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ABSTRACT The deep belief network is widely used in fault diagnosis and health management of rotating
machinery. However, on the one hand, deep belief networks only tend to focus on the global information
of bearing vibration, ignoring local information. On the other hand, the single deep belief network has
limited learning ability and cannot diagnose the health of rotating machinery more accurately and stably.
As a non-recursive variational signal decomposition method, variational mode decomposition can easily
obtain local information of signals. And the ensemble deep belief network composed of multiple deep belief
networks also improves the accuracy and stability of the health status diagnosis of rotating machinery. This
paper combines the advantages of ensemble deep belief network and variational mode decomposition to
propose a novel diagnostic method for rolling bearings. Firstly, the variational mode decomposition is used
to decompose the vibration data of the rolling bearing into intrinsic mode functions with local information.
Then, using the deep belief network based on cross-entropy to learn the intrinsic mode functions of the
rolling bearing data and reconstruct the vibration data. Finally, In the decision-making layer, the improved
combination strategy is used to process the health status information of the bearings obtained by multiple
deep belief networks to obtain a more accurate and stable diagnosis result. This method is used to diagnose
experimental bearing vibration data. The results show that the method can simultaneously focus on and learn
the global and local information of bearing vibration data and overcome the limitations of individual deep
learning models. Experiments show that it is more effective than the existing intelligent diagnosis methods.

INDEX TERMS Combination strategy, ensemble deep belief network, fault diagnosis, feature learning,
rolling bearings, variational mode decomposition.

I. INTRODUCTION
With the rapid development of science and technology, mod-
ern rotatingmachinery has becomemore efficient, large-scale
and integrated, playing an increasingly important role in dif-
ferent industries [1]. Rolling bearings are the most important
part of a rotating machine, which directly affects its per-
formance and operation [2]. Therefore, automatic, accurate
and robust identification of rolling bearing operating condi-
tions, reducing unplanned downtime and economic losses are
becoming increasingly important.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jie Li.

The traditional fault diagnosis method mainly extracts the
fault characteristics through the signal processing method,
and identifies the fault type of the bearing based on the empir-
ical example based on the fault characteristics [3]. Among
them, various signal processing methods are widely used in
fault diagnosis feature extraction. For example, Zhu et al.
used sequential statistical filtering and empirical wavelet
transform to analyze the time-frequency domain feature of
rolling bearings for fault diagnosis [4].Yang et al. used the
variational mode decomposition and phase space parallel
factor analysis to detect the weak fault signal of rolling
bearings [5]. Xu et al. used the variational mode decomposi-
tion to decompose the gear vibration signal, and the spectral
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kurtosis method highlights the fault information to achieve
the purpose of gear fault diagnosis [6]. However, these fault
diagnosis methods relying on signal processing are too com-
plicated on the one hand to be applicable to the analysis of
massive data and on the other hand cannot accurately identify
the severity of the fault.

The traditional intelligent diagnostics based on artificial
intelligence such as artificial neural network (ANN) and
support vector machine (SVM) are designed to efficiently
analyze massively acquired vibration data and automatically
provide diagnostic results, which has become a new trend
in the field of equipment condition monitoring [7], [8]. For
example,Li et al. calculated 1634 characteristics reflecting
bearing conditions and selected 12 sensitive features as input
to the ANN for fault diagnosis [9]. Lei et al. used the wavelet
packet transform (WPT) and empirical mode decomposi-
tion (EMD) for feature extraction and then selected sensi-
tive features based on an artificial neural network for fault
diagnosis [10]. Zhang et al. designed a feature vector based
on 19 parameters. Then SVM is used for bearing fault diag-
nosis [11]. Liu et al. used EMD to extract 71 features, and
then used the selected sensitive features as the input of SVM
for bearing fault diagnosis [12]. Van and Kang et al. pro-
posed a local Fisher discriminant analysis of the composite
feature dimension reduction of particle swarm optimization
and wavelet kernel. The selected features are input to the
SVM classifier for fault diagnosis of the bearings [13]. Jing
et al. used the least squares support vector machine (LSSVM)
and D-S evidence theory to realize the bearing fault diagnosis
of information fusion under multi-sensor [14]. Although the
traditional intelligent diagnosis method solves the problem
that the conventional fault diagnosis method based on signal
processing is difficult to apply to big data,the traditional
intelligent diagnosis is inseparable from feature extraction,
feature selection, and pattern recognition. This leads to three
obvious limitations of traditional intelligent diagnostic meth-
ods: (1) The feature extraction of rolling bearings requires
experts to master various signal processing knowledge,which
limits the popularity of fault diagnosis technology (2) The
selection of sensitive features in rolling bearings depends
on the expert’s prior knowledge, which greatly wastes the
time of fault diagnosis. At the same time, the extracted sen-
sitive features are poorly generalized and difficult to adapt
to different bearing signals. (3) Artificial neural networks
and support vector machines belong to the shallow machine
learning model,which has a common problem, that is, its
nonlinear approximation ability is limited, which results in
poor performance when dealing with complex classification
problems [7]. Therefore, there is an urgent need to study a
new method to eliminate the dependence on manual feature
extraction and feature selection.

In order to solve the problem of limited nonlinear approx-
imation and dependence of artificial feature extraction and
feature selection of shallow learning architecture in tra-
ditional intelligent diagnosis methods,Hinton proposed the
concept of deep learning architecture in 2006 [15]. As the

cutting-edge research area of machine learning, compared
with shallow network, it provides stronger generalization
ability, deeper nonlinear mapping as well as the ability to
extract feature from higher dimensional data set. At present,
there are three deep learning models, namely Deep Belief
Network (DBN), Stack Automatic Encoder (SAE), and Con-
volutional Neural Network (CNN), which have been suc-
cessfully applied to the field of mechanical fault diagnosis
in the past few years [16].For example, Shao et al. used
an ensemble stacking automatic encoder (ESAE) which is
constituted by automatic encoders with different activation to
complete the fault diagnosis of rolling bearings [17]. T. Ince
et al. proposed a 1-D convolutional neural network (CNN)
method to diagnose real-time motor faults [18]. Wang et al.
designed an adaptive convolutional neural network (CNN)
for fault identification of rolling bearings [19]. Shao et al.
used particle swarm optimization to design a deep belief net-
work for fault diagnosis of rolling bearings [20]. Chen et al.
combined a sparse automatic encoder (SAE) and deep belief
network (DBN) for bearing fault diagnosis. 15 time-domain
features and 3 frequency domain features are extracted from
the sensor vibration signal and input into the sparse automatic
encoder (SAE) for feature fusion, the resulting fusion feature
vector is used to train the deep belief network (DBN) [21].
Tao et al. proposed a fault diagnosis method for rolling bear-
ing based on the Teager energy operator (TEO) and DBN.
The instantaneous energy in the vibration signal of the rolling
bearing was extracted by TEO, and input into the DBNmodel
after adjusting the parameters by the hierarchical optimiza-
tion algorithm to identify the fault [22]. Although the concept
of deep learning is widely used in the field of mechanical
fault diagnosis, there are still three shortcomings. (1) Most
researchers only use the deep learning model as a classifier to
obtain the input value of the deep learningmodel bymanually
extracting features and feature selection. The feature learning
ability of deep learning is not fully utilized. (2) When the
fault information is learned by using the deep learning model,
only the global signal is considered, and the fault information
contained in the local signal is ignored, resulting in low
accuracy of diagnosis and poor system performance. (3) The
single deep learning model has limited learning ability and
cannot completely learn fault information, which limits the
fault recognition rate of the system.

This paper presents a novel fault diagnosis method for
rolling bearing based on variational mode decomposition and
ensemble deep belief network. This method can be divided
into three parts: First, the original vibration signal of the
bearing is processed using a variational mode decomposition
(VMD) to obtain the IMFs containing local information of
the rolling bearing and a reconstructed vibration signal con-
taining global information of the rolling bearing. This part
directly uses the original vibration signal of the rolling bear-
ing without artificial feature extraction and feature selection.
Then, using a plurality of deep belief networks, the IMF com-
ponent and the reconstructed vibration signal are respectively
used as input signals to perform feature learning of the rolling
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bearing. This part makes full use of the powerful non-linear
mapping ability of the deep belief network to deepen the local
feature information and the global feature information of the
bearing. Finally, the improved combination strategy is used
to comprehensively study the diagnosis results of each deep
belief network to obtain the final fault diagnosis results. This
part combines the learning results of multiple deep belief
networks with the idea of the ensemble learning, avoiding
the limitations of a single deep learning model and ensur-
ing the accuracy and stability of the diagnostic system. The
experimental results show that the method can get rid of the
artificial dependence feature extraction, pay attention to the
local and global feature information of the bearing, overcome
the limitations of the individual deep learning model, and is
more effective than the existing intelligent method.

The rest of this paper is organized as follows: In Section 2,
the basic theory of VMD and DBN is briefly introduced.
In Section 3, detailed description of the proposed method.
In Section 4, experiments were performed to verify the effec-
tiveness of the proposedmethod. In Section 5, the conclusion.

II. BASIC THEORY OF VARIATIONAL MODE
DECOMPOSITION AND DEEP BELIEF NETWORK
A. VARIATIONAL MODE DECOMPOSITION
VMD is a non-recursive variational signal decomposi-
tion method proposed by Konstantin Dragomiretskiy et al.
In 2014 [23]. This method is very suitable for processing
non-stationary signals, and can accurately separate signals
with close frequency from the components with different
center frequency and bandwidth, which is suitable for the
separation of multi-component non-stationary nonlinear sig-
nals. Compared with EMD and LMD, the VMD algorithm
can effectively avoid the problem of modal aliasing and false
composition, which has the advantages of less decomposition
layer and high efficiency. The core of VMD algorithm is to
construct and solve the variational problem.

The purpose of the variational mode decomposition is to
ensure the minimum bandwidth of the IMF.The solution of
the bandwidth of each mode is obtained by the following
steps: 1) performing a Hilbert transform on all the decom-
posed uk to obtain a unilateral spectrum; 2) the modal signals
are mixed by the correction coefficient e−jwk t and the spec-
trum of each modal function is modulated to the respective
base band. 3) The final gradient L2 method calculates the final
result for the obtained uk.
Equation 1 shows the constrained variational model of

VMD
min
{uk }{wk }

{

∑
k

∂t

∥∥∥∥[(δ(t)+ j
π t

)
∗ uk (t)

]
e−jwk t

∥∥∥∥2}
s.t
∑
k

uk = f
(1)

where uk represents K IMFs and wk represents K center
frequencies.

In order to obtain the optimal value of the above varia-
tional model, a quadratic penalty factor α and a Lagrangian

multiplication operator λ(t) are introduced to transform the
constrained variational problem into an unconstrained varia-
tional problem.

L({uk}, {wk}, λ)

= α

K∑
k=1

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jwk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−
K∑
k=1

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t),

K∑
k=1

uk (t)

〉
(2)

The alternating direction multiplier algorithm is used to
calculate Equation 2. Proceed as follows: firstly,ecompose
the original signal into different components, each com-
ponent has a different center frequency and bandwidth.
Then,Equation 3 is used to continuously update the center
frequency and bandwidth.

ûn+1k (ω)=
f̂ (ω)−

∑
i<k û

n+1
i (ω)−

∑
i>k û

n
i (ω)+ λ̂

n(ω)/2

1+ 2α(ω − ωnk )
2

ωn+1k =

∫
∞

0 ω
∣∣ûk (ω)∣∣2 dω∫

∞

0

∣∣ûk (ω)∣∣2 dω
k ∈ {1,K }

(3)

B. DEEP BELIEF NETWORK
Deep belief networks (DBN) is a deep learning framework
proposed by Hinton in 2006. It is a deep learning model
that uses data probability distribution to model and clas-
sify data according to DBN discriminant model. The deep
belief network is composed of multiple Restricted Boltzman
Machines (RBMs) and one BP neural network. The deep
belief network begins to learn the characteristic information
of the input data from the bottom to top through the underly-
ing RBM. It uses BP neural networks to fine tune the learning
framework from top to bottom through label information.

RBM is the smallest unit for DBN to implement feature
extraction and classification. As shown in Fig. 1, the RBM
is an undirected probability graph model including a visible
layer v and a hidden layer h. The visible and hidden layers
of the RBM are connected to each other by weights. The
visible layer is used to input data. All nodes of the hidden
layer are set to be random 0 or 1. The units of the same layer

FIGURE 1. Restricted Boltzmann machine network structure.
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are independent of each other, and the full probability of the
visible layer and the hidden layer. Distribution satisfies the
Boltzmann distribution.

The energy function of the RBM model can be given in:

E(v, h|θ ) = −aT v− bT h− vTWh

θ = {W , a, b} (4)

where W represents the weight between the visible layer and
the hidden layer, a represents the bias of the visible layer, and
b represents the bias of the hidden layer. The joint probability
distribution of RBM has an energy function expressed as:

P(v = v, h = h|θ ) =
1
Z
exp(−E(v, h|θ ))

with Z =
∑
v

∑
h

exp{−E(v, h|θ )} (5)

Since the RBM inter-layer units have no connection, the
probability of activation of the visible layer node and the
hidden layer node can be expressed as:

P(v = 1|h, θ) =
m∏
i=0

1

(1+ exp(−W T
i h− ai))

(6)

P(h = 1|v, θ) =
m∏
j=0

1

(1+ exp(−W T
j v− bj))

(7)

In order to make the error of the input signal and the
reconstructed signal as small as possible, the deep belief
network introduces the Contrast Divergence (CD) algorithm
and two hyper parameters( learning rate η andmomentumm).
The weights in the RBM and the offsets of the layers are
updated by multiple Gibbs samples.

W ← m∗W + η(
〈
vihj

〉
data −

〈
vihj

〉
mod el)

a← m∗a+ η(〈vi〉data − 〈vi〉 mod el)
b← m∗b+ η(〈hi〉data − 〈hi〉 mod el)

(8)

where ‘‘data’’ represent P(h|v, θ) and ‘‘model’’ represents
P(v, h|θ ).

After completing the unsupervised training of each RBM,
the DBN begins its own supervised training. In supervised
learning, the RBMs of the deep belief network are consid-
ered as a whole, that is, the BP neural network. The BP
neural network plays the role of constraint classification in
the deep belief network. First, the training samples are input
into the RBMs that have been trained through unsupervised
learning, and the feature information of samples is learned
by the RBMS from bottom to top. The RBM on the top
layer obtains the predicted classification result through the
classifier. Then, according to the classification result and the
sample label diagnosed by the model, the error is layer-by-
layer transmitted to the lowest RBM, and the weight of each
RBM is further optimization is performed with the offset of
each layer by the gradient descent algorithm.

III. PROPOSE METHOD
In this paper, a novel intelligent fault diagnosis method based
on variational mode decomposition and ensemble deep belief
network (VMD-EDBN) is proposed. The method mainly
consists of three parts. The first part is to obtain the local
feature information and the global feature information of the
original vibration signal of the rolling bearing through VMD.
The second part is to learn the local feature information
and the global feature information of the rolling bearing
through the improved DBN. The improved DBNs consti-
tute an ensemble deep belief network (EDBN). In the third
part, the final fault diagnosis result of the rolling bearing is
obtained from information fusion of the diagnosis results of
each DBN in the ensemble deep belief network through the
improved combination strategy.

A. DESIGN BEARING DATA SET
The working conditions of rolling bearings are usually poor,
and the bearing vibration data obtained by the sensors is
inevitably mixed with noise. The traditional intelligent fault
diagnosis method with rolling bearing only pays attention
to the global feature information of the vibration signal.
Our proposed method simultaneously mines the local feature
information of the vibration signal while paying attention to
the global feature information of the vibration signal. It is
worth noting that we did not go through the manual feature
extraction and feature selection steps, directly using the bear-
ing vibration signal obtained from the sensor.

The variationalmode decomposition technique can decom-
pose non-stationary signals into IMF components with differ-
ent center frequencies. It has strong adaptability and is now
used in the field of mechanical fault diagnosis. The VMD
technology is a prerequisite for our proposed method. We use
the VMD technique to decompose the vibration signal of
the rolling bearing to obtain a series of IMF components
including local feature information of the bearing vibration
signal. Then, the reconstructed signal containing the global
feature information of the vibration signal is obtained by
reconstructing all of the IMF components. Finally, the IMF
component obtained by the VMD technique and the recon-
structed signal together constitute the experimental data set.

B. THE FAULT DIAGNOSIS OF TEH IMPROVED ENSEMBLE
DEEP BELIEF NETWORK
As one of the most classic models in deep learning, DBN is
a probabilistic generation model that has been successfully
applied in many fields, especially in fault diagnosis [24].
In fault diagnosis, the deep belief network first diagnoses the
fault by the unsupervised feature learning of the input signal
from the bottom of the independent RBM. However, there
must be an error between the fault diagnosis result and the
actual fault information. In order to improve the network per-
formance, it is necessary to use the loss function to reduce the
error-oriented top-down supervised fine adjustment. At the
same time, it is hoped that while the training convergence is
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guaranteed, the greater the error, the greater the strength of
the parameter correction.

Traditional deep belief networks typically use a quadratic
cost function as a loss function for inverse fine-tuning.

C =
1
2n

∑
||y− a||2 (9)

where a represents the fault diagnosis result and y represents
the actual fault information. Parameter adjustment mostly
adopts the method of gradient descent. Therefore, the gradi-
ent formula for weights and offsets is:{

∂C
/
∂W = (a(x)− y)σ ′(z)x

∂C
/
∂b = (a(x)− y)σ ′(z)

(10)

where z represents Neuron input and a represents the activa-
tion function.

It can be known from (10) that the gradient of the activation
function determines the adjustment speed of the parameter,
and the faster the parameter adjustment, the faster the training
converges. The activation function of the deep belief network
is generally a sigmoid function, and when the error is large,
the function gradient is small. Therefore, the improved deep
belief network in the method we mentioned replaces the loss
function with a cross entropy function.

C = −
1
n

∑
x

[y ln a(x)+ (1− y) ln(1− a(x))] (11)

The gradient of the parameters is as follows:
∂C
/
∂W =

1
n

∑
x

x(σ (z)− y)

∂C
/
∂b =

1
n

∑
x

(σ (z)− y)
(12)

The gradient of the parameter is directly expressed as the
difference between the output value and the actual value,
so when the error is larger, the gradient value is larger, and the
correction strength of the parameter is larger. Compared with
the traditional deep belief network whose the loss function is
a quadratic cost, our improved deep belief network uses the
cross entropy as the loss function, which eliminates the influ-
ence of the activation function on the parameter update, and
achieves the purpose that the greater the error, the stronger
the adjustment parameters.

The improved deep belief network based on the cross
entropy function diagnoses bearing faults by learning the fea-
ture information of the rolling bearing is the basis of the pro-
posed method. Multiple improved deep belief networks form
the ensemble deep belief network. We use the IMF compo-
nent obtained by the VMD containing local feature informa-
tion and the reconstructed signal containing the global feature
information as input signals for the improved ensemble deep
belief network. Each improved deep belief network in the
ensemble deep belief network learns a corresponding input
signal respectively. After repeated iterations of unsupervised
feature learning and supervised fine tuning training, the fault
diagnosis results of the rolling bearing are obtained.

C. IMFORMATION FUSION OF FAULT DIAGNOSIS RESULTS
Information fusion is a feature of our proposed method.
The biggest advantage of our proposed method is to use
the ensemble deep belief network model to simultaneously
learn the local feature information and the global feature
information of the rolling bearing vibration signal to achieve a
more accurate and stable fault diagnosis conclusion. We have
obtained corresponding fault diagnosis results by learning
the IMF component containing local feature information and
the reconstructed signal containing the global feature infor-
mation. Now, we need to use the appropriate combination
strategy to fuse the fault diagnosis results.

The traditional weighted voting method in ensemble learn-
ing is mainly based on the learning ability of the learning
model, that is, the accuracy of fault diagnosis as the standard
to design corresponding weight of the individual learning
model in the ensemble system in the field of fault diagnosis.
However, for the rolling bearing fault diagnosis method pro-
posed in this paper, the traditional weighted voting method
has obvious shortcomings: the IMF component obtained by
the VMD technology to decompose the bearing vibration
signal is a series of vibration signals with different center
frequencies, which means the different IMF component con-
taining different fault feature information. The traditional
method only considers the overall fault diagnosis ability of
the individual learning model, which leads to two kinds
of error phenomena, that is, the overall diagnostic accuracy
of the learning model is high while the accuracy of the single
fault diagnosis is low. And the overall diagnostic accuracy of
the learning model is low while the accuracy of the single
fault diagnosis is high. Therefore, based on the traditional
weighted voting method, we have designed an improved
weighted voting method based on the accuracy of single fault
diagnosis in each learner.

The improved weighted voting method proposed by us is
divided into the following three steps: First, we obtain the
fault diagnosis results obtained by each improved deep belief
network in the ensemble deep belief network according to
different vibration signals. Then, we calculate the accuracy
of each improved deep belief network fault diagnosis under
the same fault type of rolling bearing. According to the
accuracy of the improved deep belief network, the weights
of each improved deep belief network under the fault type
are designed. Finally, we reorganize the weights of each
improved deep belief network under various fault types into
a weight set of the entire integrated network.

D. PROPOSED DIAGNOSTIC STEPS
As shown in Fig. 2, based on our novel fault diagnosis method
based on variational mode decomposition and the ensemble
deep belief network, we designed a fault diagnosis flowchart
for rolling bearings. The rolling bearing diagnostic steps are
summarized as follows:

Step 1: The rolling bearing simulates the fault test bench
for the fault test, and uses the acceleration sensor to obtain
the original vibration signal of the bearing.
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FIGURE 2. The diagnostic steps of the proposed method.
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Step 2: The original vibration signals of the rolling bearing
are directly and randomly divided into training samples and
test samples. It is worth noting that manual feature extraction
and feature selection are not performed.

Step 3: Directly decompose the bearing vibration signal
using the VMD technique to obtain a series of IMF com-
ponents including the local feature information and a recon-
structed signal including the global feature information.

Step 4: The IMF components and the reconstructed signal
are used as input signals for the improved ensemble deep
belief network. Each improved deep belief network performs
feature learning on its corresponding input signal to obtain a
series of fault diagnosis results.

Step 5: Using the improved weighted voting method in the
decision-making layer to fuse the fault diagnosis results in
the ensemble deep belief network to obtain the final diagnosis
result.

Step 6: Using the test sample to systematically evaluate the
fault diagnosis method based on VMD and the ensemble deep
belief network proposed in this paper.

IV. EXPERIMENT AND ANALYSIS
A. BEARING EXPERIMENTAL DATA DESCRIPTION
We used the rolling bearing vibration fault data simulated
by Case Western Reserve University Laboratories to evaluate
the capabilities of the proposed method [25]. the rolling
bearing test bench consists of a loadmotor (left), a torque sen-
sor/encoder (center) and a dynamometer (right). The original
vibration signal for different health conditions was measured
by an accelerometer at 1797 rpm and the sampling rate was
12 kHz.

In this paper, the vibration data of the driving end
6205-2RS rolling bearing is selected for subsequent simu-
lation research. The parameters are shown in Table. 1. The
experiment simulates the normal condition of the bearing
and three different types of bearing faults, including Ball
Fault (B), Inner Ring Fault (IR) and Outer Ring Fault (OR).
Each type of fault has three levels of damage, divided into
mild, moderate, and severe depending on the fault diameter.
Fault failure diameters are 0.007, 0.014, and 0.021 feet

TABLE 1. Bearing health status and label introduction.

(1 foot= 25.4 mm) respectively. Each type has 300 samples,
each sample contains 400 sampling points, of which
200 random samples are used as training sets and 100 random
samples are used as test sets.

In this paper, the vibration data of the rolling bearing under
no-load and load is 1 horsepower is selected. As shown in
Table. 2, the data series A series is the vibration data of
various health states of the rolling bearing under no-load.
The data set B series is the vibration data of various health
states of the rolling bearing under load of 1 horsepower.
The data set D series consists of data set A series and data
set B series, the purpose is to test the applicability of the fault
diagnosis method proposed in this paper under multi-load
conditions. It is worth noting that each data set series contains
two sets of bearing data sets,that is, the original vibration
data set and the feature data set. Each raw vibration data
set contains bearing vibration signals for normal conditions
and nine different fault conditions. Each feature data set is
composed of 10 sensitive wavelet values extracted from the
8 recombination bands after the wavelet signal transform of
the original vibration data set. The 10 sensitive eigenval-
ues include mean, variance, root mean square, maximum,
peak-to-peak, median, crest factor, distortion, sheath, wavelet
packet energy, and so on. Therefore, each health state in the
original vibration data set contains 300 samples, each sample
contains 400 vibration data points, and each health state in
the feature data set contains 300 samples, each of which
contains 80 (8∗10) features data.

TABLE 2. Introduction to bearing data set.

B. VARIATIONAL MODE DECOMPOSITION OF BEARING
VIBRATION SIGNALS
In order to obtain local feature information of the rolling bear-
ing vibration signal, the VMD technique is used to adaptively
decompose the original bearing vibration signal to obtain
the IMF components containing local bearing characteristic
information. According to the VMD technology theory in
Section 2.1, the signal decomposition scale K and the penalty
factor α are the main factors affecting the decomposition
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results of the bearing signal. If the K value is chosen to be
small, the number of IMF components of the signal decom-
position is small. Since the VMD is equivalent to the self-
applying Wiener filter, some important information in the
original signal is filtered out; On the contrary, the number of
IMF components of the signal decomposition is large, so that
the signals of the same frequency segment are decomposed
into different IMF components, and the center frequency
bands of the decomposed IMF components overlap. The
penalty factor α affects the bandwidth and convergence speed
of each IMF component. In order to obtain the suitable IMF
components containing local feature information of the bear-
ing, we experimentally determine the parameters of the VMD
algorithm.

This article only takes the vibration signal of the bear-
ing inner ring fault as an example. Fig. 3 is the final
decomposition result of this signal.We determine the sig-
nal decomposition scale K and the penalty factor α in the
VMD technique by observing the center frequency method.
Table 3 is the statistical table of the center frequency values
of the IMF components at different decomposition scales K.
Fig. 4 is a visualization of Table 3. It can be seen from
observation that when K is 2, information of 1000∼2000 Hz
and 3000∼4000 Hz can be filtered out. When K is 3,
the information of 1000∼2000 Hz is still filtered out. When
K is 4, the orientation information of each frequency seg-
ment can be obtained. When K is 5, the band information
of 3000∼4000Hz is divided into two segments, and the center
bands of the fourth IMF and the fifth IMF overlap.

FIGURE 3. Signal decomposition effect diagram of the inner ring fault
rolling bearing under the combined parameters.

TABLE 3. The center frequency values of the IMF components at different
decomposition scales K.

Table 4. is a spectrogram of each IMF component
obtained by changing the penalty factor α when the signal

TABLE 4. The center frequency values of the IMF components at different
Penalty factor α.

decomposition scale K is 4. It can be seen from obser-
vation that when α is 100, the IMF1 component contains
two central frequency modal components 0∼1000Hz and
1000∼2000Hz. In addition, the same modal component
of 3000∼4000Hz is decomposed into two components of
IMF3 and IMF4, and modal aliasing occurs. When α is
200, the IMF1 component contains two central frequency
modal components 0∼1000Hz and 1000∼2000Hz. In addi-
tion, the same modal component of 2000∼3000Hz is decom-
posed into two components of IMF2 and IMF3, and modal
aliasing occurs. When α is 400∼4000, the bearing vibration
signal is successfully divided into 4 IMF components with
no overlapping center frequencies, no modal aliasing. When
α is 2000,it takes the least amount of time. When α is 8000,
it is so large that the low frequency band IMF1 amplitude
is too small. We can’t get the fault feature information from
IMF1.Therefore the penalty factor α is 2000.

The IMF component obtained from the original vibration
signal decomposed by the VMD method can contain fea-
ture information in different frequency ranges of the original
signal, which provides the possibility for further deepening
of the azimuth information mining using the ensemble deep
belief network.

C. EXPERIMENT DESIGN
In order to evaluate the practical diagnosis ability of our
proposed fault diagnosis method based on variational pattern
decomposition and ensemble deep belief network. We con-
ducted three sets of fault diagnosis experiments using the
three sets of rolling bearing vibration data sets introduced in
Section A. In each set of experiments, the fault diagnosis abil-
ity of our proposed method was evaluated by comparing the
proposed fault diagnosis method with the diagnosis results of
existing intelligent fault diagnosis methods.

Because model parameters such as the network structure
of the ensemble deep belief network will directly affect the
accuracy of fault diagnosis and no mature theory currently
directly determines this parameter, this paper uses experi-
ments to determine the hyper parameters of the ensemble
deep belief network. Therefore, before the comparative test of
the proposed method and the traditional intelligent diagnostic
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FIGURE 4. Different K values are time-frequency diagrams of each IMF component.

method, the hyper parameters of the ensemble deep belief
network need to be determined experimentally.

A total of four experiments are performed in this paper,
the details are as follows:
Experiment 1:
In order to obtain the best hyper parameters of the ensem-

ble deep belief network, the three sets of bearing data sets of
Part A are input into the model, and the best hyper parameters
of the model are determined by comparing the fault diagnosis
results of the models under different parameters.
Experiment 2:
To evaluate the fault diagnosis capabilities of our proposed

method, we used the A series of bearings under no-load
vibration data sets. Firstly, we use the raw vibration signal as
the input signal, and enter the fault diagnosis model and the
traditional Intelligent diagnosis methods,such as deep belief
network, convolutional neural network, stack autoencode,
BP neural network and support vector machine for feature
learning and fault diagnosis.Since BP neural network and
support vector machine are shallow learning models, we then
use the feature data set as input signal to enter BP neural

network and support vector machine for feature learning and
fault diagnosis.
Experiment 3:
In order to evaluate the versatility of our proposed method

for fault diagnosis under different loads, we used the B series
bearing data set with a load of 1 horsepower. The proce-
dure of Experiment 3 is the same as Experiment 2. First,
the original vibration signal is used as the input signal to enter
the fault diagnosis model and traditional intelligent diagnosis
methods, such as deep belief network, convolutional neural
network, stack autoencoder, BP neural network and support
vector machine for feature learning. Since BP neural network
and support vector machine are shallow learning models,
we use feature data set as input signals to enter BP neural
network and support vector machine for feature learning and
fault diagnosis.
Experiment 4:
To evaluate the ability of our proposed method to diagnose

faults under multiple loads, we used the D series multi-load
bearing data set. The procedure of Experiment 4 was also the
same as Experiment 2. First, the original vibration signal is
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used as an input signal to enter the fault diagnosis model
and traditional intelligent diagnosis methods, such as deep
belief network, convolutional neural network, stack autoen-
coder, BP neural network and support vector machine for
feature learning. Since BP neural network and support vector
machine are shallow learningmodels, we use feature data sets
as input signals to enter BP neural network and support vector
machine for feature learning and fault diagnosis.

D. EXPERIMENTAL RESULTS AND ANALYSIS
Experiment 1:

There are many hyper parameters for the ensemble deep
belief network, and the network structure of the model can
directly affect the effect of feature learning and fault diagno-
sis. On the one hand, too many hidden layers and hidden units
may improve the diagnosis results but complicate the model
and increase the amount of calculation. On the other hand,
if the number of hidden layers and hidden units is too small,
network performance may be poor. Therefore, Experiment 1
is used to discuss and determine the network structure of the
models in the three sets of experiments.

In this experiment, the selection of the network structure
follows the principle that the number of units in the i-th
hidden layer is less than the number of units in the (i −1) -th
hidden layer. This experiment evaluates the diagnostic effect
of the model from the accuracy of the diagnostic results. Each
model is subjected to 5 repeated experiments. The average
of the diagnostic results in the 5 groups is regarded as the
accuracy of the model.

Tables 5, 6, and7 show the diagnosis results of the ensem-
ble deep belief networks with different network structures
under different data sets. We can draw the following conclu-
sions: 1) When dealing with complex nonlinear classification
problems such as bearing fault diagnosis, deep networks
structural models usually have better diagnostic accuracy,

TABLE 5. Performance of the proposed method with different network
structure for data set A.

TABLE 6. Performance of the proposed method with different network
structure for data set B.

TABLE 7. Performance of the proposed method with different network
structure for data set D.

because deep architecture models have powerful nonlinear
approximation capabilities and powerful computing capabil-
ities. 2) It is not that the more complex the network structure,
the better the ability to handle nonlinear problems. This is
because an overly complex network structure model may
have over-learning of training samples due to its more power-
ful learning ability. It may also learn some interference infor-
mation while learning the regularity of bearing performance
changes, which leads to the fault prognosis becomes worse,
that is, overfitting occurs when the test sample was used.

In summary, this paper uses manual adjustment of param-
eters to determine the optimal network structure of the model
under different data sets, which provides a prerequisite for the
subsequent comparative experiments.
Experiment 2:
As shown in Table 8, the network structure of each deep

belief network in the ensemble deep belief network is 400-
50-20-10-10. The learning rate of the weight of each layer in
the network is 0.001 and the momentum of them is 0.9, The
number of iterations is 200. The number of decomposition
K of the variational mode decomposition (VMD) is 4, and
the penalty factor α is 2000. The parameters of the remaining
intelligent diagnosis methods in Experiment 2 are as follows:

1) Deep belief network: network structure is 400-50-20-
10-10, the learning rate is 0.001, momentum is 0.9, and
the number of iterations is 250.

2) Convolutional neural network: The input sample is
made into a 20∗20 sample map. The first convolutional
layer includes 6 cores, the size of which is 5. The
step size of the pooling layer is 2. And the second
convolutional layer includes 12 cores whose size is 5.
The learning rate is 1, and the number of iterations
is 100.

TABLE 8. Main parameters of fault diagnosis method based on VMD and
ensemble deep belief network under no load.
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3) Stack autoencoder: network structure is 400-200-10.
The activation function is ReLU. The learning rate is
0.45, and the momentum is 0.9. The number of itera-
tions is 100. the sparsity penalty factor is 0.3, and the
sparse parameter is 0.01.

4) BP neural network with Raw data set: BP neural net-
work structure is 400-25-10, the learning rate is 0.8,
the number of iterations is 100.

5) Support vector machine with Raw data set: RBF kernel
is applied. The penalty factor is 1.2 and the kernel
radius is 0.6.

6) BP neural network with feature data set: BP neural
network structure is 80-25-10, the learning rate is 0.8,
the number of iterations is 100;

7) Support vector machine with original bearing vibration
data set A1: RBF kernel is applied. The penalty factor
is 3.2 and the kernel radius is 1.8.

In order to ensure the accuracy and stability of the results
of the proposed method for bearing fault diagnosis, we have
carried out repeated experiments. The average of multiple
failure diagnosis results is considered to be the accuracy of the
method, and the standard deviation of multiple failure diag-
nosis results is considered to be the stability of the method.

Fig.5 is the accuracy of fault diagnosis results of different
diagnostic signals in multiple experiments under no load.
We can see that the improved deep belief network (IDBN) has
obtained a relatively stable fault diagnosis result after fully
learning the feature information of the rolling bearing of each
input signal. As shown in Table 9, when the input signal is the
IMF1 component, the diagnostic accuracy of the improved
deep belief network is 61.88%. When the input signal is the
IMF2 component, the diagnostic accuracy of the IDBN is
75.94%. When the input signal is the IMF3 component, the
diagnostic accuracy of the IDBN is 87.64%. When the input
signal is the IMF4 component, the diagnostic accuracy of the
IDBN is 84.38%. When the input signal is a reconstructed
signal, the diagnostic accuracy of IDBN is 94.64%. The final
diagnostic accuracy obtained through the improved combina-
tion strategy was 98.96%.

FIGURE 5. Accuracy of fault diagnosis results of different diagnostic
signals in multiple experiments under no load.

TABLE 9. Fault diagnosis results under different diagnostic signals under
no load and accuracy of diagnosis results of the model.

FIGURE 6. The fault diagnosis results under different diagnostic signals
under no load.

Fig.6 shows the fault diagnosis results under different
diagnostic signals under no load and the average accuracy
of the model diagnosis results. We can see that the accu-
racy of the diagnostic results of the deep belief network,
which is only concerned with the global feature information,
is 94.64%. The proposed fault diagnosis method based on
VMD and EDBN learns the local feature information and
the global feature information of the rolling bearing at the
same time, greatly improved the accuracy of rolling bearing
fault diagnosis. The accuracy reaches 98.96%. It is worth
noting that when only the feature information of the IMF
component is learned, the result of the fault diagnosis may not
be ideal. It is only because the VMD technique is an adaptive
decomposition of the vibration signal into IMF components
with different center frequencies, so some IMF components
contain less fault characteristic information, resulting in fail-
ure to diagnose correctly. Fig. 7 is a confusion matrix of
fault diagnosis results when the IMF1 component is used
as an input signal in one experiment. The improved deep
belief network cannot recognize the 0.007 feet outer ring
fault, that is, the eighth health state, because there is almost
no fault information specific to the eighth health state in the
IMF1 component. But it can accurately identify the fifth,
sixth, and seventh health states, because the IMF1 contains
the inner ring fault information of the rolling bearing. Fig. 8 is
a confusion matrix of the final diagnostic results of the fault
diagnosis method based on VMD and EDBN in one experi-
ment. After the method proposed in this paper fully learns the
local feature information and the global feature information
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FIGURE 7. The confusion matrix of fault diagnosis results when the
IMF1 component is used as an input signal in one experiment.under
no load.

FIGURE 8. The confusion matrix of the final diagnostic results of the
proposed method in one experiment under no load.

of the rolling bearing, the diagnostic accuracy is obviously
improved to 99.5%.

In order to better evaluate the effectiveness and superiority
of the proposed fault diagnosis method. We have done a
series of comparative experiments in combination with tradi-
tional intelligent diagnostic methods. Table10 compares the
diagnostic results of different intelligent diagnostic methods
when the no-load bearing vibration signal is used as the input
signal. The proposed method based on VMD and EDBN has
the highest test accuracy rate of 98.96%, and the stability is
also the best. The standard deviation is only 0.7861%. The
accuracy and stability of the remaining traditional deep learn-
ing and machine learning diagnostic methods are as follows:
the accuracy of the convolutional neural network is 89.82%,
the stability is 2.9953%; the accuracy of the stack automatic
encoder is 91.43%, and the stability is 1.4700%; the accuracy
of the deep belief network is 93.52%, the stability is 2.5600%;

TABLE 10. Comparison of diagnostic results of different intelligent
diagnostic methods when the vibration signal under no-load.

the accuracy of BP neural network is 72.70%, the stabil-
ity is 2.2310%; the accuracy of support vector machine is
83.70%, the stability is 2.1600%. When the feature data set
is used as the input signal, the diagnosis results of the two
machine learning fault diagnosis methods are: BP neural
network accuracy is 87.95%, stability is 1.5946%; support
vector machine accuracy is 87.70%, stability It is 1.8900%.
feature information of the vibration signal. Our fault diag-
nosis method learns the global feature information of the
vibration signal of the rolling bearing and also mines the local
feature information of the vibration signal. In addition,As
shown in Fig. 9, we have visualized the accuracy and stability
of the diagnostic results of the proposed method and the
traditional Intelligent fault diagnosis. The figure is a double
ordinate graph, the left ordinate represents the accuracy of
the model diagnosis results, and the right ordinate represents
the stability of the model diagnosis results. The histogram
represents the test accuracy of the diagnostic method, and
the line graph represents the test stability of the diagnostic
method.

FIGURE 9. The accuracy and stability of the diagnostic results of the
proposed method and the traditional Intelligent fault diagnosis under
no load.

Through the data in Table 10 and the diagnostic results
visualization of Fig. 9, we can get the following conclusions:
(1) The proposed fault diagnosis method based on VMD and
EDBN is far superior to traditional Intelligent fault diagnosis
method on the accurate and stability of the diagnosis results.
This is because the fault diagnosis model proposed in this
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FIGURE 10. Diagnostic results of the health status of rolling bearings under no-load.

paper is different from the traditional Intelligent fault diag-
nosis method, which only pays attention to the global fea-
ture information of the vibration signal. Our fault diagnosis
method learns the global feature information of the vibration
signal of the rolling bearing and also mines the local feature
information of the vibration signal. In addition, the ensemble
learning of multiple improved deep belief networks also over-
comes the problem of insufficient learning ability of a single
learning framework, improving the accuracy and stability of
bearing fault diagnosis. (2) The diagnostic accuracy of bear-
ing fault diagnosis using deep learning method is obviously
superior to the traditional machine learning method. This is
because machine learning is a shallow learning model, and
its nonlinear approximation ability is limited. When deal-
ing with the non-static complex signal recognition problems
with noise pollution such as rolling bearing vibration signals,
the effect is relatively poor.

(3) When using the machine learning method to deal with
the fault diagnosis of the rolling bearing, feature data set as
input signal is better than raw data set. This is because the
data in the feature data set has undergone manual feature
extraction and feature selection, and the original data set
does not go through these steps. However, artificial feature
extraction and feature selection require a lot of manpower
and time, and the feature set does not have generalization.
Our proposed method based on VMD and EDBN not only
eliminates the process of artificial feature extraction feature

selection and greatly saves manpower and time, but also
achieves an extremely high diagnostic results. Compared
with the traditional intelligent fault diagnosis method, our
proposed diagnosis method is more accurate and more stable.

Figure 10 is a detailed diagnosis result of the failure condi-
tion of the bearing in one test. We can see that the diagnostic
accuracy of fault diagnosismethod based on theVMD-EDBN
proposed in this paper is basically much higher than the
traditional intelligent fault diagnosis methods. Among the
tenth health status, our method accuracy rate is relatively
low, but it also reached 97%. At the same time, the accuracy
of SVM achieved 100% when the feature data set was used
as the input signal. However, under other health conditions,
the diagnostic accuracy of support vector machines is much
lower than our proposedault diagnosis method. Therefore,
comparedwith the traditional intelligent fault diagnosismeth-
ods, our proposed method can diagnose bearing faults and the
severity of faults more accurately and stably.
Experiment 3:
In order to prove that our proposed fault diagnosis meth-

ods based on VMD and EDBN can be applied to different
single-load rolling bearing fault diagnosis. The vibration data
of the rolling bearing under the B series load of 1 horse-
power was used as the control experiment of Experiment 2.
The parameters of Experiment 3 were also obtained through
actual experiments. The parameters of Experiment 3 are as
follows:
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(1) Our proposed method based VMD and EDBN:As
shown in Table 11, the network structure of each deep belief
network in the ensemble deep belief network is 400-100-50-
10-10. The learning rate is 0.01 and the momentum of them is
0.9, The number of iterations is 200. The number of decompo-
sition K of the variational mode decomposition (VMD) is 4,
and the penalty factor α is 2000.

TABLE 11. Main parameters of fault diagnosis method based on VMD
and ensemble deep belief network under the load of 1 horsepower.

(2) Deep belief network: network structure is 400-50-20-
10-10, the learning rate is 0.01, momentum is 0.9, and the
number of iterations is 200.

(3) Convolutional neural network: The input sample is
made into a 20∗20 sample map. The first convolutional layer
includes 6 cores, the size of which is 5. The step size of
the pooling layer is 2. And the second convolutional layer
includes 12 cores whose size is 5. The learning rate is 1, and
the number of iterations is 200.

(4) Stack automatic encoder: network structure is 400-200-
10. the activation function is ReLU. The learning rate is 0.45,
and the momentum is 0.9. The number of iterations is 100. the
sparsity penalty factor is 0.3, and the sparse parameter is 0.01.

(5) BP neural network with Raw data set: BP neural net-
work structure is 400-200-50-10, the learning rate is 0.8,
the number of iterations is 500.

(6) Support vector machine with Raw data set: RBF kernel
is applied. The penalty factor is 1.5 and the kernel radius
is 0.9.

(7) BP neural network with Feature data set: BP neu-
ral network structure is 80-25-10, the learning rate is 0.8,
the number of iterations is 400.

(8) Support vector machine with Raw data set: RBF kernel
is applied. The penalty factor is 1.2 and the kernel radius
is 2.2.

In order to ensure the accuracy and stability of the results of
the proposed bearing fault diagnosis method, we also carried
out repeated experiments in Experiment 3. The average of
multiple failure diagnosis results is considered to be the accu-
racy of the method, and the standard deviation of multiple
failure diagnosis results is considered to be the stability of the
method. Fig. 11 is the accuracy of the fault diagnosis results
of different diagnostic signals and the accuracy of the model
diagnosis results in the fault diagnosis method proposed in
this paper under the load of 1 horsepower. We can see that the
improved deep belief network (IDBN) has obtained relatively
stable fault diagnosis results after fully learning the rolling
bearing feature information of each input signal. As shown

FIGURE 11. Accuracy of fault diagnosis results of different diagnostic
signals in multiple experiments under the load of 1 horsepower.

TABLE 12. Fault diagnosis results under different diagnostic signals
under 1 horsepower load and accuracy of diagnosis results of the model.

in Table 12,when the input signal is the IMF1 component,
the diagnostic accuracy of the improved deep belief network
is 66.52%. When the input signal is the IMF2 component,
the diagnostic accuracy of the IDBN is 66.06%. When the
input signal is the IMF3 component, the diagnostic accu-
racy of the IDBN is 80.92%. When the input signal is the
IMF4 component, the diagnostic accuracy of the IDBN is
84.26%. When the input signal is a reconstructed signal,
the diagnostic accuracy of IDBN is 95.08%. The final diag-
nostic accuracy obtained through the improved combination
strategy was 97.54%. Fig. 12 shows the fault diagnosis results
for different diagnostic signals and the average accuracy of
the model diagnosis results under the load of 1 horsepower.
We can see that the accuracy of the improved deep belief
network diagnostic results only related to the global feature

FIGURE 12. The fault diagnosis results under different diagnostic signals
under the load of 1 horsepower.
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information is 95.08%. The proposed fault diagnosis method
based on VMD and EDBN can simultaneously learn the
local feature information and global feature information of
rolling bearings, which greatly improves the accuracy of
rolling bearing fault diagnosis. The accuracy rate is 97.54%.
Fig. 13 is the confusion matrix of the final diagnostic results
of the proposed method in one experiment under the load
of 1 horsepower. The fault diagnosis method proposed in
this paper is also applicable to rolling bearings with different
single loads. The method has applicability.

FIGURE 13. The confusion matrix of the final diagnostic results of the
proposed method in one experiment under the load of
1 horsepower.

In order to better evaluate the effectiveness and adaptability
of the proposed fault diagnosismethod.We conducted a series
of comparative experiments using rolling bearing data under
the load of 1 horsepower combinedwith traditional intelligent
diagnostic methods. Table 13 compares the diagnostic results
of different intelligent diagnostic methods when the load is
1 horsepower vibration signal is used as the input signal.
The method is based on VMD and EDBN with the highest
test accuracy, 97.54%, and the best stability. The standard
deviation is only 0.9813%. The accuracy and stability of
the remaining traditional deep learning and machine learning

TABLE 13. Comparison of diagnostic results of different intelligent
diagnostic methods when the vibration signal under the load of 1
horsepower.

diagnostic methods are as follows: the accuracy of the convo-
lutional neural network is 93.65%, the stability is 1.9953%;
the accuracy of the stacked automatic encoder is 88.40%,
and the stability is 1.7394%. The accuracy of the deep belief
network is 94.33%, the stability is 2.1733%; the accuracy
of BP neural network is 67.60%, the stability is 1.2365%;
the accuracy of support vector machine is 80.50%, and the
stability is 2.2076%. When the feature data set is used as the
input signal, the diagnosis results of the two machine learn-
ing fault diagnosis methods are: BP neural network has an
accuracy of 91.80% and a stability of 1.6325%. The support
vector machine has an accuracy of 88.40% and a stability
of 1.6542%.

Through the data in Table 13 and the diagnostic results
of Fig. 14, we can draw the following conclusions: In the
bearings with different loads, our proposed fault diagnosis
method based on VMD and EDBN is far superior to the
traditional intelligent fault diagnosis methods in terms of
accuracy and stability. The diagnostic method proposed by us
has not only paid attention to the global feature information
of the rolling bearing, but also excavated the local feature
information of the bearing. Therefore, our diagnostic method
can better learn the feature information of rolling bearings
and realize the diagnosis of rolling bearing faults. Themethod
has generalization and applicability.

FIGURE 14. The accuracy and stability of the diagnostic results of the
proposed method and the traditional intelligent fault diagnosis under the
load of 1 horsepower.

Fig. 15 is a detailed diagnosis result of the health state
of the bearing with a load of 1 horsepower in one test.
It can be seen that the diagnostic accuracy of the proposed
fault diagnosis method is basically higher than that of the
traditional intelligent fault diagnosis method under various
health conditions of the rolling bearing. Among the second
health state, the diagnostic accuracy of our proposed method
is relatively low, but it also reaches 94%. Although stack self-
encoders, deep belief networks, and support vector machines
have higher diagnostic accuracy in this health state. However,
under other health conditions, the three methods have poor
diagnostic results: for example, in the tenth health state,
the diagnostic accuracy of the support vector machine is 25%,
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FIGURE 15. Diagnostic results of the health status of rolling bearings under the load of 1 horsepower.

and the diagnostic accuracy of the stack self-encoder is 67%.
The accuracy of our proposed method can reach 100%. In the
fourth health state, the diagnostic accuracy of the deep belief
network is only 72%. The accuracy of our proposed method
can reach 98%. Therefore, compared with the traditional
intelligent fault diagnosis method, the proposed method can
diagnose the bearing fault and severity more accurately and
stably.
Experiment 4:
Rolling bearings, which are indispensable in rotating

machinery, often need to work under different loads.
Therefore, in the problem of fault diagnosis of actual rolling
bearings, the bearing vibration signal obtained by the sensor
is often a vibration signal of a variable load. Therefore,
we verify the fault diagnosis ability of our proposed fault
diagnosis method based on VMD and EDBN under multi-
ple load conditions. We experimented with the D series of
multi-load rolling bearing vibration data. The parameters of
Experiment 4 were also obtained through actual experiments.
The parameters of Experiment 4 are as follows:

(1) Our proposed method based VMD and EDBN: As
shown in Table 14, the network structure of each deep belief
network in the ensemble deep belief network is 400-100-50-
10-10. The learning rate is 0.01 and the momentum of them
is 0.9, The number of iterations is 300. The number of decom-
position K of the variational mode decomposition (VMD)
is 4, and the bandwidth constraint α is 2000.

TABLE 14. Main parameters of fault diagnosis method based on VMD
and ensemble deep belief network under multiple load.

(2) Deep belief network: network structure is 400-50-20-
10-10, the learning rate is 0.1, momentum is 0.9, and the
number of iterations is 200.

(3) Convolutional neural network: The input sample is
made into a 20∗20 sample map. The first convolutional layer
includes 6 cores, the size of which is 5. The step size of
the pooling layer is 2. And the second convolutional layer
includes 12 cores whose size is 5. The learning rate is 0.8,
and the number of iterations is 150.

(4) Stack automatic encoder: network structure is 400-200-
10. the activation function is ReLU. The learning rate is 0.45,
and the momentum is 0.9. The number of iterations is 100. the
sparsity penalty factor is 0.3, and the sparse parameter is 0.01.

(5) BP neural network with Raw data set: BP neural net-
work structure is 400-100-50-10, the learning rate is 0.8,
the number of iterations is 500.
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(6) Support vector machine with Raw data set: RBF kernel
is applied. The penalty factor is 1.2 and the kernel radius
is 1.8.

(7) BP neural network with Feature data set: BP neural
network structure is 80-25-10, the learning rate is 0.8,
the number of iterations is 300.

(8) Support vector machine with Raw data set: RBF kernel
is applied. The penalty factor is 1.2 and the kernel radius
is 1.4.

In order to ensure the accuracy and stability of the results
of the proposed bearing fault diagnosis method, we also per-
formed repeated experiments in Experiment 4. The average
of multiple failure diagnosis results is considered to be the
accuracy of the method, and the standard deviation of multi-
ple failure diagnosis results is considered to be the stability of
the method. Fig. 16 is the accuracy of fault diagnosis results
of different diagnostic signals in multiple experiments under
multiple loads. We can see that the improved deep belief
network (IDBN) has obtained relatively stable fault diagnosis
results after fully learning the rolling bearing characteristic
information of each input signal. As shown in Table 15,
when the input signal is the IMF1 component, the diagnostic
accuracy of the improved deep belief network is 66.52%.
When the input signal is the IMF2 component, the diagnostic
accuracy of the IDBN is 66.06%. When the input signal is
the IMF3 component, the diagnostic accuracy of the IDBN
is 80.92%. When the input signal is the IMF4 component,
the diagnostic accuracy of the IDBN is 84.26%. When the
input signal is a reconstructed signal, the diagnostic accuracy
of IDBN is 95.08%. The final diagnostic accuracy obtained

FIGURE 16. Accuracy of fault diagnosis results of different diagnostic
signals in multiple experiments under multiple loads.

TABLE 15. Fault diagnosis results under different diagnostic signals
under multiple loads and accuracy of diagnosis results of the model.

through the improved combination strategy was 97.54%.
Fig. 17 shows the fault diagnosis results for different diag-
nostic signals under multiple loads and the average accuracy
of the model diagnostic results. We can see that the accuracy
of the improved deep confidence network diagnostic results
only related to global feature information is 95.08%. The
proposed fault diagnosis method based on VMD and EDBN
can simultaneously learn the local feature information and
global feature information of rolling bearings, which greatly
improves the accuracy of rolling bearing fault diagnosis. The
accuracy rate is 97.54%. Fig. 18 is a confusion matrix of the
final diagnostic results of themethod in one experiment under
multiple loads. The fault diagnosis based onVMDand EDBN
proposed in this paper can accurately and stably diagnose the
health status of rolling bearings undermulti-load. It is adapted
to fault diagnosis in actual operating conditions.

FIGURE 17. The fault diagnosis results under different diagnostic signals
under multiple loads.

FIGURE 18. The confusion matrix of the final diagnostic results of the
proposed method in one experiment under multiple loads.

Faced with the problem of multi-load rolling bearing fault
diagnosis, in order to better evaluate the effectiveness and
adaptability of the proposed fault diagnosis method. We used
a multi-load rolling bearing data set and combined with tra-
ditional intelligent diagnostic methods to conduct a series of
comparative experiments. Table 16 compares the diagnostic
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FIGURE 19. The accuracy and stability of the diagnostic results of the
proposed method and the traditional intelligent fault diagnosis under
multiple loads.

results of different intelligent diagnostic methods when the
multi-load vibration signal is used as the input signal. The
method is based on VMD and EDBN and has the highest test
accuracy and best stability. The accuracy is 98.452%,and the
standard deviation is only 0.5303%. The accuracy and sta-
bility of the remaining traditional deep learning and machine
learning diagnostic methods are as follows: the accuracy of
the convolutional neural network is 94.133%, the stability is
0.9815%; the accuracy of the stacked automatic encoder is
88.270%, and the stability is 0.5346%.. The accuracy of the
deep belief network is 93.330%, the stability is 1.9635%; the
accuracy of the BP neural network is 75.167%, the stability

TABLE 16. Comparison of diagnostic results of different intelligent
diagnostic methods when vibration signals under multiple loads.

is 1.4511%; the accuracy of the support vector machine is
64.800%, and the stability is 2.9463%. When the feature data
set is used as the input signal, the diagnosis results of the
two machine learning fault diagnosis methods are: the accu-
racy of the BP neural network is 90.067%, and the stability
is 0.8607%. The support vector machine has an accuracy
of 91.167% and a stability of 2.4111%.

Fig. 19 is a visualization diagram of the diagnosis effect
of each intelligent diagnosis method in Table 16 under mul-
tiple loads. Through Fig. 19, we can draw the following
conclusions: (1) The fault diagnosis method proposed in this
paper is not only suitable for bearing fault diagnosis under
single load, but also for bearing fault diagnosis under multiple
loads. (2) The fault diagnosis method proposed in this paper
is far superior to the traditional intelligent fault diagnosis

FIGURE 20. Diagnostic results of the health status of rolling bearings under multiple loads.
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methods relying on machine learning and deep learning in
terms of accuracy and stability of the diagnosis results. (3)
The fault diagnosis method proposed in this paper makes
full use of the deep structure characteristics of DBN, and
performs autonomous and effective feature learning on bear-
ing vibration signals, which not only omits the process of
artificial feature extraction feature selection, but also saves
labor and time costs.

In order to further demonstrate the diagnosis effect of the
proposed fault diagnosis method under multiple load condi-
tions. Fig. 20 shows the comparison chart of the accuracy of
detailed fault diagnosis in each healthy state of the multi-load
rolling bearing. We can clearly see that under the multi-load
rolling bearing vibration data, the fault diagnosis method
proposed in this paper is basically higher than the traditional
intelligent diagnosis methods relying on deep learning and
machine learning in each health state. Among them, in the
tenth state of health, the diagnostic accuracy of the pro-
posed fault diagnosis method is low, but it also reaches 96%.
Althoughmethods such as convolutional neural networks and
support vector machines using feature sets are more accurate
in this type of fault diagnosis. However, in other health states,
these two methods have poor diagnostic results: for example,
in the seventh state of health, the diagnostic accuracy of
support vector machines is 70%, and the accuracy of the
fault diagnosis method proposed in this paper reaches 100%.
In the fourth state of health, the diagnostic accuracy of the
convolutional neural network is only 77%, and the accuracy
of the proposed fault diagnosis method can reach 96%.

V. CONCLUSION
This paper proposes a novel method based on variational
modal decomposition and ensemble deep belief network for
the fault diagnosis of rolling bearing. We directly use the
bearing vibration data obtained from the experiment without
artificial feature extraction and feature selection and pay
attention to the local information and the global information
from bearing vibration data and diagnose 10 healthy states
in the bearing data set. In order to verify the effective-
ness of our proposed method, we conducted three sets of
experiments using the rolling bearing vibration data simu-
lated by Case Western Reserve University Laboratory. The
experimental results show that compared with the traditional
machine learning and deep learning methods, the method is
more effective and stable to diagnose the fault type of the
rolling bearing and the severity of the fault. The advantages
of this method are as follows: (1) directly using the original
bearing vibration data obtained by the experiment, without
manual extraction and selection features, eliminating the
subjectivity of the person and greatly saving the information
processing time; (2) ensemble deep belief network simul-
taneously uses multiple deep belief networks to learn the
local information and global information of the bearing, fully
utilizes the learning ability of the deep belief network and
improves the accuracy and stability of the diagnosis of the
bearing health status. (3) This method is not only suitable

for the single-load condition of the bearing, but also for the
multiple-load whose working condition is close to the actual
project.
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