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ABSTRACT Validation is one of the most important aspects of clustering, particularly when the user is
designing a trustworthy or explainable system. However, most clustering validation approaches require
batch calculation. This is an important gap because of the value of clustering in real-time data streaming
and other online learning applications. Therefore, interest has grown in providing online alternatives for
validation. This paper extends the incremental cluster validity index (iCVI) family by presenting incremental
versions of Calinski-Harabasz (iCH), Pakhira-Bandyopadhyay-Maulik (iPBM),WB index (iWB), Silhouette
(iSIL), Negentropy Increment (iNI), Representative Cross Information Potential (irCIP), Representative
Cross Entropy (irH), and Conn_Index (iConn_Index). This paper also provides a thorough comparative study
of correct, under- and over-partitioning on the behavior of these iCVIs, the Partition Separation (PS) index
as well as four recently introduced iCVIs: incremental Xie-Beni (iXB), incremental Davies-Bouldin (iDB),
and incremental generalized Dunn’s indices 43 and 53 (iGD43 and iGD53). Experiments were carried out
using a framework that was designed to be as agnostic as possible to the clustering algorithms. The results on
synthetic benchmark data sets showed that while evidence of most under-partitioning cases could be inferred
from the behaviors of the majority of these iCVIs, over-partitioning was found to be a more challenging
problem, detected by fewer of them. Interestingly, over-partitioning, rather then under-partitioning, wasmore
prominently detected on the real-world data experiments within this study. The expansion of iCVIs provides
significant novel opportunities for assessing and interpreting the results of unsupervised lifelong learning in
real-time, wherein samples cannot be reprocessed due to memory and/or application constraints.

INDEX TERMS Clustering, validation, incremental cluster validity index (iCVI), adaptive resonance theory
(ART), incremental (online) clustering algorithms, data streams.

I. INTRODUCTION
Cluster validation [1] is a fundamental topic in cluster anal-
ysis. It is crucial to assess the quality of partitions detected
by clustering algorithms where no class label information
is available. Moreover, different clustering solutions may

The associate editor coordinating the review of this manuscript and
approving it for publication was Chao Tong.

be found by distinct algorithms, or even by the same algo-
rithm subjected to different hyper-parameters or different
presentation orders [2], [3]. Cluster validity indices (CVIs)
function as evaluators of such solutions by computing some
cluster quality measure based on (i) the degree of agreement
between the output and a reference partition (external CVIs),
or (ii) the data itself and the output partition information
(internal CVIs). Numerous examples of such criteria have
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been presented in the literature to evaluate partitions in offline
mode; for comprehensive reviews and experimental studies,
the interested reader may refer to [4]–[16].

Since 2018, incremental cluster validity indices (iCVIs)
have been developed to track the effectiveness of online clus-
tering methods over data streams [17]–[20]. These are online
versions of sum-of-squares (SS)-based internal CVIs [21],
which typically exhibit a trade-off between measures of com-
pactness (a.k.a. dispersion or within-cluster scatter) and iso-
lation (a.k.a. between-cluster separation) [2], [21]. To enable
cluster validation in online applications, a recursive formu-
lation of compactness was introduced in [17], [18]. This
strategy was used to develop incremental versions of Davies-
Bouldin [22] (iDB) and Xie-Beni [23] (iXB) in [17], [18]
as well as incremental versions of two generalized Dunn’s
indices [24] (iGDs) in [25]. Particularly, the behavior of iXB
and iDB were analyzed in both accurately and poorly parti-
tioned data sets in [17], [18], whereas the studies in [19], [20]
only investigated the behavior of iDB in cases in which the
MU streaming clustering (MUSC) [26] accurately detected
the structures present in the data. In this context, the contri-
butions of our work [27] are two-fold:

1) Introducing 7 novel iCVIs. The incremental versions
of Calinski-Harabasz [28], WB index [29], Pakhira-
Bandyopadhyay-Maulik [30], and Silhouette [31] were
realized by employing the incremental update of
compactness developed in [17], [18]. The incremen-
tal versions of Negentropy Increment [32], [33],
Representative Cross Information Potential and Rep-
resentative Cross Entropy [34], [35] were real-
ized using the incremental update of covariance
matrices [36]. Finally, the incremental version of
the Conn_Index [37], [38] was realized by storing
co-activation counts of multiple prototypes generated
using fuzzy adaptive resonance theory (ART)-based
models [39], [40]. ART networks have been used in a
multitude of applications [41], [42] and were chosen
for their simple parameterization of cluster granularity
and other useful properties [43], [44].

2) Performing a comparative study among 13 iCVIs in
cases of correct, under- and over-partitioning on syn-
thetic and real-world benchmark data sets. It is not
the focus of this study to contrast the iCVIs’ behavior
associated with specific online clustering algorithms
and their dynamics and, therefore, a framework that is
as clustering algorithm agnostic as possible was used
to define the data partitions.

To the best of our knowledge, this work provides the first
comprehensive and systematic comparative study on iCVIs.
The remainder of this paper is structured as follows: Section II
provides a brief review of batch CVIs, iCVIs, as well as ART;
Section III presents novel extensions of several other CVIs
to the incremental family; Section IV details the set-up used
in the numerical experiments; Section V describes and dis-
cusses the results; Section VI compares batch and incremen-

tal versions of the Conn_Index; and Section VII summarizes
the findings of this paper.

II. BACKGROUND AND RELATED WORK
This section provides an overview of CVIs, iCVIs and ART
neural networks used in this study.

A. BATCH CLUSTER VALIDITY INDICES (CVIS)
Consider a data set X = {xi}Ni=1 and its hard partition

� = {ωi}
k
i=1 of k disjointed clusters ωi, such that

k⋃
i=1
ωi = X .

In the following CVI overview, vi is the prototype (centroid)
for cluster ωi, defined as:

vi =
1
ni

ni∑
j=1

xj, xj ∈ ωi, (1)

k is the number of clusters, d is the dimensionality of the data
(xi ∈ IRd ), and N and ni are the cardinalities of a data set and
cluster ωi, respectively. Additionally, the geometric center of
the data is given by:

µdata =
1
N

N∑
i=1

xi, (2)

and the compactness of cluster ωi with respect to point z is:

CPpq(z, ωi) =
ni∑
j=1

‖xj − z‖pq, xj ∈ ωi, (3)

where ‖ · ‖pq is the `q norm to the pth power.

1) CALINSKI-HARABASZ (CH)
The CH index [28] is defined as:

CH =
BGSS/ (k − 1)
WGSS/ (N − k)

, (4)

where the between-group sum-of-squares (BGSS) and
within-group sum of squares (WGSS) are computed as:

WGSS =
k∑
i=1

CP22(vi, ωi), (5)

BGSS =
k∑
i=1

ni‖vi − µdata‖
2
2. (6)

This is an optimization-like criterion [11] such that larger
values of CH indicate better clustering solutions.

2) WB-INDEX (WB)
The WB index [29] is related to CH as discussed in [21] and
is given by:

WB = k
WGSS
BGSS

. (7)

Smaller values of WB suggest better data partition quality.

22026 VOLUME 8, 2020



L. E. Brito da Silva et al.: Incremental CVIs for Online Learning of Hard Partitions: Extensions and Comparative Study

3) DAVIES-BOULDIN (DB)
The DB index [22] averages the similarities R of each cluster
i with respect to its maximally similar cluster j 6= i:

DB =
1
k

k∑
i=1

Ri, (8)

where:

Ri = max
i6=j

(
Si + Sj
Mi,j

)
, (9)

Sl =
[
1
nl
CPq2(vl, ωl)

] 1
q

, l = {1, . . . , k}, (10)

Mi,j =

[
d∑
t=1

|vit − vjt |p
] 1

p

, p ≥ 1. (11)

The variables (p, q) are user-defined parameters, and Sl and
Mi,j (Minkowski metric) measure compactness and sepa-
ration, respectively. Smaller values of DB indicate better
clustering solutions.

4) XIE-BENI (XB)
The XB index [23] was originally designed to detect compact
and separated clusters in fuzzy c-partitions. A hard partition
version is given by the following ratio of compactness to
separation [45], [46]:

XB =
WGSS/N

min
i6=j
‖vi − vj‖22

. (12)

Smaller values of XB indicate better clustering solutions.

5) GENERALIZED DUNN’S INDICES (GDS)
The GDs [24] comprise a set of 17 variants of the original
Dunn’s index [47] devised to address sensitivity to noise in
the latter. These CVIs are given by [25]:

GDrs =
min
i6=j

[
δr (ωi, ωj)

]
max
k

[1s(ωk )]
, (13)

where δr (·) is a measure of separation, and1s(·) is a measure
of compactness. The parameters r and s index the measures’
formulations (r ∈ {1, . . . , 6} and s ∈ {1, 2, 3}). In particular,
when employing Euclidean distance, the GD43 and GD53
variants are formulated using:

δ4(ωi, ωj) = ‖vi − vj‖2, (14)

δ5(ωi, ωj) =
CP12(vi, ωi)+ CP

1
2(vj, ωj)

ni + nj
, (15)

13(ωk ) =
2× CP12(vk , ωk )

nk
. (16)

Larger values of these GDs suggest better clustering
partitions.

6) PAKHIRA-BANDYOPADHYAY-MAULIK (PBM)
Consider the I index [48] defined as:

I =
(
1
k
×
E1
Ek
× Dk

)p
, p ≥ 1, (17)

where:

E1 =
N∑
i=1

||xi − µdata|2, (18)

Ek =
k∑
i=1

CP12(vi, ωi), (19)

Dk = max
i6=j

(
|vi − vj|2

)
. (20)

The quantities Ek and Dk measure compactness and sepa-
ration, respectively. This CVI comprises a trade-off among
the three competing factors in Eq. (17): 1

k decreases with k ,
whereas both E1

Ek
and Dk increase. By setting p = 2 in

Eq. (17), the I index reduces to the PBM index [30]. Larger
values of PBM indicate better clustering solutions.

7) SILHOUETTE (SIL)
The SIL index [31] is computed by averaging the silhouette
coefficients sci across all data samples xi:

SIL =
1
N

N∑
i=1

sci, (21)

where:

sci =
bi − ai

max (ai, bi)
, (22)

ai =
1

ni − 1
CP12(xi, ωi), (23)

bi = min
l,l 6=i

[
1
nl
CP12(xi, ωl)

]
. (24)

The variables ai and bi measure compactness and separation,
respectively. Larger values of SIL (close to 1) indicate better
clustering solutions. To reduce computational complexity,
some SIL variants, such as [49]–[52], use a centroid-based
approach. The simplified SIL [49], [50] has been used suc-
cessfully in clustering data streams processed in chunks,
in which the silhouette coefficients are also used to make
decisions regarding the centroids’ incremental updates [53].

8) PARTITION SEPARATION (PS)
The PS index [54] was originally developed for fuzzy clus-
tering; its hard clustering version is given by [55]:

PS =
k∑
i=1

PSi, (25)

where:

PSi =
ni

max
j
(nj)
− exp

−min
i6=j

(
‖vi − vj‖22

)
βT

 , (26)

βT =
1
k

k∑
l=1

‖vl − v̄‖22, (27)

v̄ =
1
k

k∑
l=1

vl . (28)
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The PS index only comprises a measure of separa-
tion between prototypes. Although included in the batch
CVI section, it can be readily used to evaluate the partitions
identified by unsupervised incremental learners that model
clusters using centroids (e.g., [55]). Larger values of PS
indicate better clustering solutions.

9) NEGENTROPY INCREMENT (NI)
The NI index [32], [33] measures the average normality of
the clusters of a given partition � via negentropy [56], while
avoiding the direct computation of the clusters’ differential
entropies. Unlike the other CVIs discussed so far, the NI is
not explicitly constructed usingmeasures of compactness and
separation [13], [32], thereby being defined as:

NI =
1
2

k∑
i=1

pi ln |6i| −
1
2
ln |6data| −

k∑
i=1

pi ln pi, (29)

where | · | denotes the determinant. The probabilities (p) and
covariance matrices (6) are estimated as:

pi =
ni
N
, (30)

6i =
1

ni − 1

ni∑
j=1
xj∈ωi

(xj − vi)(xj − vi)T , (31)

6data =
1

N − 1

(
XTX − Nµdataµ

T
data

)
, (32)

and themeans v andµdata are estimated using Eqs. (1) and (2),
respectively. Smaller values of NI indicate better clustering
solutions.

10) REPRESENTATIVE CROSS INFORMATION
POTENTIAL (RCIP)
Cluster evaluation functions (CEFs) based on cross
information potential (CIP) [57], [58] have been used
consistently in the literature to evaluate partitions and
drive optimization algorithms searching for data struc-
tures [34], [35], [57], [58]; thus, this work includes these
CEFs under the CVI category. Precisely, representative
approaches [34], [35] replace the sample-by-sample esti-
mation of Renyi’s quadratic entropy [59] using the
Parzen-window method [36] (original CIP [57], [58]) via
prototypes and the statistics of their associated Voronoi poly-
hedrons. The rCIPwas devised for prototype-based clustering
(i.e., two-step methods: vector quantization followed by
clustering of the prototypes) [60]–[64]. The CEF used here
is defined as [35]:

CEF =
k−1∑
i=1

k∑
j=i+1

rCIP(ωi, ωj), (33)

where:

rCIP(ωi, ωj) =
1

MiMj

Mi∑
l=1

Mj∑
m=1

G(1vl,m,6l,m), (34)

G(1vl,m,6l,m) =
e−

1
21v

T
l,m6

−1
l,m1vl,m√

(2π)d |6l,m|

, (35)

1vl,m = vl−vm,6l,m = 6l+6m, {vl, 6l} ∈ ωi, {vm, 6m} ∈

ωj, and Mi and Mj are the number of prototypes used to
represent clusters ωi and ωj, respectively. The prototypes and
covariance matrices are estimated using Eqs. (1) and (31),
respectively. Smaller values of CEF indicate better clustering
solutions. Recently, the information potential [65] measure
has been used to define the state of a system when modeling
and analyzing dynamic processes [66], [67].

11) CONN_INDEX
The Conn_Index [37], [38] was also developed for
prototype-based clustering. It is formulated using the connec-
tivity strength matrix (CONN), which is a symmetric square
similarity matrix that represents local data densities between
neighboring prototypes [68], [69]. Its (i, j)th entry is formally
given by:

CONN(i, j) = CADJ(i, j)+ CADJ(j, i), (36)

where the (i, j)th entry of the non-symmetric cumulative
adjacency matrix (CADJ) corresponds to the number of
samples for which vi and vj are, simultaneously, the first
and second closest prototypes (according to some dissimilar-
ity measure D(·, ·), such as Euclidean distance), respectively:

CADJ(i, j)=card(RFi,j), (37)

RFi,j={xk ∈ RFi : D(xk , vj) ≤ D(xk , vl) ∀l 6= i}, (38)

RFi=
{
xk ∈ X : D(xk , vi) ≤ D(xk , vj) ∀j

}
, (39)

where card(·) is the cardinality operator. The Conn_Index is
defined as:

Conn_Index = Intra_Conn× (1− Inter_Conn) , (40)

where the intra-cluster (Intra_Conn) and inter-cluster
(Inter_Conn) connectivities are:

Intra_Conn=
1
k

k∑
l=1

Intra(ωl), (41)

Intra(ωl)=
1
nl

M∑
i,j

vi,vj∈ωl

CADJ(i, j), (42)

Inter_Conn=
1
k

k∑
l=1

max
m,m6=l

[Inter(ωl, ωm)] , (43)

Inter(ωl, ωm)=

M∑
i,j

vi∈ωl ,vj∈ωm

CONN(i, j)

M∑
i,j

vi∈Vl,m

CONN(i, j)

, (44)

Vl,m={vi : vi ∈ ωl, ∃vj ∈ ωm : CADJ(i, j) > 0},

(45)

the variable M is the total number of prototypes, and
Inter(ωl, ωm) = 0 if Vl,m = {∅}. Naturally, the quantities
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TABLE 1. Cluster validity indices used in this study.

Intra_Conn and Inter_Conn measure compactness and sepa-
ration, respectively. Larger values of the Conn_Index (close
to 1) indicate better clustering solutions.

12) SUMMARY
Table 1 summarizes the formulations of all the CVIs dis-
cussed in this section. Most of these are suited to data com-
prising cluster structures like hyperspheres and hyperellipses.
The exceptions are the Conn_Index and rCIP, these are also
appropriate for data encompassing more complex cluster
structures given their multi-prototype representation nature.

B. INCREMENTAL CLUSTER VALIDITY INDICES (ICVIS)
The compactness and separation terms commonly found in
CVIs are generally computed using data samples and pro-
totypes, respectively [17], [19]. In order to handle online

clustering application demands (i.e., data streams), an incre-
mental CVI (iCVI) formulation that recursively estimates the
compactness term was introduced in [17], [18] in the context
of fuzzy clustering.
Remark 1: Hereafter, the notation CPpq is simplified

to CP. This notation was changed because only the squared
Euclidean norm (p = q = 2) will be used for the com-
pactness. Henceforth, the subscript of CP designates cluster
membership.

Specifically, consider the hard clustering version of com-
pactness for cluster i (i.e., by setting the fuzzy memberships
in [17], [18] to indicator functions):

CPi =
ni∑
j=1
xj∈ωi

‖xj − vi‖22. (46)
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In such a case, when a new sample x is presented and encoded
by cluster i, then its new compactness value becomes:

CPnewi =

nnewi∑
j=1
xj∈ωi

‖xj − vnewi ‖
2
2, (47)

where:

nnewi =n
old
i + 1, (48)

vnewi =v
old
i + (x− voldi )/nnewi , (49)

and:

N new
= N old

+ 1. (50)

The compactness in Eq. (47) can be updated incrementally
as [17], [18]:

CPnewi = CPoldi + ‖zi‖
2
2 + n

old
i ‖1vi‖

2
2 + 21vTi g

old
i , (51)

where:

zi=x− vnewi , (52)

1vi=voldi − v
new
i , (53)

and vector g, which is formally defined as:

gi =
ni∑
j=1

(
xj − vi

)
, (54)

is incrementally updated at each iteration using:

gnewi = goldi + zi + n
old
i 1vi. (55)

Using such incremental formulation, the following iCVIs
were derived (their hard partition counterparts are shown
here [25]):

1) incremental Xie-Beni (iXB) [17], [18]:

XBnew =
1

N new ×

knew∑
i=1

CPnewi

min
i6=j

(
‖vnewi − v

new
j ‖

2
2

) , (56)

2) incremental Davies-Bouldin (iDB) [17], [18]:

DBnew =
1

knew

knew∑
i=1

max
j,j6=i

 CPnewi
nnewi
+

CPnewj
nnewj

‖vnewi − v
new
j ‖

2
2

 , (57)

3) incremental generalized Dunn’s indices (iGDs) [25]:

GDnew43 =

min
i6=j

(
‖vnewi − v

new
j ‖2

)
max
k

(
2CPnewk

nnewk

) , (58)

GDnew53 =

min
i6=j

(
CPnewi + CP

new
j

nnewi + n
new
j

)

max
k

(
2CPnewk

nnewk

) . (59)

Note that only one prototype v, counter n and compactness
CP are updated after each input presentation. If a new cluster
emerges, then knew = kold + 1, and its compactness CP
and vector g are initialized as 0 and E0 (because v = x),
respectively.

C. ADAPTIVE RESONANCE THEORY (ART)
This study uses a neural network implementation of adaptive
resonance theory (ART) [70] given its fast and stable online
learning and its automatic category recognition capabilities.
ART models encompass a rich history with many imple-
mentations well-suited to iCVI computation (see [44] for a
comprehensive review on ART models); the models used for
the experiments in this study are discussed next.

1) FUZZY ART
The fuzzy ART model [39] utilizes fuzzy logic [71] to bound
data within hyper-boxes. For a normalized data set X =
{xi}Ni=1 (xi ∈ IRd , 0 ≤ xi,j ≤ 1 , j = {1, . . . , d}), the fuzzy
ART algorithm, with parameters (α > 0, 0 < β ≤ 1,
0 ≤ ρ ≤ 1), is defined by:

I = (x, 1− x), (60)

Tj =
‖min(I,wj)‖1
α + ‖wj‖1

, (61)

‖min(I,wj)‖1 ≥ ρ‖I‖1, (62)

wnewj = woldj (1− β)+ β min(I,woldj ). (63)

Equation (60) is the complement-coding function, which
concatenates sample x and its complement to form an input
vector I with dimension 2d . Equation (61) is the activation
function for each fuzzy ART category j, where ‖ · ‖1 is
the L1 norm, min(·) is performed component-wise, and α
is a tie-breaking constant. Each category is checked in a
descending order of activation for validity against the vigi-
lance parameter ρ using Eq. (62). If no valid category is found
during training, then a new category is initialized using I as
the new weight vector w. Otherwise, the winning category is
updated according to Eq. (63) using learning rate β.

2) FUZZY ARTMAP
In a fuzzy ARTMAP network [40], two fuzzy ART modules,
A-side and B-side, are supplied with separate but depen-
dent data streams. In classification settings specifically, these
streams consist of data and class labels, respectively. Both
ART modules cluster their inputs according to local topol-
ogy and parameters while an inter-ART module enforces a
surjective mapping of the A-side to the B-side, effectively
learning the functional map of the A-side to the B-side
categories. This model will be required to (i) extend the
iCVI study to prototype-based CVIs such as the Conn_Index,
and (ii) perform the experiments under a clustering agnostic
framework (see Section V), in which the A-side categories
represent cluster prototypes and are driven by the B-side true
data partition labels (note that we follow a simplified fuzzy
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ARTMAP design [72], in which the B-side is replaced by a
stream of ground-truth class labels).

III. EXTENSIONS OF ICVIS
To compute the CVIs mentioned in Section II-A incremen-
tally, employing one of the following approaches is sufficient:

1) The recursive computation of compactness developed
in [17], [18] for the SS-based CVIs (CH, WB, PBM,
and SIL).

2) The incremental computation of probabilities, means
and covariance matrices for the information-theoretic
(IT)-based CVIs (rCIP and NI). Naturally, if the clus-
tering algorithm of choice already models the clus-
ters using a priori probabilities, means and covariance
matrices (such as Gaussian ART [73] and Bayesian
ART [74]), then, similarly to PS, these CVIs can be
readily computed.

3) The incremental building of a multi-prototype rep-
resentation of clusters using a modified ART model
while tracking the density-based connections between
neighboring prototypes for the graph-based CVI
(Conn_index). Specifically, the latter is accomplished
by updating (incrementing and/or expanding) the
CADJ and CONN matrices as clusters grow and/or are
dynamically created.

In the following iCVIs’ extensions (iCH, iWB, iPBM,
iSIL, irCIP, iNI, and iConn_index), if a new cluster is formed
after sample x is presented, then the total number of clus-
ters is updated to knew = kold + 1 (otherwise knew = kold ),
and, unless otherwise noted, the variables associated with
this new cluster are initialized as nnewknew = 1 (number of
samples encoded), vnewknew = x (prototype of this cluster),
CPnewknew = 0 (initial compactness), and gnewknew =

E0 (ini-
tial vector g). Naturally, clusters that do not encode the
presented sample remain with constant parameter values
for the duration of that input presentation. Also note that,
where necessary, the Euclidean norm is replaced with the
squared Euclidean norm (i.e., |·|22) to compute the compact-
ness CP (as per [17], [18]). Finally, for iCVIs that require the
computation of pairwise (dis)similarity between prototypes,
the (dis)similarity matrix is kept in memory, where only the
rows and columns corresponding to the prototype that is
adapted are modified.

A. INCREMENTAL CALINSKI-HARABASZ INDEX (ICH)
The iCH computation is defined as:

CHnew
=

knew∑
i=1

SEPnewi

knew∑
i=1

CPnewi

×
N new

− knew

knew − 1
, (64)

where:

SEPnewi = nnewi ‖v
new
i − µ

new
data‖

2
2. (65)

Note that the variables {n1, . . . , nk}, {v1, . . . , vk}, {CP1, . . . ,
CPk}, {g1, . . . , gk},µdata, k ,N , and {SEP1, . . . , SEPk} are all
kept in memory. These are updated using Eqs. (48) to (55),
except for SEP, which is adapted using Eq. (65). The data
mean µdata is updated like the prototypes v (i.e., Eq. (49)
using µdata in place of v and N in place of n).

B. INCREMENTAL WB INDEX (IWB)
The iWB computation is very similar to that of iCH:

WBnew = knew

knew∑
i=1

CPnewi

knew∑
i=1

SEPnewi

, (66)

and the same variable definitions previouslymentioned apply.

C. INCREMENTAL PAKHIRA-BANDYOPADHYAY-MAULIK
INDEX (IPBM)
The iPBM computation is defined as:

PBMnew
=


max
i6=j

(
‖vnewi − v

new
j ‖

2
2

)
k∑
i=1

CPnewi

×
CPnew0

knew


2

, (67)

where CP0 (compactness of the entire data) and
k∑
i=1

CPnewi

correspond to E1 and Ek , respectively. These are updated
according to Eqs. (48) to (55), along with the remaining com-
pactness variables. Only the pairwise distances with respect
to the updated prototype need to be recomputed at any given
iteration.

D. INCREMENTAL SILHOUETTE INDEX (ISIL)
The SIL index is inherently batch (offline), because it requires
the entire data set to be computed (the silhouette coefficients
are averaged across all data samples in Eq. (21)). To remove
such a requirement and enable incremental updates, a hard
version of the centroid-based SIL variant introduced in [51] is
employed here, as is the squared Euclidean norm (i.e., ‖ · ‖22);
this is done in order to employ the recurrent formulation
of the compactness in Eq. (51). Consider the matrix Sk×k ,
where k prototypes vi are used to compute the centroid-based
SIL (instead of the N samples xi - which, by definition, are
discarded after each presentation in online mode). Define
each entry si,j = D(vi, ωj) (dissimilarity of vi to cluster ωj)
of Sk×k as:

si,j =
1
nj

nj∑
l=1
xl∈ωj

‖xl − vi‖22 =
1
nj
CP(vi, ωj), (68)
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where i = {1, . . . , k} and j = {1, . . . , k}. The silhouette
coefficients can be obtained from the entries of Sk×k as:

sci =
min
l,l 6=J

(si,l)− si,J

max
[
si,J , min

l,l 6=J
(si,l)

] , vi ∈ ωJ . (69)

where ai = si,J and bi = min
l,l 6=J

(si,l).

Remark 2:At first, when examining Eq. (68), one might be
tempted to store a k × k matrix of compactness entries along
with their accompanying k2 vectors g (one for each entry)
to enable incremental updates of each element of matrix
of Sk×k ; this approach, however, may lead to unnecessarily
large memory requirements. A more careful examination
shows that it is sufficient to simply redefine CP and g for
each cluster i (i = {1, . . . , k}) as:

CPi=
ni∑
j=1
xj∈ωi

‖xj − E0‖22 =
ni∑
j=1
xj∈ωi

‖xj‖22, (70)

gi=
ni∑
j=1
xj∈ωi

(
xj − E0

)
=

ni∑
j=1
xj∈ωi

xj, (71)

which is equivalent to fixing v = E0. Therefore, their incre-
mental update equations become (as opposed to Eqs. (51)
and (55)):

CPnewi =CP
old
i + ‖x‖

2
2, (72)

gnewi =g
old
i + x. (73)

Using this trick, when a sample x is assigned to cluster ωJ ,
then the update equations for each entry si,j of Sk×k are given
by Eq. (74), as shown at the bottom of this page. Note that
the numerators of the expressions in Eq. (74) update the
compactness ‘‘as if’’ the prototype has changed from E0 to vnew

at every iteration (1v = −vnew). The remaining variables

such as n, N and v are updated as previously described. This
allows {CP1, . . . ,CPk} and {g1, . . . , gk} to continue being
stored similarly to the previous iCVIs, instead of a k × k
matrix of compactness and the associated k2 vectors g.
Remark 3: In the case in which a new cluster ωk+1 is

created following the presentation of sample x, then a new
column and a new row are appended to the matrix Sk×k .
Unlike the other iCVIs, the compactness CPk+1 and vector
gk+1 of this cluster are initialized as ‖x‖

2
2 and x, respectively.

Then, the entries of Sk×k are updated using Eq. (75), as shown
at the bottom of this page.

Following the incremental updates of the entries of Sk×k
(Eq. (74) or (75)), the silhouette coefficients (sci) are com-
puted (Eq. (69)), and the iSIL is updated using Eq. (76), as
shown at the bottom of this page.

E. INCREMENTAL NEGENTROPY INCREMENT (INI)
The iNI computation is defined as:

NInew =
k∑
i=1

pnewi ln

(√
|6new

i |

pnewi

)
−

1
2
ln |6data| (77)

where pnewi = nnewi /N new, and 6new
i is computed using the

following recursive formula [36]:

6new
=
nnew − 2
nnew − 1

(
6old
− δI

)
+

1
nnew

(
x− vold

) (
x− vold

)T
+ δI . (78)

The authors of this work set δ = 10−
ε
d to avoid numerical

errors, where ε is a user-defined parameter. If a new cluster
is created, then 6 = δI and |6| = 10−ε .

F. INCREMENTAL REPRESENTATIVE CROSS INFORMATION
POTENTIAL (IRCIP) AND CROSS-ENTROPY (IRH)
Section V will show that using the representative cross-
entropy rH for computing the CEF makes it easier to

snewi,j =



1
nnewj

(
CPoldj + ‖zi‖

2
2 + n

old
j ‖v

old
i ‖

2
2 − 2vold

T

i goldj
)

, (i 6= J , j = J )

1

noldj

(
CPoldj + n

old
j ‖v

new
i ‖

2
2 − 2vnew

T

i goldj
)

, (i = J , j 6= J )

1
nnewj

(
CPoldj + ‖zj‖

2
2 + n

old
j ‖v

new
j ‖

2
2 − 2vnew

T

j goldj
)

, (i = J , j = J )

soldi,j , (i 6= J , j 6= J )

(74)

snewi,j =



CPk+1 + ‖voldi ‖
2
2 − 2vold

T

i gk+1 , (i 6= k + 1, j = k + 1)
1

noldj

(
CPoldj + n

old
j ‖v

new
i ‖

2
2 − 2vnew

T

i goldj
)

, (i = k + 1, j 6= k + 1)

0 , (i = k + 1, j = k + 1)
soldi,j , (i 6= k + 1, j 6= k + 1)

(75)

SILnew=
1

knew

knew∑
i=1

scnewi . (76)
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observe the behavior of the incremental clustering pro-
cess (this corroborates a previous study in which rH was
deemed more informative than rCIP for multivariate data
visualization [75]):

rH (ωi, ωj)=− ln
[
rCIP(ωi, ωj)

]
, (79)

CEF=
k−1∑
i=1

k∑
j=i+1

rH (ωi, ωj). (80)

Note that, as opposed to the rCIP-based CEF, larger values
of rH-based CEF indicate better clustering solutions. Con-
cretely, because the CEF only measures separation, then,
as with iNI, it is only necessary to update the means and the
covariancematrices online in order to construct the incremen-
tal CEF (iCEF). This is also done using Eqs. (49) and (78),
respectively. The iCEFs based on rCIP and rH are hereafter
referred to as irCIP and irH, respectively.

G. INCREMENTAL CONN_INDEX (ICONN_INDEX)
The Conn_Index is an inherently batch CVI formulated
around the CADJ and CONN matrices. Each element (i, j)
of the CADJ matrix requires a count of the samples in the
data set with the first and second closest prototypes, vi and vj
respectively, while the symetric CONN matrix is equal to the
sum of the CADJ matrix with its transpose. When clustering
data online, vi and vj may change for previously presented
samples, as prototypes are continuously modified or created.
However, for the purpose of building and incrementingCADJ
and CONN matrices online (with only one matrix entry
changing per sample presentation), it is assumed that the
trends exhibited over time by the iConn_Index do not differ
dramatically from its offline counterpart. Batch calculation
can be eliminated entirely by keeping the values of Eqs. (42)
and (44) in memory and updating only the entries that depend
on prototypes vi and vj.

In this study, the multi-prototype cluster representation
required by the Conn_Index was generated using a modified
fuzzy ARTMAP, whose modules A and B were used for
prototype and cluster definition, respectively. Module A of
fuzzy ARTMAP was modified in such a way as to forcefully
create two prototypes using the first two samples of every
emerging cluster in module B. By enforcing this dynamic,
each cluster always possesses at least two prototypes for the
computation of the iConn_Index. This strategy addresses two
problems: first, it allows CADJ to be created from the second
presented sample and onward; second, it prevents cases in
which well-separated clusters are strongly connected simply
because one of them does not have another prototype to
assume the role of the second winner. The main algorith-
mic steps of the modified simplified fuzzy ARTMAP are
summarized in Algorithm 1.
Remark 4: Fuzzy ART neural networks represent proto-

types by the categories’ weight vectors w (see Section II-C).
Thus, the highest-ranked resonant category (i.e., the one
with the largest activation function values according to
Eq. (61) that also satisfies the resonance criteria of Eq. (62))

Algorithm 1Modified simplified fuzzy ARTMAP

/* Initialization */
w1 := E1 (first weight vector of cluster ω1) ;
nω1 := 0 (number of samples of cluster ω1) ;
C := 1 (number of categories in the network) ;
/* Learning */

1 Present new sample and label pair (x, y);
2 nωy := nωy + 1 ;
3 Ji := {∅}, i ∈ {1, 2} (first and second winners) ;
4 Generate input I using Eq. (60);
5 Compute the activation functions (T ’s) of all categories
using Eq. (61);

6 Sort the activation functions (T ’s) in descending order
and store indices in vector I ;

7 for j:= 1 to C do
8 J := I(j);
9 if wJ satisfies Eq. (62) and category J does not

map to any cluster y′ 6= y and nωy 6= 2 then
10 Update wJ using Eq. (63);
11 J1 := J ;
12 break ;

end
end

13 if J1 == {∅} then
14 C := C + 1, J := C, wJ := I ;
15 Map the new category J to cluster y ;
16 J1 := J , J2 := I(1) ;

end
17 if J1 == I(1) then
18 J2 := I(2) ;
19 else
20 J2 := I(1) ;

end

constitutes the first winner. The second winning prototype for
a sample (wj) is the highest activated A-side category when
the first winning prototype (wi) has been removed from the
A-side category set.

Upon receiving the very first sample input, we can
only form a single viable cluster and prototype; therefore,
we would not be able to calculate the iConn_Index. We rem-
edy this by introducing a counter separate from the CADJ
matrix. This counter is incremented to count the number
of times a sample has been presented while only a single
prototype exists, thus preserving these otherwise trouble-
some samples. Upon creation of the second prototype w2
in the fuzzy ARTMAP module A, the CADJ matrix will
be incremented for the first time at element (2, 1). At this
point, the element (1, 2) will be incremented by the value
of the instance counter. When this instance-counting tech-
nique is combined with the forcible splitting of prototypes
previously mentioned, the result is that all samples will be
taken into account when computing the iConn_Index. For all
subsequent samples, the instance counter will remain unused,
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the CONN and CADJ incrementing will be streamlined, and
the iConn_Index will be calculable.
Remark 5:The iConn_Index boundary conditions are listed

below:

1) Cluster represented by a single prototype (singleton),
e.g., immediately following the creation of a new clus-
ter: the Intra entry for that cluster, given by Eq. (42),
defaults to a value of 0 because CADJ(i, i) = 0 ∀i.

2) A single non-singleton cluster exists (i.e., a unique
cluster represented by multiple prototypes): Intra = 1
for this cluster.

3) Like the remaining iCVIs in this study, iConn_Index is
not defined for a single cluster because Inter (Eq. (43))
cannot be computed.

4) Instead of the original constraint CADJ(i, j) > 0
imposed by Eq. (45), the implementation of iConn_
Index in this paper uses CONN(i, j) > 0.

Note that items (1)-(3) arise directly from the Conn_Index
definitions [38], whereas item (4) follows from the step-
by-step illustrative example in [37]. For further clar-
ity, the pseudo-code for the iConn_Index is provided in
Algorithm 2.

IV. NUMERICAL EXPERIMENTS DESIGN
The behaviors of 13 iCVIs (namely iCH, iSIL, iPBM,
iWB, iXB, iDB, iGD43, iGD53, PS, iNI, irCIP, irH, and
iConn_Index) were analyzed using the benchmark data sets
summarized in Table 2. These synthetic and real-world data
sets are also depicted in the scatter plots shown in Fig. 1 and
encompass a diverse set of properties, such as unbalanced
classes, high dimensionality, levels of overlap and number of
samples.

As in [17]–[20], [25], a natural ordering, i.e., meaningful
temporal information, is assumed. To emulate such scenarios,
the samples were presented in a cluster-by-cluster fashion
(samples within a given cluster were randomized), and thus,
this experiment setup is suitable for change-point detec-
tion [25]. All iCVIs were subjected to the same 10 random
orders of clusters (and order of samples within each cluster)
per data set per experiment (see Sections V-A to V-C).

The following discussion relates to the data sets used in
the experiments and the application of linear normalization.
Normalization assumes knowledge of the minimum andmax-
imum data statistics, as the vector quantization required by
the iConn_Index is realized via fuzzy ARTMAP. Therefore,
for consistency, all data sets were normalized to the unit
cube [0, 1]d . Additionally, note that the fuzzy ARTMAP
dynamics were performed with the additional application of
complement-coding [40]. Finally, note that this study does
not employ multi-prototype representations for irCIP or irH,
i.e., Mi = Mj = 1,∀i, j in Eq. (34), because unlike
iConn_Index, such representations are not mandatory for
their computation. Moreover, in these experiments, ε = 12
in Eq. (78) for the incremental computation of the covariance
matrices used by irCIP, irH and iNI.

Algorithm 2 iConn_Index

/* Initialization */
CADJ := {∅} ;
CONN := {∅} ;
Inter := {∅};
Intra := {∅};
Inter_Conn := 0;
Intra_Conn := 0;
Scounter := 0;
/* iConn_Index computation */

1 while streaming samples do
2 x:= new sample;
3 Process x with an ART-based model to obtain the

first wi ∈ ωk (i == J1) and second wj ∈ ωl
(j == J2) best matching prototypes;

4 if wj = {∅} then
5 Scounter := Scounter + 1;
6 else if Scounter > 0 then
7 CADJ (wj,wi) := CADJ (wj,wi)+ Scounter ;
8 Scounter := 0;

end
9 if Scounter = 0 then
10 CADJ (wi,wj) := CADJ (wi,wj)+ 1;
11 Update CONN using Eq. (36);
12 Update Intra(ωk ) using Eq. (42);
13 if ωk 6= ωl then
14 Update Inter(ωk , ωl) and Inter(ωl, ωk )

using Eq. (44);
15 else
16 Update Inter(ωk , ωm), ∀m using Eq. (44);

end
17 Recompute Intra_Conn using Eq. (41);
18 Recompute Inter_Conn using Eq. (43);
19 Recompute Conn_Index using Eq. (40);

end
end

The experiments and statistical analysis were carried
out using the MATLAB software environment and the
scmamp R package [90], respectively. The source code of the
CVIs/iCVIs, algorithms of the ART models and experiments
as well as links to the figures depicting the iCVIs’ behaviors
across all experiments for the data sets listed in Table 2
are provided by the iCVI MATLAB Toolbox at the Applied
Computational Intelligence Laboratory public GitHub
repository1.

V. A COMPARATIVE STUDY
This section discusses the behavior of the iCVIs in three gen-
eral cases when assessing the quality of clustering solutions
in real-time: (1) correct partitions, (2) under-partitions, and
(3) over-partitions. It should be emphasized that the purpose

1https://github.com/ACIL-Group/iCVI-toolbox
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TABLE 2. Summary of the data sets’ characteristics.

of this study is to observe the behavior of the iCVIs in
these different scenarios in order to gain insight into their
applicability; agnostic to the clustering algorithm. For that
reason this analysis will not focus on evaluating the perfor-
mance or capabilities of specific online clustering algorithms.
Similar to [25], in each of these scenarios, we investigate
the iCVIs’ dynamics triggered by the two following events:
(a) the creation of a new cluster (for scenarios (1) and (3))
or the merging of two clusters (for scenario (2)), and (b) the
assignment of samples to the current (existing) cluster.

Note that this is not an exhaustive study of all possible
permutations of clusters and samples (which is k! for clusters,
and ni! within each cluster i). Nonetheless, we seek to find
typical behaviors that would allow the inference of specific
problems that may arise during incremental unsupervised
learning; iCVIs should help the practitioner to identify issues
by yielding good values when correctly partitioning and bad
values when problems occur. Particularly, the observations
from case (1) are used as a reference behavior (or default)
to which cases (2) and (3) are compared. The overarching
goal is to observe the capabilities of the iCVIs in identify-
ing anomalous behaviors caused by synthetically generated
problems (under- and over-partitions).

A. CORRECT PARTITIONS
Assume that a suitable clustering algorithm was selected and
optimally parameterized, thus yielding correct data partitions

FIGURE 1. (a)-(t) Synthetic data sets. (u)-(v) Real-world data sets.
High-dimensional data sets are shown using a 2-dimensional
t-distributed stochastic neighbor embedding (t-SNE) [89] projection.

when presenting samples in a given cluster-by-cluster order-
ing. Again, the goal of this study is not to compare the merits
of any particular incremental clustering algorithm; There-
fore, in order to emulate the scenario previously described
and make the experiments clustering algorithm agnostic,
we simply cluster by merely classifying each sample based
on their true labels and compute the iCVIs incrementally.
This experimental setup relies on the assumption that, if there
exists a subset of clustering algorithms that can perfectly
cluster a given data set, then at each point in time they must
make the same, and correct, sample assignment to clusters.
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FIGURE 2. (a)-(m) Behaviors of iCVIs (blue curves) when correctly
partitioning the data set R15. (n) The number of clusters is depicted by
the step-like red curve. Each discrete time instant (x-axis) corresponds to
the presentation of one sample. The dashed vertical lines delimit
consecutive clusters (ground truth), i.e., samples before a dashed line
belong to one cluster, whereas samples after it belong to another.

Furthermore, such correct assignments should be indicated
by good iCVI values.

For brevity, Fig. 2 shows the behaviors of the iCVIs when
correctly partitioning only the R15 data set. Note that this
figure depicts the behaviors of the iCVIs immediately fol-
lowing the creation of a second cluster because they usu-
ally cannot be computed for a single cluster. Note how
iConn_Index behavior tends to follow an exponential of the
form A(1− e−Bt ) during the presentation of each cluster in
well-behaved data sets. The response appears to approach
the somewhat step-like behavior of its batch counterpart (see
Section VI).

Fig. 2 also shows that sudden changes in many iCVI values
follow the emergence of new clusters (as expected from
previous studies [17]–[20], [25]). During the presentation of
samples belonging to a particular cluster, different behaviors
can be observed. To identify trends among the iCVIs in a
principled manner, in each run of each data set, the following
experimental data were collected:

1) The number of times the iCVI increased, decreased and
remained constant immediately following the creation
of a new cluster (hereafter referred to as immediate
behavior).

2) The number of times the iCVI increased, decreased and
remained constant during the assignment of samples
to the current existing cluster (hereafter referred to
as medium-term behavior). Particularly, in each time
interval corresponding to the presentation of samples
belonging to an existing cluster, a simple linear regres-
sion model [91] was fit and a t-test was performed for
the first-order coefficient (slope). If the null hypothesis
could be rejected under a 5% significance level, then
we observed the sign of the first-order coefficient; it
was counted as an increasing trend if positive and a
decreasing trend if negative. Otherwise, if the t-test
result was not deemed statistically significant, then the
behavior was accounted for as constant (i.e., no iCVI
change).

The experimental data from both (1) and (2) were then
averaged across 10 runs for each data set. Next, both were
analyzed by adapting the methodology discussed in [90], [92]
to our problem. In particular,

1) We performed the Iman–Davenport version of Fried-
man’s rank sum test to check the hypothesis that these
trends are equally typical/probable.

2) If the null hypothesis of the previous test was
rejected, then we proceeded with a post-hoc test
(Bergmann–Hommel’s method) to identify the most
typical/probable trend.

This analysis was repeated for all iCVIs, and the results
are summarized in Table 3. We emphasize that the behaviors
listed in Table 3 are typical, not exclusive. The only iCVIs
that consistently behaved following solely the trends shown
in Table 3 (i.e., for all data sets, without exceptions) were the
iCH, iWB, iConn_Index, iGD53, irH and PS for experimen-
tal data (1). The iCVIs generally exhibited different trends,
nonetheless, the ones that occurred frequently enough to be
deemed as statistically significant are reported in Table 3.

B. UNDER-PARTITIONS
Consider a scenario in which a suboptimal clustering algo-
rithm is selected or an appropriate one is badly parameterized
such that it yields an under-partition of the data set at hand.
For instance, Fig. 3a shows an under-partition of the R15
data set yielded by a fuzzy ART trained under a suboptimal
parameter setting where clusters were presented in the order
depicted in Fig. 3b.We are interested in how similar scenarios
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TABLE 3. Summary of the iCVIs’ behaviors when correctly, under-, and over-partitioning the synthetic data sets used in the experiments.

FIGURE 3. (a) An under-partition of the data set R15 by fuzzy ART.
(b) Presentation order of the clusters.

would reflect in the iCVIs’ behaviors (ideally they should
yield poor values) and how strikingly these would deviate
from the reference (i.e., according to Table 3). Therefore,
we deliberately under-partitioned each data set by randomly
merging two close clusters, which were selected using a prob-
ability proportional to the Euclidean distance between their
centroids. In particular, the probability of selecting clusters i
and j for merging is given by:

pi,j =
‖vi − vj‖62

(k2)∑
m,n
‖vm − vn‖62

, (81)

where the 6th power is used for contrast enhancement. After
a cluster pair is selected, they are assigned the same label

during the online computation of the iCVIs. It is reasonable
to assume that a clustering algorithm might allocate samples
from clusters closer together rather than those from clusters
farther apart. Equation (81) is used to avoid repeatedly merg-
ing the same two closest clusters in all runs.

For brevity, Fig. 4 shows the behaviors of the iCVIs
when under-partitioning only the R15 data set. The gray
shaded areas shown in these figures correspond to the exact
time interval in which samples from different clusters were
merged, and thus the total number of clusters remained
constant. Note that the merged clusters were not neces-
sarily consecutive, given that the sequence of clusters was
randomized.

In order to identify under-partitioning trends among the
iCVIs in a principled manner, the following data were col-
lected during each run of each data set:

1) The number of times the iCVI increased, decreased
and remained constant immediately following the first
merged sample (hereafter referred to as immediate
behavior).

2) The number of times the iCVI increased, decreased and
remained constant during the incorrect assignment of
samples, i.e., during merging (hereafter referred to as
medium-term behavior).

The procedures discussed in Section V-A were used to obtain
the experimental data (2) and to perform the statistical com-
parison among trends. The results obtained and summarized
in Table 3 show that:
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FIGURE 4. Each discrete time instant (x-axis) corresponds to the
presentation of one sample of the data set R15 during the
under-partitioning experiment. The dashed vertical black lines delimit
consecutive clusters (ground truth), i.e., samples before a dashed line
belong to one cluster, whereas samples after it belong to another. The
continuous vertical green lines indicate the instant in which the
under-partition (UP) problem starts, and the samples delimited by the
gray shaded interval are assigned to an existing cluster, instead of
forming a new one. (a)-(m) Behaviors of iCVIs (blue curves). (n) Number
of clusters (step-like red curve).

1) All iCVIs consistently worsened as the algorithm incor-
rectly agglomerated samples from different clusters
(behavior during merging). The exception was the
iConn_Index, for which an overall increasing trend was
deemed statistically significant. Additionally, com-
pared to the correct partition experiment while under
a constant number of clusters, the iCH, iPBM, iWB,
iGD43, iGD53 and PS exhibited opposite behavior,

which is a strong indication of the occurrence of this
problem in the clustering process.

2) Immediately after starting to incorrectly merge clusters
(i.e., first merged sample), the performances of most
iCVIs typically were accompanied by a change toward
worse values under a constant number of clusters. The
exceptions were iGD43, iGD53 and PS, which did not
exhibit a statistically significant immediate behavior
across our experiments.

3) Although the trends exhibited by iSIL and iDB during
merging are similar to the correct partition case under
constant number of clusters, it remains possible to
infer the under-partition issue because, in many cases,
a sudden and pronouncedworsening of these iCVIswas
observed as a defining characteristic following such a
problem. Many of these worsening trends during merg-
ing dominated the ‘‘natural’’ worsening tendencies of
these iCVIs (e.g., Figs. 4d and 4f). However, instances
exist in which the challenge relies in patently identi-
fying, without any external knowledge, how much the
relative worsening would actually constitute a problem.
The latter issue can potentially affect many iCVIs; for
instance, it is also present in irCIP and irH. The statisti-
cally significant trend of the irH during merging is also
the same as the ones for correct partitions. Although
no direct comparison to the correct partitioning case
is possible for iXB, a similar aggressive worsening
behavior was observed in many cases (e.g., Fig. 4e);
thus, analogous conclusions and caveats apply.

In summary, a worsening iCVI trend under a constant
number of clusters indicates that the clustering algorithm
might be mistakenly grouping the samples under the same
cluster umbrella, and thus should trigger the practitioner’s
attention. However, it is important to be cautious with respect
to false positives. Even when a correct partition was retrieved
in the experiments of Section V-A, some iCVIs exhibited
large fluctuations while assigning samples of some data sets
to their correct cluster (with the number of clusters remaining
constant in that interval) as well as false negatives. It should
be made clear that the behaviors listed in Table 3 are typical
not exclusive. As a general recommendation, abrupt changes
toward worse values of an iCVI under a constant number
of clusters should be examined carefully. Also, as noted
in [25], it is recommended to observe multiple iCVIs concur-
rently. This is especially important for reliable under-partition
detection.

C. OVER-PARTITIONS
Consider a scenario in which a suboptimal clustering algo-
rithm or parameterization is selected such that the data set
at hand is over-partitioned. For instance, Fig. 5a shows an
over-partition of the unbalance data set yielded by standard
fuzzy ART (the clusters were presented in the order depicted
in Fig. 5b), which is suboptimal given that the global vigi-
lance parameter (ρ) assumes equally sized clusters. We are
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FIGURE 5. (a) An over-partition of the data set unbalance by fuzzy ART.
(b) Presentation order of the clusters.

interested in how over-partition would reflect in the iCVIs’
behaviors (ideally they should yield poor values) and how
strikingly these would deviate from their expected behav-
iors when correct partitions are detected (i.e., the ‘‘refer-
ences’’ according to Table 3). Therefore, we deliberately
over-partitioned each data set by splitting one of its clusters.
A cluster was chosen for splitting with a probability propor-
tional to its size, thus favoring the selection of large clusters.
It is reasonable to assume that certain clustering algorithms,
such as standard ART-based ones, would split large clus-
ters according to their parameterization (e.g., the problem
depicted in Fig. 5). A cluster size is measured by the smallest
hyperrectangle that encloses all of its points. Thus, for clus-
ter i, hyperrectangle size Ri is measured as [39]:

Ri = d − ‖
∧
I j∈ωi

I j‖1, (82)

where I j is the complement-coded version of xj (see Eq. (60)).
To avoid splitting large clusters with a small number of
samples (n) and consequently permit a better observation of
the iCVIs’ behaviors during over-partition, if ni < 10, then
Ri was set to 0.

Naturally, somemethodmust be employed to split a cluster.
That is why the over-partition experiment is (unfortunately)
not completely clustering algorithm agnostic; fuzzy ARTwas
used to create the over-partition. Therefore, results might be
somewhat biased toward fuzzy ART solutions. For clarity,
the selected clusters were split only into two sub-clusters.
In particular, for each selected cluster, that cluster’s samples
were shuffled and fed to fuzzy ART modules trained for
1 epoch (i.e., onlinemode) with progressively larger vigilance
parameter (ρ) values until a solution with 3 clusters was
found, in which case the vigilance parameter sweep was
stopped. The vigilance values for the fuzzy ART trained with
that specific sample order were successively increased using:

ρ(t + 1)=
1

C(t + 1)
(ρ(0)+ C(t + 1)− 1), (83)

C(t + 1)=C(t)+ δ, (84)

where ρ(0) = 1 − Rs
d , Rs is the size of the selected cluster s

(Eq. (82)), C(0) = 1 and δ is the step size, which was set

to 0.001. From Eqs. (83) and (84), the constraint on the sub-
cluster sizes becomes increasingly more strict as ρ increases.
For instance, C = 2 would correspond to a maximum
category size equal to half the size of the selected cluster [93].
However, given the ordering effects, the value selected for
C is not necessarily equal to 2, hence the necessity of the
vigilance parameter sweep, which is defined following the
strategy described in Eqs. (83) and (84). This process was
repeated for 10 random orders, and the clustering solution
that yielded the two most balanced subclusters was used in
the over-partition experiment. This strategy was followed
in order to (i) create a realistic over-partition case for that
cluster in online unsupervised learning mode, (ii) facilitate
the observation of over-partition behaviors and (iii) avoid
the creation of singletons. The over-partition experiment then
proceeds as in the previous sections, but using the fuzzy ART
labels for the split cluster during the online computation of
the iCVIs.

For brevity, Fig. 6 shows the iCVIs’ behaviors when
over-partitioning only the R15 data set. The gray shaded areas
shown in these figures correspond to the time interval in
which samples belonging to the same cluster were split into
two subclusters. Note that the subclusters’ samples are ran-
domly presented, i.e., they are not presented in a subcluster-
by-subcluster manner.

To identify over-partitioning trends among the iCVIs in a
principled manner, in each run of each data set, the following
data were collected:

1) The number of times the iCVI increased, decreased and
remained constant immediately following a clusters’
split (hereafter referred to as immediate behavior).

2) The number of times the iCVI increased, decreased and
remained constant during the split of the large cluster
(hereafter referred to as medium-term behavior).

The procedures discussed in Section V-A were used to obtain
the experimental data (ii) and to perform the statistical com-
parison among trends. The results, which are summarized
in Table 3, show that:

1) The typical behaviors of iCH, iWB, PS, iGD53 and
irH are usually indiscernible from the ones expected
when accurately partitioning during both the (incor-
rect) creations of new clusters and the presentation of
samples belonging to the current cluster. Additionally,
the iPBM only exhibited one typical behavior, namely
for the creation of a new cluster event, which was
again identical to the correct partition case. Therefore,
these iCVIs do not seem suitable for identifying over-
partitions.

2) The iSIL, iXB and iDB only deviated partially, i.e.,
they deviated for one trend, particularly the creation
of a new cluster when incorrectly splitting a clus-
ter. Although the typical trends exhibited by iSIL
and iDB during the cluster split are identical to the
correct partition case, and no direct comparison for
iXB is possible, these iCVIs values underwent a
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FIGURE 6. Each discrete time instant (x-axis) corresponds to the
presentation of one sample of the data set R15 during the
over-partitioning experiment. The dashed vertical black lines delimit
consecutive clusters (ground truth), i.e., samples before a dashed line
belong to one cluster, whereas samples after it belong to another. The
continuous vertical green lines indicate the instant in which the
over-partition (OP) problem starts in the cluster delimited by the gray
shaded interval. (a)-(m) Behaviors of iCVIs (blue curves). (n) Number of
clusters (step-like red curve).

pronounced worsening in many data sets during the
split (e.g., Figs. 6d, 6e, and 6f). Similar to the discus-
sion in the under-partitioning case, defining how much
worsening would become a problem can be subjective,
especially in borderline cases and with no additional
information. Nevertheless, these iCVIs can indicate
over-partitioning problems.

3) The irCIP exhibited the same typical trend following
the presentation of the first sample of the second sub-
cluster, and no direct comparison to the correct partition

scenario is possible during split. However, as with the
iSIL, iXB and iDB, the irCIP usually undergoes a
noticeable worsening during the splitting of the cluster
(e.g., Fig. 6j).

4) The iGD43 and iConn_Index were the only iCVIs
that exhibited trends opposite to their correct-partition
experiment counterparts, thereby providing a strong
indication of over-partition over time. Moreover, when
clustering well-behaved data sets such as dim032
through dim1024, the iConn_Index does not follow its
characteristic exponential curve (expected from correct
partitions) after the erroneous creation of a new clus-
ter and subsequent incorrect assignment of samples.
In turn, the iGD43 was the only iCVI that exhibited
opposite tendencies for both the emergence of a new
cluster and the posterior assignment of samples.

In summary, six out of thirteen iCVIs (iCH, iPBM, iWB,
iGD53, PS and irH) did not provide distinctive insights to
enable definitive detection of the over-partition problems.
In this scenario, without additional a priori information
(e.g., the cardinality of clusters) to indicate a premature
partition, these iCVIs were unable to patently identify
over-partition based on their immediate and/or medium-term
behaviors. On the other hand, five iCVIs (iSIL, iXB, iDB,
irCIP, and iNI) hinted at over-partition through their imme-
diate behaviors and/or a considerable worsening of their
medium-term behaviors. For these iCVIs, the medium-term
behavior was either the same as the correct partition sce-
nario, or a direct comparison was not possible. Finally, two
iCVIs (iGD43 and iConn_Index) showed tendencies opposite
to what was expected during the split, thus providing the
strongest evidence for this particular problem.

Note that although there is a natural order for the presenta-
tion of clusters, the presentation of samples within each clus-
ter is random. Consequently, samples of the over-partitioned
cluster are not presented in a subcluster-by-subcluster man-
ner. This adds another layer of complexity and thus makes
this problem even more challenging. Also note that the
vast majority of behaviors are typical, not deterministic,
so we strongly recommend that the practitioner observe
several iCVIs concurrently in order to accurately detect
over-partition and to limit false positives/negatives.

D. EXPERIMENTS WITH REAL-WORLD DATA SETS
In light of the results obtained for the synthetic data sets,
in this section we analyze the scenarios of correct, under-
and over-partition performed with the real-world data sets of
MNIST and Isolet. The experiments were carried out under
the same settings previously described. The discussion in this
section is based on the observation of frequency of occurrence
of each trend for these two data sets across 10 runs. For
brevity, Figs. 7 through 9 illustrate the iCVIs’ behaviors under
correct, under-, and over-partition only for the MNIST data
set. The iNI, irCIP and irHwere not observed, given the issues
associated with the reliable estimation of covariance matrices
in high-dimensional spaces.
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FIGURE 7. (a)-(j) Behaviors of iCVIs (blue curves) when correctly
partitioning the data set MNIST. (k) The number of clusters is depicted by
the step-like red curve. Each discrete time instant (x-axis) corresponds to
the presentation of one sample. The dashed vertical lines delimit
consecutive clusters (ground truth), i.e., samples before a dashed line
belong to one cluster, whereas samples after it belong to another.

All iCVIs followed the tendencies described in Table 3
when correctly partitioning both real-world data sets, with
the exception of iPBM and iGD43. The former did not
consistently follow either expected trend, whereas the lat-
ter only followed the immediate behavior trend. Regarding
under-partition scenarios, the iPBM, iSIL, iWB, iDB, iGD43
and PS consistently followed the trends listed in Table 3,
whereas the iXB, iGD53 and iConn_Index behavedwith vary-
ing degrees of agreement; notably, the medium-term behavior
(merging interval) of iXBwas consistent with the findings for
the synthetic data sets. The iCH was the only iCVI that did
not behave as expected. Interestingly, the constant trend was
observed for both data sets regarding the immediate behavior
of iGD43 and iGD53. Finally, for the over-partition experi-
ment, the iCH and iGD53 followed their expected trends. The
remaining iCVIs only partially exhibited the trends presented
in Table 3. In particular, iSIL, iXB, iDB and iGD43 were

FIGURE 8. Each discrete time instant (x-axis) corresponds to the
presentation of one sample of the data set MNIST during the
under-partitioning experiment. The dashed vertical black lines delimit
consecutive clusters (ground truth), i.e., samples before a dashed line
belong to one cluster whereas samples after it belong to another. The
continuous vertical green lines indicate the instant in which the
under-partition (UP) problem starts; the samples delimited by the gray
shaded interval are assigned to an existing cluster, instead of forming a
new one. (a)-(j) Behaviors of iCVIs (blue curves).

only consistent with their medium-term behavior, whereas
iWB, iConn_Index and PS were only consistent with their
immediate behavior.

Interestingly, for the real-world data sets studied,
over-partition was prominently detected by more iCVIs than
under-partition. The latter issue was only patently flagged
by PS. Regarding over-partitions, the most visually useful
iCVIs were iXB, iDB, iGD43 and iConn_Index. Although an
increasing trend was observed for the latter, as opposed to the
synthetic data set findings, the behavior following a cluster
split usually does not follow the familiar exponential curve;
instead, a sharp drop generally follows the split, with a small
improvement/recovery afterwards. This behavior suggests
that there might be an issue with the clustering solution.
In such cases, a further challenge lies in discriminating
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FIGURE 9. Each discrete time instant (x-axis) corresponds to the
presentation of one sample of the data set MNIST during the
over-partitioning experiment. The dashed vertical black lines delimit
consecutive clusters (ground truth), i.e., samples before a dashed line
belong to one cluster, whereas samples after it belong to another. The
continuous vertical green lines indicate the instant in which the
over-partition (OP) problem starts in the cluster delimited by the gray
shaded interval. (a)-(j) Behaviors of iCVIs (blue curves). (k) Number of
clusters (step-like red curve).

between correct clusters that naturally do not follow an
exponential curve during their evolution and/or determining
a drop threshold that would constitute a problem. Similarly,
note that iGD43 also decreases following the correct creation
of some new clusters; therefore, discriminating among these
two events may also be a challenge in some instances.

Finally, note that disagreements with the synthetic data set
trends listed in Table 3 are to be expected, as those behav-
iors are typical but not unique. Such variance encourages
the observation of several iCVIs to reliably make inferences
about the quality of partitions of streaming data in real-time.

E. VISUAL INTERPRETATION POWER
In this section we examine a practical aspect of the iCVIs,
namely their visual interpretation power, in terms of clear

hints to problems occurring during the online clustering pro-
cess; these include but not are limited to, substantial varia-
tions of their values (on a global scale) over time. Briefly,
a useful iCVI behavior should make problems easier to
spot. To accomplish this, we visually inspected the iCVIs’
curves to gauge their usefulness in detecting the under-
and over-partition issues that were artificially generated and
intentionally inserted to the experiments described in the
previous sections. The results of such visual inspection are
summarized in Table 4.
For under-partition problems, the PS index consistently

provided visually striking cues for both synthetic and
real-world benchmark data sets. Moreover, it was the most
robust CVI for increasing levels of cluster overlap (S1 to
S4 data sets) and numbers of samples/clusters (Birch1 and
Birch2). The iGD43, iGD53, iXB, iDB, iSIL, iPBM, iCH and
iWB (to a lesser extent) were also visually informative for the
synthetic data sets, in which tendencies associated with this
problem were clearly observable.

Regarding the over-partition problem, the iXB and iDB
clearly flagged all over-partition issues. These were fol-
lowed in their success by iGD43, iSIL, iConn_Index and
irCIP, which were also able to flag the majority of cases.
As previously discussed, a potential challenge associated
with iConn_Index consists of determining in which cases not
following an exponential behavior during the evolution of
sample assignments should signal a problem, and in which
cases a cluster does not naturally follow such a function,
as this characteristic is used to detect problems. Similarly,
the caveat for iGD43 is related to determining whether its
value reduction is associated with an over-partition problem
or the correct emergence of a new cluster; in some correct
partition instances, the creation of new clusters was followed
by a reduction in this iCVI value.

VI. A CLOSER LOOK AT ICONN_INDEX
When evaluated over time, most iCVIs discussed in this study
yield the same values as their batch counterparts (e.g., the
recursive formulation of compactness used in SS-based iCVIs
is an exact computation, not an approximation [17], [18]).
The iConn_Index is an exception, and thus is the sub-
ject of deeper analysis in this section. To obtain the batch
Conn_Index values, all first-ranked and second-ranked fuzzy
ART prototypes were recomputed after the presentation of
each sample based on their activation function values.

For illustration purposes, Figs. 10 through 12 show the evo-
lution of both the Conn_Index and iConn_Index for data set
R15 in all three scenarios described in Section V in one of the
ten experiments. Moreover, they show a simple linear regres-
sion plot of Conn_Index and iConn_Index, as well as the final
prototypes (hyperrectagles) and their connectivity visualiza-
tion (CONNvis [69]). These figures show that iConn_Index
smoothly follows the overall trends of its batch counterpart
(with Pearson correlation coefficients [94] of 0.80, 0.74 and
0.94 for correct, under- and over-partition scenarios, respec-
tively). The batch Conn_Index has a more jagged behavior
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TABLE 4. The iCVIs that conveyed the most visually informative behavior across the experiments are indicated by a black dot symbol ‘‘·’’ for each data set.
The dash symbol ‘‘-’’ indicates that the iCVI was not computed for the corresponding data set.

FIGURE 10. (a) Behaviors of Conn_Index (continuous blue line) and
iConn_Index (dashed red line) when correctly partitioning the R15 data
set. (b) Regression plot between Conn_Index and iConn_Index in (a). The
A-side categories of fuzzy ARTMAP and CONNvis (thicker and darker lines
indicate stronger connections) generated with the (c) batch and
(d) incremental CONN matrices.

and many plateaus. Additionally, note the faint but permanent
connections between several different clusters; these are an

artifact of the online learning process in that the second
closest prototype of a sample that originated a new cluster
always belongs to another existing cluster.

Table 5 reports the correlation coefficients and the mean
square errors between the incremental and batch versions of
the Conn_Index for all data sets averaged across the 10 exper-
iments. For the majority of them, the average correlation
between both Conn_Index versions is above (a) 0.75 (correct
partitions), (b) 0.70 (under-partitions) and (c) 0.85 (over-
partitions). Moreover, for most of the data sets, the aver-
age mean square error is below 0.02 in all scenarios. Some
exceptions include the data sets Aggregation, Lsun and D31
for the correct, under- and over-partition scenarios, respec-
tively. These have smaller correlation coefficients. Therefore,
the effect of quantization level within module A of fuzzy
ARTMAP on the similarity of the batch and incremental
implementations was investigated. This was accomplished by
varying the vigilance parameter ρA of module A in the closed
interval [ρmin, ρmax], where ρmax is the value listed in Table 5
for the respective data set, and ρmin = min

i

(
1− Ri

d

)
(i.e.,

ρmin is computed based on the largest cluster of a given data
set, see Eq. (82)), because the interval [0, ρmin] would yield
identical results (the vigilance test would always be satisfied).
Note that larger values of ρA produce finer granularity of
clusters’ prototypes.

The correlation coefficients andmean squared errors (aver-
aged across 10 runs) depicted in Fig. 13 show that care-
fully tuning the vigilance parameter (granularity level) may
improve the average correlation (from 0.5962 to 0.7977 when
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TABLE 5. Vigilance parameter (ρ) values used in this study and the average correlation coefficient (Ravg) and mean square error (MSEavg) between the
incremental and batch Conn_Index curves.

FIGURE 11. (a) Behaviors of Conn_Index (continuous blue line) and
iConn_Index (dashed red line) when under-partitioning the R15 data set.
(b) Regression plot between Conn_Index and iConn_Index in (a). The
A-side categories of fuzzy ARTMAP and CONNvis (thicker and darker lines
indicate stronger connections) generated with the (c) batch and
(d) incremental CONN matrices.

correctly partitioning the Aggregation data set, 0.5792 to
0.6810 when under-partitioning the Lsun data set, and
0.8337 to 0.9609 when over-partitioning the D31 data set);
however, its effect on this iCVIs’ visual interpretation power

FIGURE 12. (a) Behaviors of Conn_Index (continuous blue line) and
iConn_Index (dashed red line) when over-partitioning the R15 data set.
(b) Regression plot between Conn_Index and iConn_Index in (a). The
A-side categories of fuzzy ARTMAP and CONNvis (thicker and darker lines
indicate stronger connections) generated with the (c) batch and
(d) incremental CONN matrices.

when clustering data streams requires further investigation.
All these results support the original assumption, stated in
Section III-G, that both versions of the Conn_Index would
behave similarly. Therefore, iConn_Index is suitable for
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FIGURE 13. Correlation coefficients and MSEs between the batch and
incremental versions of Conn_Index as a function of the vigilance
parameter in module A of fuzzy ARTMAP. The values shown were
averaged across 10 runs for (a) Aggregation data set under correct
partition experiment, (b) Lsun data set under under-partition experiment,
and (c) D31 data set under over-partition experiment.

assessing the partitions generated by incremental clustering
methods.

VII. CONCLUSION
This paper presented novel incremental versions of seven
cluster validity indices (CVIs), namely, incremental Calinski-
Harabasz (iCH), incremental Pakhira-Bandyopadhyay-
Maulik (iPBM), incremental Silhouette (iSIL), incremental
Negentropy Increment (iNI), incremental Representative
Cross Information Potential (irCIP), incremental Cross
Entropy (irH), and incremental Conn_Index (iConn_Index).
These and previously developed incremental cluster validity
indices (iCVIs) are essential tools that allow the practitioner
to assess the quality of partitions in data streams. By defini-
tion, data streams require real-time processing of incoming
samples because iterating over the entire data set is either
prohibitive or unsuitable for the application.

Using an experimental framework made to be as agnos-
tic as possible to any clustering algorithm as well as syn-
thetic and real-world benchmark data sets, the dynamics
of 13 iCVIs were analyzed in three different clustering sce-
narios: correct, under- and over-partitioning. Specifically,
a thorough comparative study was performed among the pre-
sented iCVIs, the Partition Separation (PS), the incremental
Xie-Beni (iXB), the incremental Davies-Bouldin (iDB) and
the incremental generalized Dunn’s indices 43 and 53 (iGD43
and iGD53) in order to observe how these iCVIs are affected
by the aforementioned problems and thus provide guidelines
to aid the practitioner in identifying when these occur during
online unsupervised learning. Additionally, it was shown that,
although not equal to its batch counterpart, the iConn_Index
follows the same general trends.

As expected from previous studies, most iCVIs under-
went abrupt changes following the creation of a new
cluster. However, when samples from an existing cluster
were presented, each iCVI exhibited a particular behav-
ior which was taken as a reference to compare the cases

of under- and over-partitioning a data set. Most iCVIs
detected under-partitioning of the synthetic data sets during
the incremental clustering process, whereas only a subset of
them provided insight to indicate over-partitioning problems.
Interestingly, the opposite was observed for the real-world
data sets. According to these findings, if the practitioner is
expecting under-partitioning, the PS index can be particularly
useful for detecting of this type of problem, as well as the
following iCVIs: iCH, iPBM, iSIL, iWB, iXB, iDB, iGD43
and iGD53. On the other hand, if over-partitioning issues
are of concern, then we recommend iXB, iDB, iGD43, iSIL,
iConn_Index and irCIP. In any case, we corroborate the rec-
ommendations of previous studies regarding iCVIs: like their
batch counterparts, it is good practice to observe a number of
iCVIs at any given time rather than relying on the assessment
of only one. It is expected that the observations from this
study, as well as the iCVIs’ MATLAB toolbox package pro-
vided, will assist in incremental clustering applications such
as data streams.
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