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ABSTRACT Malicious code has posed a severe threat to modern society. Delivering antivirus program to
networks is an important task of a cybersecurity company. As the bandwidth resource in a company is limited
and precious, cybersecurity companies have to make a tradeoff between the impact(i.e. the economic loss)
of malicious codes and the bandwidth assigned to transmit the antivirus programs. This paper addresses
the malicious code and bandwidth tradeoff(MCBT) problem. By developing a novel malicious code and
antivirus program interacting model, the total loss, which is the sum of the bandwidth usage fee and the
economic loss, is quantified. On this basis, the MCBT problem is modelled as a constrained optimization
problem that we refer to as the MCBT model, where the independent variable stands for bandwidth, and the
objective function stands for the total loss. Some optimal bandwidth is determined by solving the MCBT
model. Based on this, we propose a heuristic algorithm named DOWNHILL, which outperforms random
strategies. Finally, the influence of some factors on the optimal bandwidth and the corresponding optimal
total loss is uncovered through numerical simulations. To our knowledge, this is the first time the MCBT
problem is treated in this way.

INDEX TERMS Cyber security, malicious code, bandwidth, node-level epidemic model, constrained
optimization, tradeoff problem.

I. INTRODUCTION
The normal operation of modern society relies largely on
computer networks. On a daily basis, people acquire informa-
tion and knowledge through theWeb, communicate with each
other through online social networks, and buy goods through
electronic payment [1]. Meanwhile, computer networks pro-
vide a shortcut for the spread of malicious codes, causing
huge economic loss. For instance, a notorious ransomware
namedWanna Decryptor has recently swept across the globe,
leading to massive computer paralysis [2], [3]. Therefore,
controlling the negative impact and potential consequence of
malicious codes has long been a hotspot of research in the
field of cyber security [4].
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Cybersecurity companies, whose main responsibility is to
secure the cyberspace, can detect new malicious codes by
analyzing data and reports collected from network users.
After malicious codes are detected, cybersecurity companies
have to develop the corresponding antivirus programs, which
are a special kind of computer programs used to prevent and
remove malicious codes [4], [5]. Bandwidth is the amount
of data that can be transmitted in a fixed amount of time,
usually measured by Mbps. No double, allocating much
bandwidth to transmit antivirus programs could effectively
increase the repair rate against malicious codes, minimiz-
ing the impact(i.e. the economic loss) of malicious codes.
However, as the bandwidth resource in a cybersecurity com-
pany is precious and limited, occupying too much band-
width for antivirus programs leads to higher bandwidth usage
fee and increases the risk of blocking or reducing normal
communications, which could inflict inestimable loss. Thus,
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cybersecurity companies have to make a tradeoff between
the economic loss and the bandwidth assigned for antivirus
programs. We refer to this problem as the malicious code and
bandwidth tradeoff (MCBT) problem.

To solve the MCBT problem, we have to assess the eco-
nomic loss first. As the economic loss is closely related to
the malicious code and antivirus program interacting pro-
cess, we have to formulate the malicious code and antivirus
program interacting process. Unlike medical measures that
vaccination could only be injected one by one [6], antivirus
programs can be disseminated very rapidly through computer
networks [7], [8]. Therefore, a malicious code and antivirus
program interacting model has to take into account the propa-
gation of both malicious codes and antivirus programs simul-
taneously.We refer to a malicious code and antivirus program
interacting model with this feature as a Susceptible-Infected-
Patched-Susceptible (SIPS) model. The earliest SIPS models
are compartmental, in which each compartment consists of all
the nodes(i.e. devices) with a same state, and the evolution of
the expected fraction of each compartment is characterized
by a separate differental equation [9]–[11]. The compart-
mental SIPS models are especially suited to homogeneous
networks. However, empirical studies show that many realis-
tic networks, including the router-level Internet, the domain-
level Internet and the World-Wide-Web, are scale-free
rather than homogeneous [12]. As thus, some malicious
code propagation models based on scale-free networks are
suggested [13]–[15].

With the progress of wireless and mobile communication
technologies, many existing computer networks are neither
homogeneous nor scale-free. Rather, they may admit an arbi-
trary topology [16]–[18]. Individual-level propagation mod-
els, in which the probability of each node being in each state
is characterized by a separate differential equation, are well
suited to the study of various propagation phenomena on
arbitrary networks [19]–[24].

To disseminate an antivirus program on a large-sized com-
puter network, we have to specify a set of nodes into which
the antivirus program is injected. Due to the limitation in
network bandwidth, this set is small as comparedwith the size
of the network [25]. However, all the previous SIPS models
ignore the antivirus program injection subset, limiting their
applicability.

The main contributions of this paper are as follows:
• First, we propose a novel malicious code and antivirus
program interacting model, in which the antivirus
program injection subset is specified. On this basis,
we quantify the economic loss caused by malicious
codes as the expected loss of all network users.

• Second, wemodel theMCBT problem as aminimization
problem (which we refer to as the MCBTmodel), where
the independent variable stands for the bandwidth, and
the objective function stands for the total loss that is the
sum of the bandwidth usage fee and the economic loss.

• Third, we propose DOWNHILL algorithm to address
the MCBT problem. Simulation results prove that

DOWNHILL algorithm performs much better than ran-
dom strategies.

• Finally, we examine the influence of some factors on
the optimal bandwidth and the corresponding optimal
total loss through numerical simulations. This poten-
tially provides cybersecurity companies with knowledge
to quickly take measures against malicious codes.

The subsequent materials are organized in this fashion:
Section 2 models the MCBT problem. Section 3 solves
the MCBT model and proposes a heuristic algorithm(i.e.
DOWNHILL). The performance of DOWNHILL algorithm
is evaluated in Section 4, and Section 5 examines the influ-
ence of different factors on the optimal bandwidth and
the corresponding total loss. Finally, conclusion is given in
Section 6 and Section 7 closes this work.

II. MALICIOUS CODE AND ANTIVIRUS PROGRAM
TRADEOFF PROBLEM
This section is dedicated to the modeling of the following
problem:
Malicious Code and Antivirus Program Tradeoff (MCBT)

problem:Given a computer network and an antivirus program
injection subset, determine a bandwidth assigned to transmit
antivirus programs to minimize the total loss.

First, we introduce a set of terminologies and notations.
Second, we describe a malicious code and antivirus program
interacting model. Finally, we present a model for the MCBT
problem.

A. TERMINOLOGIES AND NOTATIONS
Consider a computer network G = (V ,E), where G rep-
resents the topology of a computer network, V denotes the
node set, and E is the set of edges connecting the nodes.
Let A =

[
aij
]
N×N denote the adjacency matrix for G. Thus,

aij = 1 or 0 if and only if {i, j} ∈ E or not.
Suppose a malicious code targeting a computer network

can be injected into any node of the network and can propa-
gate through the network. Suppose its corresponding antivirus
program can only be injected into a small subset of nodes
of the network, denoted as U , and can propagate through
the network. Assume each and every node in the network
is in one of three possible states: susceptible, infected, and
patched. Susceptible nodes are those that are not infectedwith
the malicious code but have not received the corresponding
antivirus program. So, susceptible nodes are vulnerable to
this malicious code. Infected nodes are those that are infected
with the malicious code. Patched nodes are those that are
not infected with the malicious code and have received the
corresponding antivirus program. So, patched nodes possess
immunity to this malicious code.

For t ≥ 0, let Xi(t) = 0, 1, and 2 denote the event that node
i is susceptible, infected, and patched at time t , respectively.
Then the vector

X(t) = [X1(t), . . . ,XN (t)] (1)
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stands for the state of the network at time t . Let Si(t), Ii(t),
and Pi(t) denote the probability of the event that node i is
susceptible, infected, and patched at time t , respectively.

Si(t) = Pr {Xi(t) = 0} ,

Ii(t) = Pr {Xi(t) = 1} ,

Pi(t) = Pr {Xi(t) = 2} . (2)

As Si(t)+ Ii(t)+ Pi(t) ≡ 1, t ≥ 0, 1 ≤ i ≤ N , the vector

E(t) = [I1(t), . . . , IN (t),P1(t), . . . ,PN (t)] (3)

stands for the expected state of the network at time t .
Remark 1: In practice, E0 may be estimated through the

relevant user reports.

B. MALICIOUS CODE AND ANTIVIRUS-PROGRAM
INTERACTING MODEL
To model the malicious code and antivirus program interac-
tive process, let us introduce a set of rational hypotheses as
follows.

(H1) At any time t , every susceptible node i ∈ V is injected
with a malicious code at the average rate βI > 0.
We refer to the rate as malicious code injection rate.

(H2) At any time t , every susceptible node i ∈ V is
infected by a neighboring infected node at the rate
βP
∑N

i=1 aijIj(t), where βP > 0 is a constant. We refer
to βP as malicious code propagation rate.

(H3) At any time t , every node i ∈ U is injected with the
antivirus program at the average rate γI > 0. We refer
to the rate as antivirus program injection rate.

(H4) At any time t , every node i ∈ V gets the antivirus
program by a neighboring patched node at the rate
γP
∑N

i=1 aijPj(t), where γP > 0 is a constant. We refer
to γP as antivirus program propagation rate.

(H5) Due to the reinstall of computer operation system,
at any time every patched node becomes susceptible at
the average rate δ > 0. We refer to the rate as antivirus
program failure rate.

Remark 2: The rate at which a specific event occurs is a
basic notation in stochastic process theory [26]. As a matter
of fact, the reciprocal of rate stands for the mean time that
elapses before the event occurs. Thus, the reciprocal of mali-
cious code injection rate βI at a given time stands for the
mean time that elapses from this time to the time this node is
infected with malicious code through injection; the reciprocal
of malicious code propagation rate βP at a given time stands
for the mean time that elapses from this time to the time this
node is infected withmalicious code through propagation; the
reciprocal of antivirus program injection rate γI at a given
time stands for the mean time that elapses from this time to
the time this node gets antivirus program through injection;
the reciprocal of antivirus program propagation rate γP at a
given time stands for the mean time that elapses from this
time to the time this node gets antivirus program through
propagation; the reciprocal of antivirus program failure rate

FIGURE 1. Diagram of the hypotheses (H1)–(H5), where (a) i ∈ U ,
(b) i ∈ V − U .

δ at a given time stands for the mean time that elapses from
this time to the time the antivitus of this node fails.

dIi(t)
dt
=

[
βI + βP

∑N
j=1 aijIj(t)

]
[1− Ii(t)− Pi(t)]

− γI Ii(t), t ≥ 0, i ∈ U ,
dPi(t)
dt
= γI [1− Pi(t)]− δPi(t), t ≥ 0, i ∈ U ,

dIi(t)
dt
=

[
βI + βP

∑N
j=1 aijIj(t)

]
[1− Ii(t)− Pi(t)]

− γPIi(t)
∑N

j=1 aijPj(t), t ≥ 0, i ∈ V − U ,
dPi(t)
dt
= γP[1− Pi(t)]

∑N
j=1 aijPj(t)− δPi(t),

t ≥ 0, i ∈ V − U .

(4)

where E(0) = E0, t ≥ 0, 1 ≤ i ≤ N .
This system characterizes the expected interactive process

of malicious codes and the corresponding antivirus programs.
We refer to the system as malicious code and antivirus pro-
gram interacting (MCBI) model.

C. MODELING OF MCBT PROBLEM
An MCBI model involves seven factors: network topology
G = (V ,E), antivirus program injection subset U , malicious
code injection rate βI , malicious code propagation rate βP,
antivirus program injection rate γI , antivirus program prop-
agation rate γP, and antivirus program failure rate δ. Among
these factors, antivirus program injection rate γI is control-
lable by the cybersecurity company that provides cyber secu-
rity service to the network. Specifically, the antivirus program
injection rate is determined by the bandwidth allocated to
transmit the antivirus program. The larger the bandwidth,
the higher the antivirus program injection rate. We denote the
bandwidth for the antivirus program per unit time by x. Now,
let us introduce the following reasonable hypotheses.
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(H6) The bandwidth x is bounded from above by xmax, where
xmax > 0 is a constant. We refer to xmax as maximum
bandwidth.

(H7) M = c1 x, in which M is the bandwidth usage fee per
unit time for every node in U and c1 > 0 is a constant.
We refer to c1 as cost coefficient.

(H7) γI = c2 xθ , where c2 > 0 is a constant. We refer to c2
as antivirus program injection coefficient.

Given a time horizon [0,T ]. To quantify the impact of
a malicious code in the time horizon, let us introduce the
following reasonable hypothesis.
(H8) For 1 ≤ i ≤ N , the economic loss per unit time of the

infected node i is one unit.
Thus, the bandwidth usage fee in the time horizon [0,T ] is

P(x) = T
Nu∑
i=1

M = Tc1
Nu∑
i=1

x = Tc1
Nu∑
i=1

θ

√
γI

c2
. (5)

Then the economic loss caused by a malicious code, which
is measured by the expected loss of all network users in the
time horizon [0,T ], is

L(x) =
∫ T

0

N∑
i=1

Ii(t)dt. (6)

Hence, the total loss is

C(x) = P(x)+ L(x) = T
Nu∑
i=1

M +
∫ T

0

N∑
i=1

Ii(t)dt. (7)

Based on above discussions, the MCBT problem is mod-
elled as the following constrained minimization problem:

min
0≤x≤xmax

C(x) = T
Nu∑
i=1

M +
∫ T

0

N∑
i=1

Ii(t)dt,

s.t. VAI model (4) with E(0) = E0. (8)

We refer to the problem as MCBT model. An MCBT model
is determined by the following 13-tuple.

(G,U , βI , βP, γP, δ, c1, c2, xmax,T , initial, step,E0). (9)

in which initial stands for the initial value of x, and step is the
iteration step.

III. SOLUTION FOR MCBT MODEL
In the previous section, theMCBT problem is modelled as the
MCBTmodel. Due to the inherent complexity of the objective
function in theMCBTmodel, it seems impossible to solve the
model analytically. So, we turn our attention to the numerical
solutions for the MCBT model.

A. NETWORKS
First, we provide three representative networks for the fol-
lowing experiments.

Small-world networks are those that have a small diame-
ter and a high clustering coefficient [27]. Empirical studies
show that many real-world networks are small-world [12].
Therefore, small-world networks have been taken as a model

FIGURE 2. Three representative networks: (a) a synthetic small-world
network GSW , (b) a synthetic scale-free network GSF , and (c) a subnet of
Facebook network GFB.

of real-world networks. Pajek is one of the most famous
pieces of software for performing social network analysis
[28]. By using Pajek, setting the number of nodes as N = 50,
we get a synthetic small-world networkGSW. Fig. 2(a) shows
GSW, where USW consists of the red nodes.
Scale-free networks are those that approximately obey a

power-law degree distribution [29]. Empirical studies show
that many real-world networks are scale-free [12]. Therefore,
scale-free networks are adopted as another model of real-
world networks. We set the number of nodes as N = 50, and
get a synthetic scale-free network GSF by Pajek, which is
shown in Fig. 2(b), where USF consists of the red nodes.
Finally, we get a subnet with 50 nodes of Facebook net-

work GFB in Fig. 2(c), where UFB consists of the red nodes.

B. HEURISTIC ALGORITHM FOR SOLVING MCBT MODEL
Second, in order to propose DOWNHILL algorithm, let us
carry out some numerical simulations to inspect the optimal
bandwidth for the MCBT model.
Experiment 1: Consider an MCBT model with G = GSW ,

U = USW , θ ∈ {0.5, 1, 2}, βI = 0.06, βP = 0.08, γP = 0.02,
c1 = 3, c2 = 2, δ = 0.01, xmax = 10, T = 10, initial = 0.05,
step = 0.05, I0 = (0.1, . . . , 0.1). We present every x and its
corresponding C(x) in Fig. 2(a). As shown, C(x) attains the
minimum at x = 1.4 with θ = 0.5, C(x) attains the minimum
at x = 2.1 with θ = 1, and C(x) attains the minimum at
x = 2.5 with θ = 2.
Experiment 2: Consider an MCBT model with G = GSF ,

U = USF , θ ∈ {0.5, 1, 2}, βI = 0.02, βP = 0.02, γP = 0.03,
c1 = 2, c2 = 1, δ = 0.03, xmax = 10, T = 10, initial = 0.05,
step = 0.05, I0 = (0.1, . . . , 0.1). We present every x and its
corresponding C(x) in Fig. 2(b). As shown, C(x) attains the
minimum at x = 1.2 with θ = 0.5, C(x) attains the minimum
at x = 1.9 with θ = 1, and C(x) attains the minimum at
x = 2.4 with θ = 2.
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FIGURE 3. Total loss with different θ on GSW .

FIGURE 4. Total loss with different θ on GSF .

FIGURE 5. Total loss with different θ on GFB.

Experiment 3: Consider an MCBT model with G = GFB,
U = UFB, θ ∈ {0.5, 1, 2}, βI = 0.005, βP = 0.001, γP =
0.05, c1 = 2, c2 = 1, δ = 0.003, xmax = 10, T = 10,
initial = 0.05, step = 0.05, I0 = (0.1, . . . , 0.1). We present
every x and its corresponding C(x) in Fig. 2(c). As shown,
C(x) attains the minimum at x = 0.7 with θ = 0.5, C(x)
attains the minimum at x = 1.3 with θ = 1, and C(x) attains
the minimum at x = 1.9 with θ = 2.
The vertical axis of Figs. 3-5 is the total loss. From these

figures, it can be seen that there exists a minimum total loss
with different θ on small-world network, scale-free network
and social network(i.e. a subnet of facebook).

Based on these and other similar numerical simulations,
we conclude that the total loss first decreases and then
increases with the increase of x. Thus, a heuristic algorithm
in Algorithm 1 for solving the MCBT model is proposed.

We refer to x obtained by running DOWNHILL algorithm
as the DOWNHILL strategy(i.e. optimal bandwidth), denoted
as xD, and refer to C(x) as the DOWNHILL total loss(i.e.
optimal total loss), denoted by C(xD).

IV. PERFORMANCE OF DOWNHILL ALGORITHM
In order to illustrate the effectiveness of DOWNHILL algo-
rithm, we conduct some comparative experiments between

Algorithm 1 DOWNHILL
Input: an MCBT model MVAT =

(G,U , βI , βP, γP, δ, c1, c2, xmax,T , initial, step,E0).
Output: x.
1: x := initial;
2: while x ≤ xmax and C(x) > C(x + step) do
3: x := x + step;
4: end while
5: return x;

DOWNHILL algorithm and random strategies on three larger
realistic networks (i.e. Facebook, P2P and Email) with
500 nodes, which is denoted as Gfacebook , Gp2p, and Gemail ,
respectively.

A. COMPARATIVE EXPERIMENTS
In the following Experiment 4, we stochastically select
20 nodes as the antivirus program injection subset, denoted
as Ufacebook .
Experiment 4: Consider a set of MCBT models with

G = Gfacebook , U = Ufacebook , θ ∈ {1/3, 1, 2}, βI = 0.02,
βP = 0.02, γP = 0.03, c1 = 1, c2 = 1, δ = 0.001,
xmax = 10, T = 10, initial = 0.05, step = 0.05, I0 =
(0.1, . . . , 0.1). Let Z0 represent the DOWNHILL strategy and
Z1 to Z100 denote the random strategies, respectively.

In the following Experiment 5, we stochastically select
20 nodes as the antivirus program injection subset, denoted
as Up2p.
Experiment 5: Consider a set of MCBT models with

G = Gp2p, U = Up2p, θ ∈ {1/3, 1, 2}, βI = 0.03, βP = 0.01,
γP = 0.05, c1 = 2.5, c2 = 1, δ = 0.003, xmax = 10, T = 10,
initial = 0.05, step = 0.05, I0 = (0.1, . . . , 0.1). Let Z0
represent the DOWNHILL strategy and Z1 to Z100 denote the
random strategies, respectively.

In the following Experiment 6, we stochastically select
20 nodes as the antivirus program injection subset, denoted
as Uemail .
Experiment 6: Consider a set of MCBT models with

G = Gemail , U = Uemail , θ ∈ {1/3, 1, 2}, βI = 0.1, βP =
0.002, γP = 0.3, c1 = 1.5, c2 = 2, δ = 0.03, xmax = 10,
T = 10, initial = 0.05, step = 0.05, I0 = (0.1, . . . , 0.1). Let
Z0 represent the DOWNHILL strategy and Z1 to Z100 denote
the random strategies, respectively.

Figs. 6-8 show the results of Experiments 4-6, respec-
tively. It can be seen the total loss caused by DOWNHILL
strategy(represented by the red circle) is smaller compared
with random strategies(represented by the green circle) with
different θ on Facebook, p2p, and email.
From these and other similar numerical simulations,

we conclude that the DOWNHILL strategy leads to the min-
imum total loss compared with random strategies. Therefore,
we infer DOWNHILL algorithm is the most effective algo-
rithm for this problem.
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FIGURE 6. The results of Experiment 4: Total loss C vs. scheme on
Gfacebook (a) with θ = 1/3, (b) with θ = 1, (c) with θ = 2, respectively.

FIGURE 7. The results of Experiment 5: Total loss C vs. scheme on Gp2p
(a) with θ = 1/3, (b) with θ = 1, (c) with θ = 2, respectively.

FIGURE 8. The results of Experiment 6: Total loss C vs. Scheme on Gemail
(a) with θ = 1/3, (b) with θ = 1, (c) with θ = 2, respectively.

V. FURTHER DISCUSSIONS
This section is devoted to studying the influence of some
factors on the optimal bandwidth xD and the corresponding
optimal total loss C(xD), respectively.

A. INFLUENCE OF MALICIOUS CODE INJECTION RATE
First, let us examine the influence of malicious code injection
rate on the optimal bandwidth xD and the corresponding
optimal total loss C(xD), respectively.
Experiment 7: Consider a set of MCBT models with G ∈
{GSF ,GSW ,GFB}, U ∈ {USF ,USW ,UFB}, θ ∈ {0.5, 1, 2},
βI ∈ {0.002, 0.004, . . . , 0.04}, βP = 0.03, γP = 0.1, c1 = 1,
c2 = 1, δ = 0.02, xmax = 10, T = 10, initial = 0.05, step =
0.05, I0 = (0.1, . . . , 0.1). By running DOWNHILL algorithm
on these MCBT models, we obtain the optimal bandwidth xD

and the corresponding optimal total loss C(xD). Fig. 9(a)
shows xD vs. βI on GSW , Fig. 9(b) shows C(xD) vs. βI on
GSW , Fig. 9(c) shows xD vs. βI onGSF , Fig. 9(d) shows C(xD)
vs. βI on GSF , Fig. 9(e) shows xD vs. βI on GFB and Fig. 9(f)
shows C(xD) vs. βI on GFB, respectively.
Fig. 9 shows the results of Experiment 7. The vertical axis

of Fig. 9(a), (c) and (e) is the optimal bandwidth; and the
vertical axis of Fig. 9(b), (d), and (f) is the corresponding
optimal total loss. In each subfigure, the red line refers to the
results with θ = 0.5, the green line denotes the results with

FIGURE 9. The experimental results in Experiment 7. (a) βI vs. xD on
GSW ; (b) βI vs. C(xD) on GSW ; (c) βI vs. xD on GSF ; (d) βI vs. C(xD) on
GSF ; (e) βI vs. xD on GFB; (f) βI vs. C(xD) on GFB.

θ = 1, and the blue line represents the results with θ = 2,
respectively.

Based on these and other similar numerical simulations,
we conclude that the optimal bandwidth xD and the corre-
sponding optimal total loss C(xD) are both increasing with
increase of malicious code injection rate. Therefore, it is
better to allocate more bandwidth for antivirus programs with
the rise of malicious code injection rate.

B. INFLUENCE OF MALICIOUS CODE
PROPAGATION RATE
Second, let us inspect the influence of malicious code propa-
gation rate on the optimal bandwidth xD and the correspond-
ing optimal total loss C(xD), respectively.
Experiment 8: Consider a set of MCBT models with G ∈
{GSF ,GSW ,GFB}, U ∈ {USF ,USW ,UFB}, θ ∈ {0.5, 1, 2},
βI = 0.005, βP ∈ {0.003, 0.006, . . . , 0.06}, γP = 0.05,
c1 = 1, c2 = 1.5, δ = 0.015, xmax = 10, T = 10,
initial = 0.05, step = 0.05, I0 = (0.1, . . . , 0.1). By running
DOWNHILL algorithm on theseMCBTmodels, we obtain the
optimal bandwidth xD and the corresponding optimal total
loss C(xD). Fig. 10(a) shows xD vs. βP on GSW , Fig. 10(b)
shows C(xD) vs. βP on GSW , Fig. 10(c) shows xD vs. βP on
GSF , Fig. 10(d) shows C(xD) vs. βP on GSF , Fig. 10(e) shows
xD vs. βP on GFB and Fig. 10(f) shows C(xD) vs. βP on GFB,
respectively.

Fig. 10 shows the results of Experiment 8. The vertical axis
of Fig. 10(a), (c) and (e) is the optimal bandwidth; and the
vertical axis of Fig. 10(b), (d), and (f) is the corresponding
optimal total loss. In each subfigure, the red line refers to
the results with θ = 0.5, the green line denotes the results
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FIGURE 10. The experimental results in Experiment 8. (a) βP vs. xD on
GSW ; (b) βP vs. C(xD) on GSW ; (c) βP vs. xD on GSF ; (d) βP vs. C(xD) on
GSF ; (e) βP vs. xD on GFB; (f) βP vs. C(xD) on GFB.

with θ = 1, and the blue line represents the results with
θ = 2, respectively.

Based on these and other similar numerical simulations,
we conclude that the optimal bandwidth xD and the corre-
sponding optimal total loss C(xD) are both increasing with
malicious code propagation rate. Therefore, we need to allo-
cate more bandwidth for antivirus programs with the rise of
malicious code propagation rate.

C. INFLUENCE OF ANTIVIRUS PROGRAM
PROPAGATION RATE
Third, we consider the influence of antivirus program propa-
gation rate on the optimal bandwidth xD and the correspond-
ing optimal total loss C(xD), respectively.
Experiment 9: Consider a set of MCBT models with G ∈
{GSF ,GSW ,GFB}, U ∈ {USF ,USW ,UFB}, θ ∈ {0.5, 1, 2},
βI = 0.1, βP = 0.05, γP ∈ {0.2, 0.22, . . . , 0.58}, c1 = 2,
c2 = 1, δ = 0.01, xmax = 10, T = 10, initial = 0.05, step =
0.05, I0 = (0.1, . . . , 0.1). By running DOWNHILL algorithm
on these MCBT models, we obtain the optimal bandwidth xD

and the corresponding optimal total loss C(xD). Fig. 11(a)
shows xD vs. γP on GSW , Fig. 11(b) shows C(xD) vs. γP on
GSW , Fig. 11(c) shows xD vs. γP on GSF , Fig. 11(d) shows
C(xD) vs. γP on GSF , Fig. 11(e) shows xD vs. γP on GFB and
Fig. 11(f) shows C(xD) vs. γP on GFB, respectively.

Fig. 11 shows the results of Experiment 9. The vertical axis
of Fig. 11(a), (c) and (e) is the optimal bandwidth; and the
vertical axis of Fig. 11(b), (d), and (f) is the corresponding
optimal total loss. In each subfigure, the red line refers to the
results with θ = 0.5, the green line denotes the results with
θ = 1, and the blue line represents the results with θ = 2,
respectively.

FIGURE 11. The experimental results in Experiment 9. (a) γP vs. xD on
GSW ; (b) γP vs. C(xD) on GSW ; (c) γP vs. xD on GSF ; (d) γP vs. C(xD) on
GSF ; (e) γP vs. xD on GFB; (f) γP vs. C(xD) on GFB.

Based on these and other similar numerical simulations,
we conclude that the optimal bandwidth xD and the corre-
sponding optimal total loss C(xD) are both decreasing with
the increase of antivirus program propagation rate. Therefore,
we are supposed to allocate less bandwidth for antivirus
programs with the rise of antivirus program propagation rate.

D. INFLUENCE OF ANTIVIRUS PROGRAM FAILURE RATE
Fourth, we investigate the influence of antivirus program fail-
ure rate on the optimal bandwidth xD and the corresponding
optimal total loss C(xD), respectively.
Experiment 10: Consider a set of MCBT models with

G ∈ {GSF ,GSW ,GFB}, U ∈ {USF ,USW ,UFB}, θ ∈
{0.5, 1, 2}, βI = 0.03, βP = 0.002, γP = 0.01, c1 = 1,
c2 = 1, δ ∈ {0.001, 0.002, . . . , 0.02}, xmax = 10, T = 10,
initial = 0.05, step = 0.05, I0 = (0.1, . . . , 0.1). By running
DOWNHILL algorithm on theseMCBTmodels, we obtain the
optimal bandwidth xD and the corresponding optimal total
loss C(xD). Fig. 12(a) shows xD vs. δ on GSW , Fig. 12(b)
shows C(xD) vs. δ on GSW , Fig. 12(c) shows xD vs. δ on GSF ,
Fig. 12(d) showsC(xD) vs. δ onGSF , Fig. 12(e) shows xD vs. δ
on GFB and Fig. 12(f) shows C(xD) vs. δ on GFB, respectively.
Fig. 12 shows the results of Experiment 10. The vertical

axis of Fig. 12(a), (c) and (e) is the optimal bandwidth; and
the vertical axis of Fig. 12(b), (d), and (f) is the corresponding
optimal total loss. In each subfigure, the red line refers to the
results with θ = 0.5, the green line denotes the results with
θ = 1, and the blue line represents the results with θ = 2,
respectively.

Based on these and other similar numerical simulations,
we conclude that the optimal bandwidth xD and the corre-
sponding optimal total loss C(xD) are both increasing with
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FIGURE 12. The experimental results in Experiment 10. (a) δ vs. xD on
GSW ; (b) δ vs. C(xD) on GSW ; (c) δ vs. xD on GSF ; (d) δ vs. C(xD) on GSF ;
(e) δ vs. xD on GFB; (f) δ vs. C(xD) on GFB.

the increase of antivirus program failure rate. Therefore,
we should allocate more bandwidth for antivirus programs
with the rise of antivirus program failure rate.

E. INFLUENCE OF COST COEFFICIENT
Now, we investigate the influence of cost coefficient on the
optimal bandwidth xD and the corresponding optimal total
loss C(xD), respectively.
Experiment 11: Consider a set of MCBT models with

G ∈ {GSF ,GSW ,GFB}, U ∈ {USF ,USW ,UFB}, θ ∈
{0.5, 1, 2}, βI = 0.08, βP = 0.002, γP = 0.009, δ =
0.02,c1 ∈ {0.1, . . . , 0.2, 2}, c2 = 1, xmax = 10, T = 10,
initial = 0.05, step = 0.05, I0 = (0.1, . . . , 0.1). By running
DOWNHILL algorithm on theseMCBTmodels, we obtain the
optimal bandwidth xD and the corresponding optimal total
loss C(xD). Fig. 13(a) shows xD vs. c1 on GSW , Fig. 13(b)
shows C(xD) vs. c1 on GSW , Fig. 13(c) shows xD vs. c1 on
GSF , Fig. 13(d) shows C(xD) vs. c1 on GSF , Fig. 13(e) shows
xD vs. c1 on GFB and Fig. 13(f) shows C(xD) vs. c1 on GFB,
respectively.

Fig. 13 shows the results of Experiment 11. The vertical
axis of Fig. 13(a), (c) and (e) is the optimal bandwidth; and
the vertical axis of Fig. 13(b), (d), and (f) is the corresponding
optimal total loss. In each subfigure, the red line refers to the
results with θ = 0.5, the green line denotes the results with
θ = 1, and the blue line represents the results with θ = 2,
respectively.

Based on these and other similar numerical simulations,
we conclude that the optimal bandwidth xD is decreasing
with the increase of cost coefficient while the corresponding
optimal total loss C(xD) is increasing. Therefore, we have
allocate less bandwidth for antivirus programs with the rise
of cost coefficient.

FIGURE 13. The experimental results in Experiment 11. (a) c1 vs. xD on
GSW ; (b) c1 vs. C(xD) on GSW ; (c) c1 vs. xD on GSF ; (d) c1 vs. C(xD) on
GSF ; (e) c1 vs. xD on GFB; (f) c1 vs. C(xD) on GFB.

F. INFLUENCE OF ANTIVIRUS PROGRAM
INJECTION COEFFICIENT
Next, we study the influence of antivirus program injection
coefficient on the optimal bandwidth xD and the correspond-
ing optimal total loss C(xD), respectively.
Experiment 12: Consider a set of MCBT models with G ∈
{GSF ,GSW ,GFB}, U ∈ {USF ,USW ,UFB}, θ ∈ {0.5, 1, 2},
βI = 0.01, βP = 0.002, γP = 0.1, c1 = 1.5, c2 ∈
{0.1, 0.2, . . . , 2}, δ = 0.002, xmax = 10, T = 10,
initial = 0.05, step = 0.05, I0 = (0.1, . . . , 0.1). By running
DOWNHILL algorithm on theseMCBTmodels, we obtain the
optimal bandwidth xD and the corresponding optimal total
loss C(xD), respectively. Fig. 14(a) shows xD vs. c2 on GSW ,
Fig. 14(b) shows C(xD) vs. c2 onGSW , Fig. 14(c) shows xD vs.
c2 on GSF , Fig. 14(d) shows C(xD) vs. c2 on GSF , Fig. 14(e)
shows xD vs. c2 on GFB and Fig. 14(f) shows C(xD) vs. c2 on
GFB, respectively.

Fig. 14 shows the results of Experiment 12. The vertical
axis of Fig. 14(a), (c) and (e) is the optimal bandwidth; and
the vertical axis of Fig. 14(b), (d), and (f) is the corresponding
optimal total loss. In each subfigure, the red line refers to the
results with θ = 0.5, the green line denotes the results with
θ = 1, and the blue line represents the results with θ = 2,
respectively.

Based on these and other similar numerical simulations,
we conclude that the optimal bandwidth xD and the cor-
responding optimal total loss C(xD) are both decreasing
with the increase of antivirus program injection coefficient.
Therefore, we need to allocate less bandwidth for antivirus
programs with the rise of antivirus program injection
coefficient.

VOLUME 8, 2020 19907



J. Bi et al.: Cost-Effective Algorithm for Selecting Optimal Bandwidth to Clear Malicious Codes

FIGURE 14. The experimental results in Experiment 12. (a) c2 vs. xD on
GSW ; (b) c2 vs. C(xD) on GSW ; (c) c2 vs. xD on GSF ; (d) c2 vs. C(xD) on
GSF ; (e) c2 vs. xD on GFB; (f) c2 vs. C(xD) on GFB.

FIGURE 15. The experimental results in Example 13. (a) T vs. xD on
GSW ; (b) T vs. C(xD) on GSW ; (c) T vs. xD on GSF ; (d) T vs. C(xD) on GSF ;
(e) T vs. xD on GFB; (f) T vs. C(xD) on GFB.

G. INFLUENCE OF TIME DURATION
Finally, we study the influence of time duration on the opti-
mal bandwidth xD and the corresponding optimal total loss
C(xD), respectively.
Experiment 13: Consider a set of MCBT models with G ∈
{GSF ,GSW ,GFB}, U ∈ {USF ,USW ,UFB}, θ ∈ {0.5, 1, 2},
βI = 0.035, βP = 0.02, γP = 0.045, c1 = 2, c2 = 1, δ =
0.02, xmax = 10, T ∈ {0.5, 1, . . . , 10}, initial = 0.05, step =

0.05, I0 = (0.1, . . . , 0.1). By running DOWNHILL algorithm
on these MCBT models, we obtain the optimal bandwidth xD

and the corresponding optimal total loss C(xD), respectively.
Fig. 15(a) shows xD vs. T on GSW , Fig. 15(b) shows C(xD)
vs. T on GSW , Fig. 15(c) shows xD vs. T on GSF , Fig. 15(d)
shows C(xD) vs. T on GSF , Fig. 15(e) shows xD vs. T on GFB
and Fig. 15(f) shows C(xD) vs. T on GFB, respectively.
Fig. 15 shows the results of Experiment 13. The vertical

axis of Fig. 15(a), (c) and (e) is the optimal bandwidth; and
the vertical axis of Fig. 15(b), (d), and (f) is the corresponding
optimal total loss. In each subfigure, the red line refers to the
results with θ = 0.5, the green line denotes the results with
θ = 1, and the blue line represents the results with θ = 2,
respectively.
Based on these and other similar numerical simulations,

we conclude that the optimal bandwidth xD and the corre-
sponding optimal total lossC(xD) are both increasingwith the
increase of time duration. Therefore, we would better allocate
more bandwidth for antivirus programs with the rise of time
duration.

VI. CONCLUDING REMARKS
Antivirus program plays a key role in mitigating the impact
of malicious codes. We address the problem of weighing the
economic loss caused by malicious codes and the bandwidth
assigned to transmit antivirus programs(i.e. the MCBT prob-
lem). First, a novel malicious code and antivirus program
interacting model is proposed. On this basis, the MCBT
problem is modelled as an optimization problem (the MCBT
model). We get some optimal bandwidth by solving the
MCBT model. Based on this, we propose a heuristic algo-
rithm named DOWNHILL, which performs better compared
with random strategies. Finally, the influence of some factors
on the optimal bandwidth and the corresponding optimal total
loss is uncovered through numerical simulations.
There are some relevant research topics towards this

direction. In this work, the bandwidth is simply assumed
to be fixed. In reality, we can flexibly change the band-
width to achieve a better tradeoff, and this can be done
in the framework of evolutionary algorithms [30], [31].The
methodology developed in this work can be applied to situ-
ations where wireless sensor network [32], [33] and rumor
spreading [34], [35].

APPENDIX
By these hypotheses, we get a differential dynamical system
as follows. Let 1t > 0 denote a very small time interval.
Hypotheses (H1)-(H5) imply the following relations.

Pr{Xi(t +1t) = 1 | Xi(t) = 0} = 1t

βI + βp N∑
j=1

aijIj(t)


+ o(1t),

Pr{Xi(t +1t) = 2 | Xi(t) = 0} = 1tγI + o(1t), i ∈ U ,

Pr{Xi(t +1t) = 2 | Xi(t) = 0} = 1t

γp N∑
j=1

aijγj(t)


+ o(1t), i ∈ V − U ,
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Pr{X(t +1t) = 2 | Xi(t) = 1} = 1tγI + o(1t), i ∈ U ,

Pr{X(t +1t) = 2 | Xi(t) = 1} = 1t

γp N∑
j=1

aijγj(t)


+ o(1t), i ∈ V − U ,

Pr{Xi(t +1t) = 0 | Xi(t) = 1} = o(1t),

Pr{Xi(t +1t) = 0 | Xi(t) = 2} = 1tδ + o(1t),

Pr{Xi(t +1t) = 1 | Xi(t) = 2} = o(1t).

As a result, we have

Pr{Xi(t +1t) = 0 | Xi(t) = 0}

= 1−1t

βI + βp N∑
j=1

aijIj(t)

−1tγI + o(1t), i ∈ U ,
Pr{Xi(t +1t) = 0 | Xi(t) = 0}

= 1−1t

βI + βp N∑
j=1

aijIj(t)


−1t

γp N∑
j=1

aijPj(t)

+ o(1t), i ∈ V − U ,

Pr{Xi(t +1t) = 1 | Xi(t) = 1}

= 1− γI1t + o(1t), i ∈ U ,

Pr{Xi(t +1t) = 1 | Xi(t) = 1}

= 1−1t

γp N∑
j=1

aijPj(t)

+ o(1t), i ∈ V − U ,
Pr{Xi(t +1t) = 2 | Xi(t) = 2}

= 1− δ1t + o(1t).

By the total probability formula and transposing the terms
Ii(t) andPi(t) from the right to the left, and dividing both sides
by 1t , we get

Ii(t +1t)− Ii(t)
1t

=

βI + βP N∑
j=1

aijIj(t)


× [1− Ii(t)− Pi(t)]

− γI Ii(t)+
o(1t)
1t

, t ≥ 0, i ∈ U ,

Pi(t +1t)− Pi(t)
δt

= γI [1− Pi(t)]− δPi(t)+
o(1t)
1t

,

t ≥ 0, i ∈ U ,

Ii(t +1t)− Ii(t)
1t

=

βI + βP N∑
j=1

aijIj(t)


× [1− Ii(t)− Pi(t)]

− γPIi(t)
N∑
j=1

aijPj(t)+
o(1t)
1t

,

t ≥ 0, i ∈ V − U ,

Pi(t +1t)− Pi(t)
δt

= γP[1− Pi(t)]
N∑
j=1

aijPj(t)− δPi(t)

+
o(1t)
1t

, t ≥ 0, i ∈ V − U .

Letting 1t → 0, we get the following dynamical model.

dIi(t)
dt
=

[
βI + βP

∑N

j=1
aijIj(t)

]
[1− Ii(t)− Pi(t)]

− γI Ii(t), t ≥ 0, i ∈ U ,
dPi(t)
dt
= γI [1− Pi(t)]− δPi(t), t ≥ 0, i ∈ U ,

dIi(t)
dt
=

[
βI + βP

∑N

j=1
aijIj(t)

]
[1− Ii(t)− Pi(t)]

− γPIi(t)
∑N

j=1
aijPj(t), t ≥ 0, i ∈ V − U ,

dPi(t)
dt
= γP[1− Pi(t)]

∑N

j=1
aijPj(t)− δPi(t),

t ≥ 0, i ∈ V − U .

where E(0) = E0, t ≥ 0, 1 ≤ i ≤ N .
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