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ABSTRACT Brain-computer interface (BCI) is a promising and very helpful technology. BCI studies have
attempted to predict arm movements to control robotic arm depending on movement intentions. However,
the low accuracy of movement prediction is a critical challenge in predicting arm movements. The aim of
this study was to predict arm movement with high accuracy from non-invasive neural signals using the deep
learning algorithm. We compared the prediction accuracies of the conventional method and long short-term
memory (LSTM) using non-invasive MEG signals. This is the first study that applied LSTM to predict
arm movements from non-invasive neural signals. The coefficients of correlation between real signals and
signals predicted by the MLR on the x-, y-, and z-axes were 0.677± 0.139 (mean± SD), 0.689± 0.140, and
0.785± 0.103, respectively. The coefficients of correlation between real signals and signals predicted by the
LSTM on the x-, y-, and z-axes were 0.978 ± 0.004, 0.980 ± 0.005, and 0.980 ± 0.008, respectively. The
prediction accuracy was highly improved using the LSTM algorithm. Our results suggest that highly accurate
prediction of arm movement is possible without surgery using the deep learning algorithm. We expect that
the deep learning algorithm will facilitate the control of a robot arm using non-invasive signals in real life.

INDEX TERMS Brain-computer interface, deep learning, long short-term memory.

I. INTRODUCTION
The brain-computer interface (BCI) is a promising technol-
ogy that can be used to predict user’s intention and control
electric devices without movements. It facilitates individuals
with disability to express their thoughts or to control electric
devices. Several types of BCI can be used to predict user’s
intentions [1]. First, the sensorimotor rhythm (SMR)-based
BCI uses brain features suggesting that different areas of the
brain have different functions [2]–[5]. For example, the left
portion of the brain controls the right arm and the right half
of the brain controls the left arm. Therefore, the spatial pattern
of brain activity can be changed according to movement
intention. The SMR-based BCI is generally used to select
a direction according to movement intention, and can be
used to control a mouse cursor or an electrical wheelchair.
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The second method is a P300-based BCI in which P300
represents a positive peak after exposure to a stimulus for
about 300 ms [4], [6]. When a P300 BCI user is exposed to
flashing characters, the magnitude of P300 increases during
the focus on the stimulus. Therefore, the BCI user can select a
character with a maximum amplitude of P300. The P300 BCI
is usually utilized to type characters. The third type of BCI is
steady-state visual-evoked potential (SSVEP).When exposed
to blinking visual stimuli, the activity of the visual cortex
peaks at the same frequency as the stimulus, and SSVEP
BCI selects a visual target based on the characteristics. These
types of BCI are useful to control a computer cursor or to
select characters. However, they are limited in choice, and
each selection requires repeated trials. Thus, the BCI users
cannot select new choices except predetermined commands
such as the directions or the characters.

To overcome the weakness, BCI researchers attempted
to predict arm movements using neural signals to control
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the robotic arm according to movement intentions [7]–[11].
It is an ideal method enabling users with any task intended.
In this study, this type of BCI is designated as arm-movement
prediction (AMP). In 1982, Georgopoulos discovered an
important characteristic of neural activity in primary motor
cortex (M1) [12]. The feature explains how specific neu-
rons in the M1 prefer movement direction, suggesting that
the firing rate of the neuron increases when it is closer to
a specific direction. Reaching trajectory can be estimated
from neural activities using the characteristic. Many studies
have predicted armmovements from spike activity [13]–[15],
local field potentials (LFPs) [16], [17], electrocorticography
(ECoG) [18]–[21], EEG [22]–[25] and magnetoencephalog-
raphy (MEG) [8], [9] inmonkeys or humans. In 2008, the BCI
study usedmonkeys to control a robotic arm in real time using
neural activity [11]. In 2012, another research group reported
that people with tetraplegia can drink coffee by controlling
a robotic arm in real time via neural activity [7]. Although
the task was successful, previous AMP BCI studies reported
a low accuracy of prediction, which was even lower when the
AMPBCI used non-invasive neural signals. The low accuracy
of movement prediction is a critical challenge limiting the
practical application of AMP BCI.

Recent machine learning studies showed that deep learn-
ing algorithm increase the prediction accuracy significantly.
However, it has not been used in movement prediction using
non-invasive neural signals. Therefore, this study investigated
whether reaching trajectory could be predicted with high
accuracy using deep learning from non-invasive neural sig-
nals. We compared the prediction accuracies of the conven-
tional method with the deep learning algorithm.

II. MATERIALS AND METHODS
A. DATA ACQUISITION
To test the prediction accuracy, we used the same dataset
as in our previous study that predicts arm movements from
non-invasive MEG signals [8]. The same signal processing
procedure was also used to extract features as described [8].
Briefly, nine right-handed healthy subjects including five
males and four females (age, 19–37 years) participated in
the study. A 306-channel whole-head MEG system (Vec-
torView TM, Elekta Neuromag Oy, Helsinki, Finland) was
used to measure the MEG signals during arm movements.
Head movements were restricted by placing subjects’ head
in a fixed MEG helmet. Temporal Signal Space Separa-
tion (tSSS) filtering was performed to reduce external arti-
facts. Trajectories of arm movements were recorded using a
three-axis accelerometer (KXM52, Kionix, NY, USA). The
accelerometer was placed on the index finger and the sensor
signals were simultaneously recorded with the MEG signals.
To guide three-dimensional arm movements, stereographic
images were presented on a screen. At the beginning of
the experiment, a sphere was presented on the center of the
screen. After 4 s, a target sphere with a stick connected to the
center sphere appeared in one corner for 1 s. The target sphere

was presented randomly in one of the four corners (upper-
left, upper-right, bottom-left, and bottom-right). During this
time, the subject was instructed to use his/her arm and to reach
his/her index finger from the center to the target and return to
the center along the stick line (center-out-center paradigm).
For each subject, 60 trials were measured for each direction.

B. PREDICTION
To predict the movement, the signal processing was per-
formed as follows [8].

The 68-channel MEG signals in motor-related areas were
selected to reduce the effect of artifacts. After band-pass
filtering at 0.5–8Hz, the MEG signals were downsampled to
50Hz. Eleven data points preceding the current data point
were used to predict movement velocity. The velocities of
arm movement on x, y, and z axes were predicted using mul-
tiple linear regression (MLR) and long short-term memory
(LSTM). MLR is a general and popular method that shows a
good prediction performance [7], [8], [22]–[24], [26]. LSTM
is a state-of-the art deep-learning algorithm. We investigated
whether the deep-learning algorithm improves prediction
accuracy or not. All signal processing steps were performed
using a MATLAB 2018a (Mathworks, Natick, MA, USA).
The prediction techniques using MLR and LSTM are dis-
cussed below.

C. MULTIPLE LINEAR REGRESSION (MLR)
MLR is a linear algorithm to model the relationship between
inputs and outputs sequentially. Eleven points of 68 channels
(for a total of 748 points) were used as the features, and the
x, y and z velocities of the movements were estimated using
an MLR method, as follows:

x (t) =
n∑
i=1

m∑
j=0

W x
ij × Si (t − j)+W

x
0

y (t) =
n∑
i=1

m∑
j=0

W y
ij×Si (t − j)+W

y
0

z (t) =
n∑
i=1

m∑
j=0

W z
ij×Si (t − j)+W

z
0

where x (t), y (t) and z(t) are the movement velocities esti-
mated at time t. W x

ij , W
y
ij and W

z
ij represent the weight value

matrices obtained using the regression methods, and Si is a
MEG signal of channel i. The function n denotes the number
of channels (68 in this study); m is the number of data points
before time t , which determines the number of past data
points that were used to estimate the current velocities x (t),
y (t) and z (t) . The parameter j refers to time lag. W0 is the
constant used to compensate for errors. Wij and W0 were
obtained by training using MLR.

D. LONG SHORT-TERM MEMORY (LSTM)
LSTM is a deep learning algorithm used to predict sequen-
tial data [27]–[29]. The key idea of LSTM is to remember
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FIGURE 1. (A) A diagram of the LSTM. The green and red circles represent
inputs and outputs, respectively. The gray squares indicate cells that
process data. xt is an input at time t ; ht is an output at time t ; ct is a cell
state at time t . (B) A diagram of the cell. LSTM can retain the cell
information over time. LSTM can delete or add information to the cell
state using gates. There are three gates in one cell. The blue square is a
‘forget’ gate that determines the information indicated for deletion from
the cell state. The green square represents an input gate that decides the
information for addition to the cell state. The red square is an output gate
that decides the output.

input information for long periods to predict outputs [27].
LSTM is usually composed of a cell and three gates, and
can gradually retain the information through the cell. LSTM
can delete or add information to the cell state via gates.
Fig. 1 shows a diagram of the LSTM (modified from
[21]). The ‘forget’ gate determines what information will be
removed from the cell state. The input gate decides what
information will be added to the cell state. The output gate
decides the output. In Fig. 1, xt is an input at time t; ht
is an output at time t; ct is a cell state at time t . Gates
determine the deletion or addition of information and output
using following equations.

it = σ (Wi · [ht−1, xt ]+ bi)

C̃t = tanh (WC · [ht−1, xt ]+ bC )

Ct = ft ∗ Ct−1 + it ∗ C̃t
ot = σ (Wo · [ht−1, xt ]+ bo)

ht = ot ∗ tanh(Ct )

FIGURE 2. Averaged Pearson’s correlation coefficients (r) between real
and predicted movement trajectories with standard deviations for all
subjects. The correlation coefficients between real signals and signals
predicted by the MLR on the x-, y-, and z-axes were 0.677 ± 0.139, 0.689
± 0.140, and 0.785 ± 0.103, respectively. The correlation coefficients
between real signals and signals predicted by the LSTM along the three
axes were 0.978 ± 0.004, 0.980 ± 0.005, and 0.980 ± 0.008, respectively.

Before training the LSTM algorithm, the MEG signals and
movement trajectories were normalized by subtracting the
mean and dividing with the standard deviation. The output
size of the LSTM was 3 corresponding to the movement
dimensions. The input size of the LSTM was 68, which is
the channel number corresponding to the feature number. The
number of hidden units was 200. The configurations of LSTM
layers included a sequence input layer, an LSTM layer, a fully
connected layer, a dropout layer, a fully connected layer and
a regression layer. The maximum epoch number was 60.
The size of mini batch was 20. The initial learning rate was
0.01. The gradient threshold was 1. These parameters were
determined based on Matlab examples. The LSTM algorithm
was trained with the training data comprising MEG signals
and movement trajectories. After the training, the LSTM
algorithm predicted themovement trajectories from testMEG
data.

To implement deep learning, parameter determination is
important. According to the number of hidden units, accuracy
of the deep learning and learning time will be quite different.
The number of hidden units were tested from 50 to 300.

E. EVALUATION OF THE PERFORMANCE
A five-fold cross-validation was used to assess the accuracy
of decoding. This method separates the data into four-fifths
for training and one-fifth for testing [30]. Thus, five combina-
tions of training and testing data were available. Weights of
the MLR and the LSTM were calculated from the training
data, and the estimation accuracy was evaluated using the
test data by calculating Pearson’s correlation coefficients (r)
between the real and estimated movement trajectories for
each cross-validation fold. The correlation coefficients were
averaged across the cross-validation folds and sessions.

III. RESULTS
The correlation coefficients between real signals and signals
predicted by the MLR on the x-, y-, and z-axes were 0.677
± 0.139 (mean ± SD), 0.689 ± 0.140, and 0.785 ± 0.103,
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FIGURE 3. The results of prediction using LSTM in all subjects. The red
lines show real movement trajectories. The black lines present the
predicted movements. Each figure describes the result of a single subject.

FIGURE 4. Sample results predicted by MLR. Each row shows a result on
the x-, y-, and z-axes, respectively. The red lines show real movement
trajectories. The black lines present the predicted movements.

FIGURE 5. Sample results predicted by LSTM. Each row shows a result on
the x-, y-, and z-axes, respectively. The red lines show real movement
trajectories. The black lines present the predicted movements.

respectively. The correlation coefficients between real signals
and signals predicted by the LSTM on the x-, y-, and z-axes
were 0.978 ± 0.004, 0.980 ± 0.005, and 0.980 ± 0.008,
respectively. The results are illustrated in Fig. 2. The predic-
tion results of LSTM for all subjects are shown in Fig. 3. The
red lines show real movement trajectories. The black lines
present the predicted movements. Each figure describes the
result of one subject. Fig. 4 and Fig. 5 depict sample results
predicted by MLR and LSTM, respectively. The results of
each row are displayed on the x-, y-, and z-axes. The red
lines show realmovement trajectories. The black lines present
the predicted movements. Based on the results, it is clear
that LSTM significantly improves the prediction accuracy.
Moreover, the trajectories predicted by the LSTM are very
similar to the real-movement trajectories.

FIGURE 6. Averaged correlation coefficients between real and LSTM with
standard deviations across all subjects, trials and axes according to the
number of hidden units.

The correlation coefficient between real signals and signals
predicted by the LSTM was maximum when the number of
hidden units was 200 as shown in Fig. 6. The dots are averages
of the correlation coefficients across all subjects, trials and
axes. Error bars indicate the standard errors of the means.

IV. CONCLUSION
In this study, we compared the prediction accuracies of the
conventional methodMLR and the LSTM using non-invasive
MEG signals. This is the first study that applied LSTM to
predict arm movements using non-invasive neural signals.
We showed that the prediction accuracy was significantly
improved using the LSTM algorithm. The low accuracy of
movement prediction was a critical limitation of the AMP
BCI for real-world application. Our results indicate that
highly accurate prediction of arm movement is possible with-
out surgery using the deep learning algorithm. Based on our
results, a robot arm can be controlled using non-invasive
signals based on deep learning algorithms in real life.
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