method given in [22], which requires the PMU data
of all the DG buses without considering the load voltage
constraints, is used as a positive control group, while a
negative control group in which all the DG buses are used
as pure active sources is also given. The simulation lasts
100 steps, while the load demands and the DG capacity are
increased by 1.2 times the default value and considered static.
The curves of the lowest bus voltage in the system and the
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FIGURE 7. The lowest voltage in the system under a load level of 1.2x.

FIGURE 8. The system active loss under a load level of 1.2x.

FIGURE 9. Lowest voltage in the system under a load level of 1.4x.

active power losses are shown in Fig. 7 and 8, respectively.
The simulation result shows that both the given method and
the DORPF can maintain the bus voltages and reduce the
power losses; the estimate used in part C of Section III does

FIGURE 10. The system active loss under a load level of 1.4x.

FIGURE 11. The lowest voltage for each scenario under a load level
of 1.2x.

FIGURE 12. The system active loss for each scenario under a load level
of 1.2x.

not introduce error to the regulation even though the power
factor and load distribution in each neighborhood are not
ideal.
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FIGURE 13. The lowest voltage for each scenario under a load level
of 1.4x.

FIGURE 14. The system active loss for each scenario under a load level
of 1.4x.

By increasing the load demand in the system and the capac-
ity of DG buses to 1.4 times the default value, the curves of the
lowest bus voltage in the system and the active power losses
are shown in Fig. 9 and 10, respectively. The simulation result
shows that the DORPF method cannot maintain the under
voltage of load buses, while the given method can maintain
the load voltage within 80 steps. The active power loss after
the voltage is maintained by the proposed method is slightly
larger than the optimal solution given by the centralized
optimizer, but the difference is acceptable relative to the total
active loss.

To determine whether the method works in more general
scenarios with different load power factors and load distri-
butions, we generate 1000 scenarios in which the active and
reactive power injections of buses follow the normal distribu-
tion, where the mean value is the default value of a 33- bus
system and the standard deviation is 4%, resulting in different
power injections and power factors for each bus in each
scenario. For each scenario, the DG reactive power will be
regulated by 100 steps of the proposed method and the ORPF

method, respectively, and we can validate the performance of
the proposed method through comparison.

When we set the load level of the system as 1.2x of the
default value, both the given method and the DORPF method
can maintain the load voltage and reduce the power losses.
The lowest bus voltage and the active power losses for each
sample are shown in Fig. 11 and 12, respectively.

When we increase the load level to 1.4x, the proposed
method can still maintain the load voltage, whereas DORPF
cannot. Although the proposed method undergoes a higher
power loss than DORPF to maintain the load voltage, the loss
is still significantly reduced compared with that of the nega-
tive control group.

These results show that the proposed method performs
similarly to the existing distributed method, which uses PMU
under light-load conditions, in terms of its ability to reduce
the active loss while maintaining the load voltage, and it can
better maintain the load voltage than the existing method
under heavy load conditions.

VI. CONCLUSION
In this paper, we propose a distributed reactive power reg-
ulation strategy that works in an environment in which
no PMU data can be obtained. In the proposed strategy,
distributed generators can perceive their own voltage mag-
nitude and the P/Q flows in the connected branches, com-
municate with nearby DG buses, and then adjust the reactive
power injections into the grid to minimize power losses and
maintain bus voltages. Compared with the existing methods,
the proposed method can be implemented more easily due to
its low measurement requirements. Furthermore, it can keep
not only the DG buses but also the unmeasurable load buses
within the voltage constraints.
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