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ABSTRACT Formal verification technology has been widely applied in the fields of mathematics and com-
puter science. The formalization of fundamental mathematical theories is particularly essential. Axiomatic
set theory is a foundational system of mathematics and has important applications in computer science.
Most of the basic concepts and theories in computer science are described and demonstrated in terms of set
theory. In this paper, we present a formal system of axiomatic set theory based on the Coq proof assistant.
The axiomatic system used in the formal system refers to Morse-Kelley set theory which is a relatively
complete and concise axiomatic set theory. In this formal system, we complete the formalization of the
basic definitions of sets, functions, ordinal numbers, and cardinal numbers and prove the most commonly
used theorems in Coq. Moreover, the non-negative integers are defined, and Peano’s postulates are proved
as theorems. According to the axiom of choice, we also present formal proofs of the Hausdorff maximal
principle and Schröeder-Bernstein theorem. The whole formalization of the system includes eight axioms,
one axiom schema, 62 definitions, and 148 corollaries or theorems. The ‘‘axiomatic set theory’’ formal
system is free from the more apparent paradoxes, and a complete axiomatic system is constructed through it.
It is designed to give a foundation for mathematics quickly and naturally. On the basis of the system, we can
prove many famous mathematical theorems and quickly formalize the theories of topology, modern algebra,
data structure, database, artificial intelligence, and so on. It will become an essential theoretical basis for
mathematics, computer science, philosophy, and other disciplines.

INDEX TERMS Axiomatic set theory, Coq proof assistant, formalized mathematics, formal system.

I. INTRODUCTION
With the rapid development of computer science, especially
the emergence of interactive theorem proving tools Coq [1],
[2], Isabelle/HOL [3] and so on, the formal verification tech-
nology has made excellent progress [4], [5]. Formal veri-
fication technology has achieved remarkable achievements
in both formalizations of mathematics and certification of
properties of programming languages. In 2005, the inter-
national computer experts Gonthier and Werner offered the
machine proving of the famous ‘‘four-color theorem’’ using
Coq successfully [6]. After six years of hard work, Gonthier
completed the machine verification of the ‘‘odd order theo-
rem’’ in 2012 [7], which made Coq more and more popular in
academia. Wiedijk pointed out that relevant research groups
around the world have completed or plan to complete the
formal proof of 100 famous mathematical theorems includ-
ing Gödel incompleteness theorem, Prime number theorem,
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Fermat last theorem, and so on [8]. In the aspect of program
verification, Xavier Leroy developed CompCert C in 2008,
which is a high-assurance compiler for almost all of the C lan-
guage, programmed and proved correct in Coq [9]. In 2016,
Zhong Shao and Ronghui Gu had successfully developed a
practical concurrent OS kernel and verified its functional cor-
rectness [10]. Andrew W. Appel, Benjamin C. Pierce, Zhong
Shao, and others launched the Deep Specification project
which focuses on the specification and verification of full
functional correctness of software and hardware in 2016 [11].
These results show that formal verification technology plays
an essential role in the fields of mathematics and computer
science. However, whether it is the formal proof of complex
mathematical theorems or the application of formal technol-
ogy in engineering, it is necessary to formalize fundamental
mathematical theories.

Set theory was founded in the 1870s by the German math-
ematician G. Cantor [12]. He developed the interest of set
theory from the proof that the uniqueness of function expan-
sion as trigonometric series, and gives a relatively complete
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theoretical system [13]. Moreover, Cantor also studies the
ordinal numbers and cardinal numbers of infinite sets [14].
At the beginning of the twentieth century, Russell’s paradox
pointed out the contradiction in Cantor’s set theory, which
caused a great shock in the mathematics world [15]. People
who believed that the foundations of mathematics had already
established begin to shake their convictions. In order to over-
come the paradox, people try to axiomatize the set theory and
restrict it with axioms. In 1908, Zermelo proposed the first
axiomatic system of set theory. Through the improvement
of Fraenkel and Skolem, the famous Zermelo-Fraenkel set
theory (ZFC) which includes the axiom of choice (AC) was
formed [16]. In 1920, Von Neumann proposed his axiomatic
system. It revised by Bernays in 1937 and further simplified
by Gödel in 1940 [17]. This is the von Neumann-Bernays-
Gödel set theory (NBG).

Morse-Kelley set theory (MK) is also an essential
axiomatic set theory. It was first proposed by Wang [18]
in 1949 and was formally published in Kelley’s General
Topology [19] in 1955. Morse [20] later presented his ver-
sion in 1965. MK is a variant of the ZF system which
improved by Skolem and Morse, and it is more close to
NBG. Meanwhile, it is designed to give quickly and natu-
rally a foundation for mathematics, which is free from the
more apparent paradoxes. The ordinal, cardinal numbers,and
non-negative integers are constructed. Peano’s postulates are
proved as theorems. Furthermore, the real numbers can be
constructed from integers by use of the axiom of infinity and
two facts: ‘‘the class of integers is a set’’ and ‘‘it is possible
to define a function on the integers by induction’’ [21]. The
axiom system admits classes as fundamental objects, like
NBG. In addition, a finite axiom system is abandoned and
the development is based on eight axioms and one axiom
scheme (that is, all statements of a specific prescribed form
are accepted as axioms) [19]. Thus MK cannot be finitely
axiomatized and it is strictly stronger than both NBG and
ZFC. In fact, NBG and ZFC can be proved consistent in MK.
Monk, Rubin, and Mendelson submit that MK does what is
expected of a set theory while being less cumbersome than
ZFC and NBG [15]–[17].

Axiomatic set theory is the language and foundation of
mathematics. It involves almost all branches of mathematics
and occupies a significant position in mathematics. Mean-
while, the axiomatic set theory also has critical applications in
many fields, such as computer science, artificial intelligence,
logic, economics, linguistics, and psychology. Therefore, it is
particularly vital to construct a formal system of axiomatic
set theory. Most formalizations of axiomatic set theory are
based on ZFC. MK is more concise and stronger than ZFC
and is more conducive to the initial construction of complex
systems. However, there is currently no formal system of
axiomatic set theory based on MK. In this paper, we have
completed the establishment of the ‘‘axiomatic set theory’’
formal system based on the Coq proof assistant. The for-
mal system is built on the basis of the Morse-Kelley set
theory. It includes eight axioms, one axiom schema, and

181 definitions or theorems in the Morse-Kelley set theory
which is an appendix to Kelley’s ‘‘General Topology’’ [19].
Moreover, we add one definition and 28 supplementary corol-
laries or theorems in the formal system. The complete source
of the formal system is available online:
https://github.com/styzystyzy/Axiomatic_
Set_Theory/

The formal system can quickly build a foundation for
mathematics and present a concise and relatively complete
axiomatic set theory in Coq. Compared with naive set theory1

in Coq standard library, the system has many advantages.
First of all, it avoids the more apparent paradoxes of naive set
theory. Secondly, there is no type difference between sets and
members in this system. The universe of discourse consists of
classes. Classes that are members of other classes are called
sets. A class that is not a set is a proper class. These help the
system avoid the problem of nested type mismatch in Coq
formalization. Thirdly, the system is complete for the Coq for-
malization of set theory. We formalize some basic definitions
of sets, functions, ordinal numbers, integers, and cardinal
numbers and prove the most commonly used theorems in this
formal system. According to the axiom of choice, we also
present formal proofs of the Hausdorff maximal principle
and Schroeder-Bernstein theorem. Moreover, we present a
formal proof of the mathematical induction by the definition
of integers and propose some properties related to finiteness.
These make the system more complete.

The ‘‘axiomatic set theory’’ formal system has many appli-
cations, on the basis of which we can directly study the
axioms of choice and continuum hypothesis. Topology can
be easily and quickly formalized by it. In fact, Kelley also
published his axiomatic set theory in ‘‘General Topology’’
[19]. In addition, on the basis of the system, we can for-
mally define the basic concepts in data structure and build
a completely reliable basic theory of computer science. The
underlying mathematical foundation of artificial intelligence
algorithms can be quickly established through this system.
In the formal verification of the blockchain smart contract,
we can build a safe math library based on this formal system.

The paper is organized as follows. In Section II, we dis-
cuss related work. In Section III, we introduce some ele-
mentary logic knowledge and some primitive constants of
the system, which are preliminary knowledge of the whole
system. In Section IV, we present our formalization of the
whole definitions in the system, including sets, functions,
well ordering, ordinal numbers, integers, cardinal numbers,
and so on. SectionV introduces the formalization of the clas-
sification axiom scheme and eight axioms. The development
of the axiom system is based on eight axioms and one axiom
scheme. In SectionVI, we describe the formalization and the
proof of some crucial theorems in the system. In SctionVII,
we discuss the application of the formal system through

1The naive set theory in Coq standard library are available at
https://coq.inria.fr/distrib/current/stdlib/Coq.
Sets.Ensembles.html/
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FIGURE 1. Basic logic properties in Logic.Classical library.

FIGURE 2. Extra logic properties and Ltac commands.

some examples. In SectionVIII, we draw conclusions and
discuss some potential further work. Finally, Appendix lists
the formal description of essential theorems in the system.

II. RELATED WORK
There already exist several formalizations of axiomatic
set theory. For instance, Werner’s work [22] is to study
relationships between axiomatic set theory and type the-
ory. He has presented two families of relative consistency
proofs between ZFC and the calculus of inductive construc-
tions (CIC) in Coq. Based on Werner’s work, Barras [23]
has formalized the syntactic metatheory of CIC used by
the Coq proof assistant, giving it a semantics in set theory
and formalizing a soundness proof in Coq itself. Carlos
Simpson develops an axiomatization of ZFC and formal-
izes common set-theoretical notions. See Coq user con-
tribution coq-contribs/functions-in-zfc. Jose
Grimm wants to implement Bourbaki’s ‘‘Elements of Math-
ematics’’ in Coq based on the work of Carlos Simpson [24].
It is a part of the Gaia project which concerns homological
algebra (theory as well as algorithms). In addition, Dominik
Kirst and Gert Smolka formalize second-order ZF set theory
in the dependent type theory of Coq in [25], [26]. Moreover,
Lawrence C. Paulson mechanized the relative consistency
of AC and the generalized continuum hypothesis using
Isabelle/ZF [27].

Our present work takes from all of the above-cited works.
However, the axiomatic system we used is Morse-Kelley
axiomatic set theory, which is its first formalization to our
knowledge. MK is a proper extension of ZFC and less cum-
bersome than ZFC and NBG. The formal system we built is
concise and complete. We can quickly build a mathemati-
cal foundation based on the ‘‘axiomatic set theory’’ formal
system. In this paper, we also prove a series of additional
theorems on the basis of the formal system.

III. ELEMENTARY LOGIC AND PRIMITIVE CONSTANTS
A. ELEMENTARY LOGIC PROPERTIES
Some basic knowledge of elementary logic is necessary.
In this system, we admit the equality ‘=’ and some basic
logical constants, including the negation ‘∼’, the conjunc-
tion ‘/\’, the disjunction ‘\/’, universal quantification ‘∀’,
existential quantification ‘∃’, and so on. Because the formal
definition of these constants has been provided in the Coq
proof assistant, we can use them directly in the formal system.
It should be noted that the symbols in quotes are the symbolic
representations of these logical constants in Coq.

In addition to the above basic logical constants, we also
recognize some basic logical properties in Fig. 1. The system
implements these properties through Logic.Classical
of the Coq standard library. The law of excluded middle
(line 1, Fig. 1) is recognized in the library, and some logical
properties are proved on the basis of it. Furthermore, as shown
in Fig. 2, we also add some other logical properties and
construct two ‘Ltac’ commands based on these properties.
The ‘Ltac’ function provides high-level tactics for applying
its lemmas and automatically checking their conditions. The
first tactic (line 3, Fig. 2) tries to double the specific condition
in the proof and the second tactic (line 7, Fig. 2) adds another
proven condition to a specific condition. In subsequent formal
proofs, we will use these ‘Ltac’ functions repeatedly.

B. PRIMITIVE CONSTANTS
There are some primitive constants besides ‘=’ and the other
logical constants. Through these concepts, we can construct
the set theory. Without these concepts, we can do nothing in
mathematics. The first constant we define is the ‘Class’.
In the system, the universe of discourse consists of classes.
Classes that are members of other classes are called sets.
A class that is not a set is a proper class. In the formalization,
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FIGURE 3. Elementary algebra operations of classes.

FIGURE 4. Primitive constants of the formal system.

FIGURE 5. The formal statement and symbol of the classifier.

we choose to let ‘Class’ live in ‘Type’, which is the top-
most sort in Coq. Formally, the definition is as shown in the
line 1 of Fig. 4. Next, we introduce the constant ‘∈’, which
is read ‘is a member of’ or ‘belongs to’. Since we do not dis-
tinguish the type of sets and members, the formal statement
of the content ‘∈’ is as shown in the line 2. Notations can be
introduced to ease the reading and writing of specifications.
This also allows us to stay close to the way mathematicians
would write. Moreover, we can also define precedence levels
and associativity rules of notations in Coq. The symbol of ‘∈’
is defined in the line 3.

The Third constant is the classifier ‘{· · · : · · · }’ and is read
‘the class of all · · · such that · · · ’. For example, {x : x ∈ y}
is a classifier. The first blank in the classifier constant is
to be occupied by a variable which represents the member
of the classifier. The second blank is to be occupied by a
formula. It should be noted that the formula here can be
any property, including incorrect property. The classifier is
just a class, and we do not know if there are members in
it. As shown in Fig. 5, the formalization of the classifier
is divided into two cases. If the member is a single item,
then Clf is used. If the member is an ordered pair, then
Clf_P is used.
We introduce the correctly usage method of the Clf

next. The input of the Clf is a item with type Class →
Prop. The first parameter Class represents any variable

FIGURE 6. The notation of the function fun.

of the classifier and the second parameter Prop means the
expression that the variable satisfies. The λ-abstraction meets
our requirements above. It is implemented through function
‘fun’ in Coq. Referring to the symbol definition in the Coq
library, we add a notation to the function fun in this system
as shown in Fig. 6.

IV. DEFINITIONS OF THE SYSTEM
In this section, we introduce the definitions in the formal
system. On the basis of these definitions, we construct sets,
functions, ordinal numbers, integers, and cardinal numbers.

A. BASIC DEFINITIONS OF SETS
Firstly, we present the formal definition of sets. We say that x
is a set if and only if for some y, x ∈ y, where x and y are both
classes. If a class is not a set, then we call it a proper class.
In Coq, sets are defined as shown in the line 1, Fig. 3. Next,
we introduce some elementary algebra operations of classes,
including union, intersection, complement, difference, inclu-
sion and so on.

The union of two classes x and y is the class of elements
which are in x, in y, or in both x and y. The intersection of two
classes x and y is the class of all objects that are members of
both the classes x and y. We complete the formal definitions
of union and intersection based on theClf in lines 2-5, Fig. 3.
Then we define complement and difference in lines 6-11,
Fig. 3. The complement of x is the class of elements that do
not belong to x. The difference of x and y, denoted x ∼ y,
is the intersection of x and the complement of y. In the system,
x ⊂ y if and only if for each z, if z ∈ x, then z ∈ y. A class x
is a subclass of y, or is contained in y, or y contains x if and
only if x ⊂ y. It is essential that ‘⊂’ not be confused with ‘∈’.

VOLUME 8, 2020 21513
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FIGURE 7. Basic definitions related to sets.

FIGURE 8. Definitions related to ordered pairs and relation.

For example, ∅ ⊂ ∅ but it is false that ∅ ∈ ∅. The formaliza-
tion of the subclass and the proper subclass are in lines 12-15,
Fig. 3.

As shown in Fig. 7, we present some basic defini-
tions related to sets, including the void class, the universe,
the power class, the intersection of the members of a class,
and the union of the members of a class. Since there is no
class of x 6= x, the class {x : x 6= x} is the void class, or zero
(line 3). x 6= x if and only if it is false that x = x. As shown
in the line 4, the Class U is the universe. It has all the possible
sets as members. As shown in lines 5-6, the class

⋂
x is the

intersection of the members of x. The members of
⋂
x are

members of members of x. As shown in lines 7-8, the class⋃
x is the union of the members of x. Observe that a set z

belongs to
⋂
x if and only if z belongs to every member of x.

Respectively, a set z belongs to
⋃
x if and only if z belongs

to some member of x. Moreover, according to the definition
of the subclass, we can define the power class in lines 9-10.
As shown in lines 9-10 of Fig.7, the power class of a class x
is the class whose members are all of the subclasses of x.

B. ORDERED PAIRS AND FUNCTIONS
This subsection presents the relevant definitions of functions.
The construction of the function starts from the singleton. The
unordered pair and the ordered pair can be defined according

to the singleton. A singleton {x} is a class with exactly one
element x if x is a set and {x} = U if x is not a set. In for-
malization, we use the symbol ‘[ x ]’ to represent a singleton
{x} in lines 1-2, Fig. 8. When x is a set, the same result is
given by the more subjective definition {z : z = x}. However,
it simplifies statements of results greatly if computations are
arranged so that U is the result of applying the computation
outside its pertinent domain.

As shown in lines 3-4, Fig. 8, the class {xy} which is the
union of {x} and {y} is an unordered pair. We use the symbol
‘[ x | y ]’ to represent it in Coq. Then lines 5-6 define the
ordered pair according to the unordered pair and the single-
ton. The class (x, y) is an ordered pair and it is an unordered
pair {{x}{xy}}. In the ordered pair (a, b), the object a is called
the first coordinate, and the object b is the second coordinate
of the pair. We can define them by a series of elementary
algebraic operations, as shown in lines 7-8.

The line 10, Fig. 8 define the relation. A relation is a class
whose members are ordered pairs. For example, r is a relation
iff for each member z of r there is x and y such that z =
(x, y). Then lines 11-12 define r−1 which is the class {(x, y) :
(y, x) ∈ r}. If r is a relation, r−1 is the relation inverse to r .
As shown in lines 13-17, the class r ◦s is the composition of r
and s. r ◦ s = {u : for some x, some y and some z, u = (x, z),
(x, y) ∈ s and (y, z) ∈ r}. To avoid excessive notation we
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FIGURE 9. Definitions and notations related to function.

FIGURE 10. Definitions related to well-order relation.

agree that {(x, z) : · · · } is to be identical with {u : for some x,
some z, u = (x, z) and · · · }. Thus r ◦ s = {(x, z) : for some y,
(x, y) ∈ s and (y, z) ∈ r}.
On the basis of the definition of relations, we can define

functions next in Fig. 9. f is a function if and only if f is
a relation and for each x, each y, each z, if (x, y) ∈ f and
(x, z) ∈ f , then y = z. The domain of the function f is the
class {x : for some y, (x, y) ∈ f }. The range of the function f
is {y : for some x, (x, y) ∈ f }. The value of the function f is the
intersection of the members of the class {y : (x, y) ∈ f }. The
formalization and notations of these definitions is as shown
in lines 1-7, Fig. 9.

Then we define 1-1 function based on the definitions of
functions and inverse relations in the line 9, Fig. 9. f is a
1-1 function if and only if both f and f −1 are functions. The
line 10 is the definition of the Cartesian product, on the basis

of which we can define the restriction of functions in the
line 12. The class {(u, v) : u ∈ x and v ∈ y} is the cartesian
product of x and y, we denoted it as x × y. The restriction
of a function f to x, denoted f |x, is the intersection of f
and x × U . This definition will also be used in a case f is
a relation. In this case, f |x is also a relation. As shown in
lines 14-15, we define a class yx which consists of functions
whose domain is x and range is a subclass of y. Through the
following three definitions, we can construct the concepts of
surjection, injection, and bijection in lines 16-18.

C. WELL ORDERING
As shown in Fig. 10, we define a strict well-order relation by
some basic properties of order relations. First, we define the
order relation between the two classes. If (x, y) ∈ r (denoted
as x r y), then x is r-related to y or x r-precedes y. Its Coq
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definition is as shown in the line 1, Fig. 10. Next we define
three properties of order relations in lines 2-7. r connects x
if and only if when u and v belong to x either u r v or v r u or
v = u. r is transitive in x if and only if, when u, v, and w are
members of x and u r v and u r w, then u r w. r is asymmetric
in x if and only if, when u and v are members of x and u r v,
then it is not true that v r u.

Then we define the first member of the class in the line 8,
Fig. 10. z is an r-first member of x if and only if z ∈ x and if
y ∈ x, then it is false that y r z. The well-order relation can be
defined based on the first member in lines 9-10. r well-orders
x if and only if r connects x and if y ⊂ x and y 6= ∅, then there
is an r-first member of y. Finally, the section can be defined
naturally in lines 11-12. A subset y of x is an r-section of x iff r
well-orders x and no member of x ∼ y r-precedes a member
of y. The following describes two definitions that combine
well-order relation and functions. f is r-s order preserving
(lines 13-15) if and only if f is a function, r well-orders
domain f , s well-orders range f , and f (u) s f (v) whenever u
and v are members of domain f such that u r v. Furthermore,
f is r-s order preserving in x and y (lines 16-18) if and only
if r well-orders x, s well-orders y, f is r-s order preserving,
domain f is an r-section of x, and range f is an s-section of y.

D. ORDINALS
In this subsection, a special relationship ‘∈’ will be dis-
cussed and the ordinal numbers are defined in Fig. 11. First,
we define the class E in the line 1, which is the ε-relation.
Next, as shown in the line 3, we define the ordinal according
to the class E . x is an ordinal if and only if E connects x and
x is full. As shown in the line 2, x is full if and only if each
member of x is a subset of x. R is the class of all ordinals.
Therefore, x is an ordinal number if and only if x ∈ R. The
specific formal definitions are as shown in lines 4-5.

As shown in lines 7-11, Fig. 11, we define a usual operation
‘x + 1’ for the class x and two relationship symbols ‘≺, �’.
On the basis of them, we can further discuss some properties
of ordinal numbers.

E. INTEGERS AND THE CHOICE FUNCTION
We define non-negative integers and the class of non-negative
integers in this subsection. In addition, we also present some
definitions involved in the axiom of choice, including the

FIGURE 11. Definitions related to ordinal numbers.

FIGURE 12. Definitions related to integers.

choice function and nest. The definition of non-negative
integers is essential to the system. Peano’s postulates can
be derived as theorems based on it. The real number may
be constructed from the integers [21]. Moreover, we can
prove mathematical induction. As shown in lines 1-2, Fig. 12,
the definition of non-negative integers is based on ordinals.
x is a non-negative integer if and only if x is an ordinal
and E−1 well-order x. As shown in the line 3, ω is the
class of non-negative integers. According to the definition
of well-orders, there is a E−1-first member of x if x is a
non-negative integer. The E−1-first member is called E-last
member (lines 5-6).

The following are definitions related to the axiom of
choice, including the choice function and the nest. We can
describe the axiom of choice by the choice function.
As shown in lines 1-2, Fig. 13, c is a choice function if and
only if c is a function and c(x) ∈ x for each member x
of domain c. Intuitively, a choice function is a simultaneous
selection of a member from each set belonging to domain c.
Through the definition of the nest, the Hausdorff maximal
principle can be described. As shown in lines 4-5, n is a nest
if and only if, whenever x and y are members of n, then x ⊂ y
or y ⊂ x.

FIGURE 13. Definitions of the choice function and the nest.

F. CARDINAL NUMBERS
In this subsection, cardinal numbers are defined in Fig. 14.
First we define that x ≈ y if and only if there is a 1_1 function
f with domain f = x and range f = y. If x ≈ y, then x is
equivalent to y, or x and y are equipollent. The formalization
of the content is as shown in lines 1-2, Fig. 14. Next, we define
cardinal numbers in the line 3. x is a cardinal number if and
only if x is an ordinal number and, if y ∈ R and y ≺ x,
then it is false that x ≈ y. That is, a cardinal number is an
ordinal number which is not equivalent to any smaller ordinal.
In addition, C is defined as a class of cardinal numbers in
the line 4. The class P consists of all pairs (x, y) such that
x is a set and y is a cardinal number equivalent to x. For
each set x, the cardinal number P(x) is the power of x or the
cardinal of x. The Coq statement of the class P is as shown in
the line 5.
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FIGURE 14. Definitions related to cardinal numbers.

As shown in lines 7-8, Fig. 14, we can divide the cardinal
into two classes, the finite cardinals and the infinite cardinals.
A class that is not finite is called infinite. x is finite if and
only if P(x) ∈ ω. As shown in lines 10-14, if x and y are
ordinals, the larger of them is x ∪ y. Therefore, max[x, y] is
the union of x and y. Next we define an order which will be
assigned to the cartesian product R×R. For some (u, v), (x, y)
in R×R, (u, v)� (x, y) if and only if max[u, v]≺max[x, y],
or max[u, v]=max[x, y] and u ≺ x, or max[u, v]=max[x, y]
and u = x and v ≺ y.

V. THE SYSTEM OF AXIOMS
A. THE CLASSIFICATION AXIOM SCHEME
The classification axiom scheme is essential in this system
and some apparent paradoxes in set theory can be avoided
by it. A precise statement of the classification axiom scheme
requires a description of formulae [19]. The formulae of the
system is agreed that:
(a) The result of replacing ‘α’ and ‘β’ by variables is, for

each of the following, a formula.

α = β α ∈ β

(b) The result of replacing ‘α’ and ‘β’ by variables and
‘A’ and ‘B’ by formulae is, for each of the following,
a formula.

if A, then B A iff B it is false that A
A and B A or B for every α, A for some α, A
β ∈ {α : A} {α : A} ∈ β {α : A} ∈ {β : B}

Formulae are constructed recursively, beginning with
the primitive formulae of (a) and proceeding via the
constructions permitted by (b).

In the following, ’α’ and ’β’ are replaced by variables. The
formula F of ’F(α)’ is constructed by the above method. And
’F(β)’ is represented by the formula obtained from ’F(α)’ by
replacing each occurrence of the variable which replaced α by
the variable which replaced β. The formula F may contain
parameters that are either sets or proper classes. More con-
sequentially, the quantified variables in F may range over all
classes and not just over all sets. Nevertheless, themembers of

{α : F(α)} are exactly those sets such that F comes out true.
The specific description of the classification axiom scheme is
as follows:

Classification axiom-scheme For each β, β ∈ {α :
F(α)} if and only if β is a set and F(β).

As shown in Fig. 15, formulae are not recursively defined
in our formalization. Preferably, an embedding of MK for-
mulae in Coq’s type of propositions Prop is used. The Prop
includes quantification over arbitrary types. The main feature
of MK is to consider classes as the range of quantification.
This is adequately represented by a forall x: Class, . . .
sentence. However, the embedding also allows us to quan-
tify over more complex collections. For instance forall
(P: Class → Prop) can be seen as a quantification
over "classes of classes". For the two cases of the classifier,
the formalization of the axiom scheme is divided into two
cases, as shown in lines 1-4. The principles of the two cases
are consistent. It is defined on all properties F: Class →
Prop. It is a second-order logic and is stronger than Kelley’s
first-order logic. In this system, we only apply the axiom to
those properties that satisfy the requirements of Kelley’s first-
order logic. Accordingly, there is no problem. In the second
case, we often encounter situations where the input value
is a single variable in the Coq proof. However, the input
variable of Axiom_SchemP is required to be an ordered
pair. Therefore, lines 6-7 add a property to make the single
variable into an ordered pair when there is a single variable
that belongs to the classifier of ordered pairs.

This axiom scheme is precisely the general intuitive con-
struction of classes except for the requirement ‘β is a set’.
This requirement is very evidently unnatural. However, a con-
tradiction may be constructed simply without it. This compli-
cation, which needs much technical work on the existence of
sets, is the price paid to avoid apparent paradoxes.

B. EIGHT AXIOMS
There are eight axioms in the system. The development of the
whole axiom system is based on these eight axioms and the
classification axiom-scheme. First, we introduce the axiom
of extent. The specific details are as follows.
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FIGURE 15. Formalization of the classification axiom scheme.

FIGURE 16. Formalization of the axiom system.

Axiom of extent For each x and each y it is true that
x = y if and only if for each z, z ∈ x when and only
when z ∈ y.
The axiom of extent can be the definition of equality,

thus dispensing with one axiom and with all logical pre-
suppositions about equality. However, there would be no
unlimited substitution rule for equality and one would have
to assume as an axiom: If x ∈ z and y = x, then y ∈ z.
Our system did not take the above measure. We retain the
axiom of the extent and use it in combination with the default
equality logic.

Next, we introduce two axioms about the existence of sets,
including the axiom of subsets and the axiom of union.

Axiom of subsets If x is a set there is a set y such that for
each z, if z ⊂ x, then z ∈ y.

Axiom of union If x is a set and y is a set so is x ∪ y.
According to the axiom of subsets, we can prove that 2x

and {x} are set if x is a set. Then the axiom of union implies
that {x, y} is a set if x and y are sets. The two following axioms
further delineate the class of all sets.

Axiom of substitution If f is a function and domain f is a
set, then range f is a set.

Axiom of amalgamation If x is a set so is
⋃
x.

The axiom of regularity is presented when defining the
ordinal numbers. It is possible that there are classes x and y
such that x is the only member of y and y is the only member
of x. More generally, it is possible that there is a class z
whose members exist by taking in each other’s laundry, in the
sense that every member of z consists of members of z. The
following axiom explicitly denies this possibility by requiring
that each non-void class z has at least one member whose
elements do not belong to z.

Axiom of regularity If x 6= ∅ there is a member y of x
such that x ∩ y = ∅.

Next, we introduce the axiom of infinity. The non-negative
integers and the real numbers can be constructed on the basis
of the axiom of infinity.

Axiom of infinity For some y, y is a set, ∅ ∈ y and
x ∪ {x} ∈ y whenever x ∈ y.

The axiom of infinity asserts the unconditional existence
of two sets, the infinite inductive set y, and the void class
∅. ∅ is a set simply because it is a member of y. Up to this
point, everything that has been proved to exist is a class, and
Kelley’s discussion of sets was entirely hypothetical.

The axiom of choice (AC) is an axiom about the existence
of mapping in set theory. AC has a significant role in modern
mathematics and has very close ties with many profound
mathematics conclusions.

Axiom of choice There is a choice function c whose
domain is U ∼ {∅}.

In this system, we present formal proofs of the Hausdorff
maximal principle and Schroeder-Bernstein theorem on the
basis of AC. According to the definition in Section IV, we can
directly complete the formalization of the above axioms. The
Coq statement of these axioms is as shown in Fig. 16.

VI. IMPORTANT THEOREMS
In this system, we have completed the formal proof of all
the theorems in Kelley’s set theory [19]. In addition, we also
prove 28 supplementary corollaries or theorems. We choose
some essential theorems of the system to introduce in this
section. The complete formal description of the theorems of
this section will be listed in Appendix.

A. RUSSELL’S PARADOX
According to naive set theory, let M be the set of all sets
that are not members of themselves. IfM is not a member of
itself, then it must belong to itself. If it belongs to itself, then
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it contradicts its definition. This contradiction is Russell’s
paradox. In this system, we avoid Russell’s paradox by the
classification axiom scheme. As shown in Fig. 17, let N be
the class {x : x /∈ x}. According to the classification axiom
scheme, N ∈ N if and only if N /∈ N and N is a set. It follows
that N is not a set. Therefore, there is no Russell’s paradox in
the ‘‘axiomatic set theory’’ formal system.

FIGURE 17. Lemma related to Russell’s paradox.

Then we can prove that the universe U is not a set based on
the Russell_N. It is the theorem universe_notset in
Appendix. The proof details are as follows:

Proof: The class N is a subclass of U . If the class
U is a set, we can prove that N is a set according to the
theorem sub_set 2. It is contradictory to the Russell_N.
Therefore, the universe U is not a set.

B. HAUSDORFF MAXIMAL PRINCIPLE
The Hausdorff maximal principle is one of many statements
equivalent to AC. It is an alternate and earlier formulation of
Zorn’s lemma proved by Felix Hausdorff in 1914. The Haus-
dorff maximal principle asserts the existence of a maximal
nest in any set. We can prove it according to the axiom of
choice and the definition of the nest.
Theorem 6.1 (Hausdorff maximal principle): If x is a set

there is a nest n such that n ⊂ x and if m is a nest, m ⊂ x, and
n ⊂ m, then m = n.

Proof: The proof is by transfinite induction. Accord-
ing to AC, there is a choice function c whose domain is
U ∼ {∅}. For each h, if h is a set, then there is a function
g and g(h) = c({m : m is a nest,m ⊂ x, for ∀p ∈ range(h),
p ⊂ m and p 6= m)}). g(h) is a nest in x containing
properly each previously selected nest. The formalization of
the property is as shown in Fig. 18.

FIGURE 18. Formalization of the property.

On the basis of the theorem unique_fun in Appendix,
there is a function f such that domain f is an ordinal and
f (u) = g(f |u) for each ordinal number u. From the definition
of the function g it follows that, if u ∈ domain f , then f (u)
is a nest, f (u) ⊂ x and p ( f (u) for every p ∈ range (f |u).
Consequently if u and v are members of domain f and u ≺ v,

2The theorem sub_set is a direct consequence of the axiom of subsets.
The formal description of the theorem sub_set is given in Appendix.

then f (u) ( f (v). Finally, according to the above conditions,
we prove that

⋃
(range f ) is a nest such that

⋃
(range f ) ⊂ x

and m =
⋃
(range f ) if m is a nest, m ⊂ x and⋃

(range f ) ⊂ m. Therefore,
⋃
(range f ) is a maximal

nest in x.

C. SCHRÖder-Bernstein theorem
The Schröder-Bernstein theorem is named after Felix
Bernstein and Ernst Schröder. It is also known as Cantor-
Bernstein theorem after Georg Cantor first published it with-
out proof. It can be proved directly without AC, but the
proof of the system relies on AC. The theorem states as
follows,
Theorem 6.2 (Schröder-Bernstein theorem): If x and y are

sets, u ⊂ x, v ⊂ y, x ≈ v, and y ≈ u, then x ≈ y.
This theorem is a useful feature in the ordering of cardinal

numbers. We can prove it according to theorems card_eq
and card_le in Appendix.

Proof: AC is needed to prove that range (P) = C
in the theorem card_fun (See Appendix). On the basis
of the theorem card_fun, we can prove some proper-
ties of P, such as if x and y are sets, then x ≈ y iff
P(x) = P(y) and if y is a set and x ⊂ y, then P(x) �
P(y). Using the theorem card_le, P(u) � P(x) and
P(v) � P(y). In addition, we prove that P(x) = P(v)
and P(y) = P(u) based on the theorem card_eq. Con-
sequently P(x) � P(y) and P(y) � P(x) are established
at the same time. Finally, we prove that x ≈ y because
of P(x) = P(y).

D. CONTINUUM HYPOTHESIS
Next, we discuss a brief statement on one of the clas-
sic unsolved problems of set theory. It is the theorem
cont_hypo in Appendix and has a direct relationship
with the continuum hypothesis. The theorem is described as
follows:
Theorem 6.3: There is a unique ≺-≺ order-preserving

function with domain R and rangeC ∼ ω.
Proof: According to the theorem well_order_pre

in Appendix, there is a unique≺-≺ order-preserving function
f in R and C ∼ ω such that either domain f = R or range f =
C ∼ ω. Since every E-section of R and of C ∼ ω is a set and
neither R nor C ∼ ω is a set, domain f = R and range f =
C ∼ ω are established at the same time.
The unique ≺-≺ order-preserving function is usually

denoted by ℵ. Thus the value ℵ(0) (or ℵ0) of the function
is ω. The next cardinal ℵ1 is the first uncountable ordinal.
Since ℵ0 ≺ P(2ℵ0 ) it follows that ℵ1 � P(2ℵ0 ). The equality
of P(2ℵ0 ) and ℵ1 is an extremely attractive conjecture. It is
called the continuum hypothesis. The generalized contin-
uum hypothesis states that if x is an ordinal number, then
P(2ℵx ) = ℵx+1. Gödel and Cohen proved that the continuum
hypothesis is independent of ZFC. Therefore, the contin-
uum hypothesis cannot prove its correctness in axiomatic set
theory.
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E. MATHEMATICAL INDUCTION
In this system, Peano’s postulates are derived as theorems3.
The theorem math_ind in Appendix is the principle of
mathematical induction, but it has some differences from
the mathematical induction that we usually use. Therefore,
we supplement and prove the general form of mathematical
induction in the system. Mathematical induction is a funda-
mental method in a mathematical proof. It is essentially used
to prove that a property P(n) holds for every non-negative
integer n. First, we prove a lemma which is a basic property
of the class of non-negative integers.
Lemma 6.1 (Minimum Principle): Assume that S is a non-

empty subclass of ω. There must exist a class a ∈ S, a � c
for every c ∈ S.

According to the definition of well-order relation and first
member, the above lemma is easy to prove. Then we can
prove mathematical induction according to Lemma 6.1. The
specific description of the theorem is as follows:
Theorem 6.4 (Mathematical Induction): A property P(n)

holds for every non-negative integer n, if
(i) the property holds for the class ∅;
(ii) if the property holds for one non-negative integer k ,

then it holds for the next non-negative integer k + 1.
Proof: Let S be a class of non-negative integers that

make the property untenable. The Coq formalization of the
class S is defined as shown in Fig. 19.

FIGURE 19. Formalization of the class S.

Assuming that the property does not hold for all non-
negative integers, then S 6= ∅. Thus, according to the
Lemma 6.1, there is a minimum member h of S. Since the
property holds for the class ∅, h 6= ∅. Let m+ 1 = h, then m
is a non-negative integer. We can prove that m /∈ S because
h is a minimum member of S, that is, the property holds
for m. According to the condition (ii), the property holds
for h. Hence h /∈ S which is a contradiction. The theorem
is completely proved.

F. THEOREM 180 OF KELLEY’S SET THEORY
When proving the Theorem 180 of Kelley’s set theory
(K.Theorem 180) [19], we found that it cannot be proved.
Thus we try to prove its negative form. We regard it as a new
theorem as follows:
Theorem 6.5: There are two classes x and y which are

members of C . If one of them fails to belong to ω, then
P(x × y) 6= max [P(x),P(y)].

Proof:We assume that x does not belong toω. Let x = ω
and y = ∅, then we can prove ω ∈ C and ω /∈ ω. According

3Theorems int_succ, zero_not_int, int_succ_eq and the the-
orem math_ind in Appendix are Peano’s axioms for non-negative integers
in the ‘‘axiomatic set theory’’ formal system.

to the theorem zero_not_int in Appendix and ω ⊂ C ,
the class ∅ belongs to ω and ω is a subclass of C . Thus ∅ ∈ C
is proved. Next we prove that P(ω × ∅) 6= max [P(ω),P(∅)].
P(ω × ∅) = P(∅) because of ω × ∅ = ∅. In addition, P(ω) ∪
P(∅) = P(ω) based on the definition of cardinal numbers.
Since P(∅) 6= P(ω) is obvious, the theorem is proved.
Theorem 6.5 is proved, which means that K,Theorem 180

is wrong. Therefore, we modify K.Theorem 180 according
to its proof process as follows. The revised theorem can be
proved, and the detailed proof process of the theorem can be
seen in the source code.
Theorem 6.6: If x and y are members of C and both are

non-zero, one of which fails to belong to ω, then P(x × y) =
max [P(x),P(y)].
The discovery of errors in K.Theorem 180 fully demon-

strates that the Coq-based formal proof of mathematics theo-
rem is highly reliable and rigorous.

VII. APPLICATIONS OF THE SYSTEM
The ‘‘axiomatic set theory’’ formal system has essential
applications in both mathematics and computer science.
According to the system, many complex mathematical the-
orems can be directly proved. In addition, we can quickly
build formal systems of fundamental mathematical theories
through this system. The basic theory of computer science
can also be formalized on the basis of it. In this section,
we take the formal proof of the equivalence of AC and
the formal verification of smart contracts as examples to
show how to apply this system in mathematics and computer
science.

A. AXIOM OF CHOICE
AC is an essential axiom in axiomatic set theory. It is the
axiom about the existence of mapping. It was first pro-
posed by Zermelo [28] in 1904 and used for proving the
well-ordering theorem. AC has a significant role in mod-
ern mathematics and has very close ties with many pro-
found mathematics conclusions. Without AC, we do not
even know if two sets can compare their element num-
bers with each other, if the product of a family of the
nonempty set is empty, if the liner space must have a group of
bases, if any family of compact space must be compact and
so on [16].
AC has a lot of equivalent forms. The most famous are

Tukey’s lemma, the Hausdorff maximal principle, the max-
imal principle, Zermelo’s postulate, Zorn’s lemma, the well-
ordering theorem. As shown in Fig. 20, we can prove the
equivalence between them based on the ‘‘axiomatic set the-
ory’’ formal system. The specific formal proof of the equiva-
lence has been implemented in [29], [30].

B. SMART CONTRACT
Blockchain technology has attracted more and more atten-
tion from academia and industry recently. Ethereum, which
uses blockchain technology, is a distributed computing

21520 VOLUME 8, 2020



T. Sun, W. Yu: Formal System of Axiomatic Set Theory in Coq

FIGURE 20. The relation of AC and its equivalent theorems.

FIGURE 21. Definitions of operators in safae math library.

platform and operating system. Smart contracts are small
programs deployed to the Ethereum blockchain for execu-
tion. It can be widely used in finance, insurance, the Inter-
net of Things, and other fields. However, errors in smart
contracts will lead to huge losses [31]. Formal verification
can provide a reliable guarantee for the security of smart
contracts [32].

Integer overflow is the most common security issue
in smart contracts. This security vulnerability is usually
inadvertently introduced by programmers. It may cause
some features of the contract to fail. In the most severe
case, it may lead to hacker attacks and economic losses.
We formally verify the integer overflow issue in smart con-
tracts by building a safe math library. The library can be
constructed based on the ‘‘axiomatic set theory’’ formal
system.

As shown in Fig. 21, we define safe arithmetic which
consists of some basic operators. These operators, which can
prevent overflow, include addition safe_plus, subtraction
safe_minus, multiplication safe_mult, and division
safe_div. Through the definition of non-negative inte-
gers in the ‘‘axiomatic set theory’’ formal system, we can
directly define natural numbers. We can also define other
data types related to natural numbers, such as the uint256
type. Functions nat_ble, nat_blt and nat_beq can
determine the magnitude relationship between two natural
numbers. Taking the function safe_plus as an example,
it implements the safe addition of two uint256-type variables.

TABLE 1. Overview of our formal development.

By the judging condition in the line 2, it ensures that the
sum of two numbers must be greater than or equal to each
addend.

VIII. CONCLUSION AND FUTURE WORK
This paper presents a formal system of axiomatic set theory in
Coq. We construct sets, functions, ordinal numbers, integers,
and cardinal numbers and prove some commonly used theo-
rems. Furthermore, we prove the Hausdorff maximal princi-
ple and Schröeder-Bernstein theorem. Finally, we divide the
cardinals into two classes, the finite cardinals and the infinite
cardinals. We discuss the related issues of the continuum
hypothesis on the basis of the infinite cardinals. The entire
system consists of eight axioms, one axiom schema, 62 defi-
nitions, and 148 corollaries or theorems. Overall, our current
development counts around 9,000 lines of Coq code. It has
been tested and should compile under Coq 8.9.0. Table 1 pro-
vides a detailed account of the formalization in terms of
script files. The count in terms of lines of code distinguishes
between specifications and proofs.

In the future, we will prove more famous theorems on
the basis of the formal system, such as Tychonoff’s the-
orem, Goodstein’s theorem, continuum hypothesis, and so
on. Moreover, we plan to complete the formalization of
‘‘abstract algebra’’ and ‘‘general topology’’ on the basis of the
‘‘axiomatic set theory’’ formal system. It will be ameaningful
exploration and attempt on the formalization of three mod-
ern mathematical structures – ordered structure, algebraic
structure, and topological structure – which are proposed
by the Bourbaki group. Furthermore, we will formalize the
basic concepts and theories of data structure and artificial
intelligence based on the formal system.

APPENDIX
As shown in Fig. 22, we list the formal description of impor-
tant partial theorems in the system. All the theorems involved
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FIGURE 22. The formal description of important partial theorems in the system.
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in this paper are listed in the appendix. All corollaries and
lemmas will not be listed here. The detailed proof process for
all theorems can be found in the source code.
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