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ABSTRACT Research into rolling bearing fault diagnosis methods is of great significance because rolling
bearings are a key part of mechanical equipment. The effect of iterative generalized demodulation (IGD)
on the demodulation of the fundamental frequency component is obvious in the fault diagnosis of rolling
bearings at variable speeds. However, there is a problem; the frequency curve of the demodulation octave
frequency component overlaps, and multiple determinations of the bandpass filter parameters produce an
artificial error that leads to the misdiagnosis of faults. Therefore, a method for rolling bearing fault diagnosis
based on adaptive generalized demodulation (AGD) is proposed. First, the resonance band is intercepted
by the fast kurtogram and its envelope results. Second, the adaptive chirp mode decomposition (ACMD)
algorithm is used to decompose the envelope signal, the relationship between the time and frequency of the
signal is clearly characterized by the form of multimedia pictures, and the instantaneous frequency of each
signal component is calculated. Third, the instantaneous frequency is used as the phase function to perform
generalized demodulation for each signal component. Last, all the demodulated signals are accumulated, and
a fast Fourier transform (FFT) is used to extract the fault’s characteristic frequency. The proposed method
is compared with IGD by using simulation signals and actual bearing signals collected by sensors under the
Internet of Things (IoT). An adaptive diagnosis function is realized through this proposed method at variable
speeds. Moreover, the average frequency spectrum identification rate of rolling bearing faults is improved
by more than 2.6 times compared with that of the IGD in the simulation signal verification and by more than
1.7 times compared with that of the IGD in the real signal verification. This method is strongly immune to
noise.

INDEX TERMS Fault diagnosis, rolling bearing, adaptive generalized demodulation, Internet of Things,

multimedia.

I. INTRODUCTION

In the mechanical, chemical, energy, and electric power
industries, rolling bearings are the most widely used com-
ponent. Rolling bearings operate under variable speed con-
ditions and bear large loads of mechanical equipment. Most
failures in mechanical equipment are caused by rolling bear-
ings; therefore, research on rolling bearing fault diagnosis
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under variable speeds is extremely important in engineering
applications.

Research into mechanical fault diagnosis methods under
variable speeds has become a hot spot in recent years [1], [2].
The research is mainly divided into two categories. The
first category is bearing fault diagnosis technology based
on order tracking, which is recognized as the most effective
method [3]; the core idea is signal resampling in the angular
domain to obtain a cyclically stable signal [4]. However,
this method usually requires the installation of an additional
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key-phase device to obtain the actual speed, which is difficult
to implement in the case of an inconvenient installation.
In addition, the key-less phase order tracking technology
is used to directly extract the speed curve from the time
domain signal, and this curve is used as the phase signals
for order tracking to achieve the extraction of order com-
ponents. However, problems, such as envelope distortion
and phase signal estimation accuracy, will occur during the
resampling process, which easily leads to errors in the diag-
nosis results [5], [6], and even can cause a misjudgment
of the results. The other category is bearing fault diagnosis
technology based on time-frequency analysis. This category
abandons the traditional order analysis technology and avoids
the problem of low calculation efficiency caused by solving
higher-order equations by resampling [7]. Time-frequency
analysis is a technology that comprehensively describes the
change in a signal’s frequency with time and has inher-
ent advantages in analyzing vibration signals of mechanical
equipment with variable speed conditions. Commonly used
time-frequency analysis methods include short-time Fourier
transform, synchronous compression transform, etc. [8], [9].
However, the above two algorithms have flaws related to
their insufficient time-frequency resolution and poor adaptive
ability in the signal analysis of variable speed bearings.

Generalized demodulation [10] is a method that can
transform a nonlinear and nonstationary signal into a lin-
ear and stationary signal and can significantly improve the
time-frequency resolution of the signal. In the time-frequency
spectrum, the curve is straightened to a horizontal straight
line. Many scholars have applied this method to the diag-
nosis of rotating machinery and equipment faults [11], [12].
To determine that the generalized demodulation algorithm
is suitable for single-component signals and can easily pro-
duce time-frequency curve crossings for multicomponent
signals, reference [13] proposed iterative generalized demod-
ulation (IGD). However, iterations need to be repeatedly
implemented using a bandpass filter. The higher the number
of iterations is, the more human error will be introduced.
In addition, the lack of self-adaptability and low diagnostic
accuracy limit the application of IGD for practical engineer-
ing. Therefore, this paper proposes an adaptive demodulation
algorithm for the problems of insufficient adaptive capability
and inadequate diagnostic accuracy for rolling bearing fault
diagnosis at variable speeds.

Adaptive chirp mode decomposition (ACMD) is a fully
adaptive decomposition algorithm [14], [15]. ACMD has
broad application prospects for multicomponent emphasized
frequency signals and is very suitable for analyzing mechani-
cal vibration signals under variable speed conditions. ACMD
can effectively avoid the errors caused by artificially selecting
the parameters of a bandpass filter and largely retains useful
components with good adaptive ability. The AGD algorithm
proposed in this paper, based on its advantages of adaptive
decomposition and high calculation accuracy, combined with
the generalized demodulation algorithm, solves the problems
of large IGD calculation errors, low spectrum recognition
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rate, and poor adaptability. This approach enables the signal
to be straightened in the horizontal direction when the signal
is decomposed so that the rolling bearing fault diagnosis
is completed through the spectrum diagram. Based on the
simulated signals and actual data collected by sensors in the
Internet of Things (IoT) [16], [17], this paper compares AGD
with IGD. AGD is better than IGD for its noise immunity and
improved spectrum recognition rate.

The main contributions of this paper are as follows: (i) The
ACMD algorithm is introduced into the study of rolling bear-
ing fault diagnosis. This algorithm achieves adaptive extrac-
tion of multidimensional characteristics of bearing signals
and effectively avoids the human errors caused by iteration.
(ii) A fault diagnosis sensor network is created, and data are
automatically collected by a timing sensor network. Based
on the multidimensional features, the fast Fourier transform
(FFT) algorithm is used to create a spectrum recognition
model for fault diagnosis. (iii) The AGD method is proposed
to solve the cross-interference problem of the time-frequency
curves of multimedia images in IGD analysis and improves
the fault diagnosis accuracy and noise resistance.

The arrangement of the remaining chapters is as follows:
the second chapter analyzes the generalized demodulation
algorithm and adaptive algorithm for rolling bearing fault
diagnosis and discusses the existing problems. The third
chapter proposes the adaptive generalized demodulation
(AGD) algorithm and introduces the algorithm’s implementa-
tion steps and principles in detail. The fourth chapter verifies
the method proposed in this paper using a simulated signal
and actual data. Finally, the fifth chapter summarizes the full
text.

Il. RELATED WORK

A rolling bearing fault signal with variable speed is nonlin-
ear and nonstationary, rendering traditional signal process-
ing methods ineffective [18]; in addition, the generalized
demodulation technique can convert this time-varying fre-
quency signal into a constant-frequency signal and com-
prehensively describe the characteristics of a bearing fault
signal frequency that changes over time. IGD [13] is the main
method of researchers, but it cannot adaptively decompose
the signal, and it easily causes the problem of overlapping
time-frequency curves. Therefore, this paper uses an adaptive
decomposition method to decompose the rolling bearing
signal and combines the signal with the generalized demod-
ulation algorithm to adaptively extract and model the mul-
tidimensional signal features, thus improving the accuracy
of rolling bearing fault diagnosis under variable speeds. The
following section analyzes the work related to generalized
demodulation and adaptive algorithms in detail.

A. RELATED RESEARCH OF GENERALIZED
DEMODULATION

Define At a constant speed, the fault frequency presented
by a rolling bearing envelope time-frequency diagram has
a stable and linear relationship. The fault frequency and its
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octave frequency of the rolling bearing have obvious peaks
in the FFT spectrum, which is consistent with the operational
mechanisms of the failure bearing [3]. However, under vari-
able speeds, the fault characteristic presented in the enve-
lope time-frequency graph is nonstationary and nonlinear,
which cannot clearly show a changing fault feature, making
it difficult to extract the fault characteristics. The generalized
demodulation algorithm can just make up for the defect under
variable speeds. By selecting the appropriate phase function,
the time-frequency curve in the envelope time-frequency
graph is transformed into a horizontal curve parallel to the
time axis, which is used to determine the characteristic fre-
quency of the demodulated fault by FFT and complete the
fault diagnosis [1].

The type of a bearing fault is analyzed based on massive
variable speed vibration signal data collected dynamically
and regularly by the sensor. The time-frequency analysis
techniques (including short-time Fourier transform [19], syn-
chronous compression transform and other methods [20],
etc.) discussed above exist to solve the problem of low
time-frequency resolution of the signal in the multimedia
map [21]. In the reference [10], the generalized demodulation
can convert the signal from nonstationary to stable, which sig-
nificantly improves the time-frequency resolution of the sig-
nal. However, a single generalized demodulation cannot deal
with multicomponent rolling bearing signals. Reference [22]
applied generalized demodulation to an envelope order
spectrum to achieve gear fault diagnosis. Based on the
multicomponent signal decomposition method of multiple
generalized demodulation [23], the wavelet packet’s decom-
position capability is used to separate the signal after a
single demodulation and loop until all components are sep-
arated. This method needs to select the basis function in the
wavelet packet, which does not have adaptive performance.
Reference [24] proposed combining the generalized demod-
ulation algorithm with the actual speed signal to replace the
order tracking angular domain resampling process and solved
the computational error and efficiency defects in resampling.
However, in practical engineering applications, this method
is difficult to apply in environments where it is inconvenient
to install the key-phase device for velocity measurements,
which limits its application in engineering. Reference [25]
realized the extraction of multicomponent signals through
multiple bandpass filters, and on this basis, an IGD algorithm
was proposed to realize the demodulation of multicomponent
signals from bearings and complete the fault diagnosis of
planetary gears under variable speeds. However, this method
has low diagnostic accuracy and poor adaptive ability.

In practical engineering applications, self-adaptation is
very important because it can avoid the errors caused by man-
ual selection of parameters, improve the diagnostic accuracy,
reduce the prior knowledge required by engineering person-
nel, operate efficiently and implement unmanned intervention
systems. For this reason, we propose an adaptive algorithm to
solve the problem of the poor adaptive ability of generalized
demodulation.
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B. RELATED RESEARCH OF ADAPTABILITY

Adaptability is an important factor to be considered in rolling
bearing fault diagnosis. Adaptive algorithms are widely stud-
ied. In the field of rolling bearing fault diagnosis, the typical
adaptive algorithms include empirical mode decomposition
(EMD) [26], ensemble empirical mode decomposition
(EEMD) [27], and variation mode decomposition
(VMD) [28]. In reference [29] the Hilbert-Huang transfor-
mation was applied to gear fault diagnosis, and the fault
type was successfully identified. However, the EMD in the
Hilbert-Huang transformation has some defects, such as edge
effects, overfitting and mode aliasing. To eliminate the phe-
nomenon of mode aliasing in EMD, reference [30] proposed
EEMD by adding white noise to the original signal, which
effectively suppressed the phenomenon of mode aliasing.
Reference [28] provided a new method, VMD, which could
simultaneously eliminate EMD mode aliasing and overfitting
defects and accelerate the iteration speed. In reference [31],
VMD was used to diagnose the fault type of rolling bearings
in a multistage centrifugal pump, and good results were
obtained. However, there are still some problems in VMD.
The endpoint effect still exists after signal decomposition,
and the phenomenon of mode aliasing still exists when the
frequency conversion rate is fast.

Reference [14] proposes that ACMD has a strong adaptive
signal decomposition capability and can decompose multi-
component signals into multiple single-component signals.
Different from VMD, ACMD can excavate multicomponent
signals separately, retaining the original characteristics of the
signals. This approach effectively avoids modal aliasing and
can be successfully applied to the diagnosis of faults in rotor-
stator systems, effectively identifying the characteristic fre-
quency and multiplier of the fault [14]. Reference [32] applies
ACMD to fault diagnosis in variable-speed planetary gears,
solving the problem of difficult to extract feature components
of complex gearboxes and effectively identifying gear faults.
Yang et al. [33] mentioned many parameter improvement
methods for variational nonlinear chirp mode decomposi-
tion (VNCMD) in the time-frequency analysis review and
proved their effectiveness and engineering usability. There-
fore, based on the advantages of the ACMD algorithm, this
paper uses ACMD in the generalized demodulation algorithm
for rolling bearing fault diagnosis and proposes the AGD
algorithm.

With the development of IoT technology and improved
computer hardware performance, data-driven analysis has
become a new hot topic in research. This approach does not
require prior knowledge of signal processing by engineers
and can perform adaptive feature extraction. In terms of data
extraction, references [34], [35], [36] focused on reducing the
overhead of IoT communication. References [37], [38], [39]
contributed to promoting the deployment of the IoT,
enhancing knowledge sharing of the IoT and reducing the
amount of computing and energy consumption of the IoT.
References [40], [41] provided new ideas for massive data
analysis based on the IoT and effectively improved the
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performance of data cache systems. In this paper, a sensor
is used to automatically collect vibration information from
variable speeds of a rolling bearing to achieve adaptive
multidimensional feature data extraction.

In conclusion, the AGD method solves the problems of
poor adaptive ability and low diagnostic accuracy of IGD at
variable speeds. First, the multidimensional features of the
signal are extracted based on the adaptive algorithm, and
the instantaneous frequency of each feature is calculated.
Second, according to the generalized demodulation algo-
rithm, the variable speed signal data, which is automatically
collected by the sensor at a fixed time, is created to identify
the spectrum for the fault diagnosis. Finally, we determine
the fault type by observing the multimedia spectrum and
calculate the spectrum recognition rate to analyze the fault
diagnosis accuracy of the AGD algorithm.

lll. THE PROPOSED AGD METHOD

IGD is based on a single-component signal and introduces
the idea of iteration and intercepting the generalized demod-
ulated target component through a bandpass filter. The above
process is repeated to demodulate the entire multicomponent
signal.

However, IGD ignores an important factor, which is
that generalized demodulation is derived from a single-
component signal. For fault bearing signals whose time-
frequency distribution curves are not parallel to each other,
the signal after each iteration can appear between components
with mixing distortion, causing the phenomenon of spectral
aliasing. Meanwhile, selecting the parameters of the bandpass
filter multiple times will increase human error, reduce the
adaptive performance and accuracy, and relies on the prior
knowledge of the engineering staff in the engineering appli-
cation, which leads to poor adaptability and low diagnostic
accuracy. To solve these problems, this paper introduces the
ACMD algorithm [14] into the generalized demodulation
algorithm to realize adaptive extraction of multidimensional
features of variable speed rolling bearing vibration signals.
A new fault diagnosis method is proposed to make it more
suitable for practical engineering applications and to improve
the accuracy and noise immunity of fault diagnosis.

A. THE ACMD PRINCIPLE

ACMD is a processing method for multicomponent strong
frequency modulated signals; the ACMD aims at the mul-
ticomponent time-varying characteristics of rolling bearing
fault signal under variable speeds, and it can analyze the
signal components and extract them into multidimensional
features [14]. This algorithm can adaptively decompose the
signal into multiple single-component signals while retain-
ing the original signal components, achieving nondestructive
decomposition of the signal, which effectively avoids modal
aliasing and improves diagnostic accuracy. Therefore, this
paper applies ACMD to the analysis of rolling bearing fault
diagnosis.
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First, let s(7) be the rolling bearing vibration signal, where
s(¢) contains K signal components. Therefore, the signal can
be rewritten as:

K K ;
0= s 0= 3 A () cos(2x /0 fOydT+6) (1)
i=1 i=1

In this formula, A;(f) > 0, f;(t) > 0 and 6; represent the
instantaneous amplitude (IA), instantaneous frequency (IF),
and initial phase of the i-th signal component, respectively.
With signal demodulation technology, formula (1) is rewrit-
ten into formula (2)

K t
s(t) = Za,- (1) cos(2 / £ (x)dr)
0

i=1
1
by (1) sin(2 / fewdn @)
0

where fi% () is a frequency function of the demodula-
tion operators sin(2w féfi%(r)dt) and cos(2w folfi%(r)dr).
a;(t) and b;(¢) are the corresponding demodulated signals.

a;i(t) = Ai(t) cos(2m fO’ (i(0) — f(r)dT +6;)
bi(t) = —A(t) sin2x [y (fi(x) — f;7(0)d T + 6)

The instantaneous amplitude is A;(f) = al.z(t) + bl.z(t),

and the instantaneous frequency is fi(t) — fl-%(r). Using a
greedy search algorithm, ACMD estimates the signal com-
ponents one by one. For the i-th signal component:

min  {[la/ @] + [6/0)]5 + e ls) = 5013} )
a;i(t),bi(t).f;” ()

3

Simultaneously,

t t
si(t)=a;(t) cos(2m / £7(0)dt)+bi(t) sin2r / f(t)dr)
0 0
)

IIs() — s,-(t)||% is a redundant signal after removing the
current estimated signal component. For discrete signals at
time t = fg, L, ty—1 (N is the number of sampling points).
Formula (4) can be rewritten as:

T . T1T
v =[a;,b; 1" (6)

1071

- 2 2
rl?l}l{”@ui”z +a s — Giuillz},
isJi

In the formula (6) a; = [a;(ty), L, ai(ty—1]*, b; =

[bi(to), L, bi(ty—1)]T and © = where Q is a

Q 9

second-order difference matrix. Through the component-by-
component decomposition of the signal s(¢), the multidimen-
sional features of the vibration signal are accurately extracted.

B. THE AGD METHOD

The AGD method proposed in this paper is an algorithm for
diagnosing rolling bearing faults. First, the multidimensional
characteristics of the signal are adaptively extracted. Second,
generalized demodulation transformation is performed on
multiple components to sum up the demodulation results.
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Finally, the spectrum recognition model of fault diagnosis is
presented by means of multimedia visualization to complete
the fault diagnosis of rolling bearings. This method solves
the error caused by selecting the parameters of the bandpass
filters in the IGD algorithm and improves the accuracy of
fault diagnosis and enhances the noise resistance. The AGD
method is executed as follows:

Step 1: Multimedia visual analysis of the vibration signal
data automatically collected by the sensor at regular intervals.
The vibration signal is filtered by a fast kurtogram, and the
signal resonance band is selected from it. A Hilbert transform
is applied to the resonance band signal, and the signal is
interpreted as an envelope signal.

Step 2: The algorithm in Section III part A is used to
adaptively extract the multidimensional feature signals from
the envelope signal, the first signal component obtained by
the curve extraction algorithm is used to calculate the instan-
taneous frequency, and the speed frequency is the result of
the instantaneous frequency divided by the fault characteristic
coefficient.

Step 3: Take the speed frequency obtained in step 3 as
the phase function and perform the generalized demodula-
tion transformation for the extracted multidimensional signal
components, where the phase function of the K component is
equal to the product of the speed frequency and K .

Step 4: Accumulate and sum the multidimensional features
after demodulation, perform FFT based on the multidimen-
sional features, create a fault diagnosis spectrum identifi-
cation model, and then determine the fault type from the
spectrum diagram to complete the fault diagnosis.

According to Fig. 1, the detailed steps of the method are
shown below:

(1) The resonance band of the original signal x(z) is
determined by the fast kurtogram filter and design filters
h1(t) and ho(t):

hy (1) = h (1) 37174
ho (1) = h (1) 37174

(f €10, 1/4])

@)
(f € [1/4,1/2])

x(t) is filtered several times by h1(t) and ho(f), and the
kurtosis value of each filtering result is repeatedly calculated

fast spectral

kurtosis Hilbert ACMD

single
component
signal xi(t)

original signal resonance
x(t) band x1(t)

envelope
signal A(t)

horizontal
curve Xi(f)

diagnostic
result X(@ )

accumulate
and sum

generalized curve
demodulation calculation c(t)

FIGURE 1. The frame diagram of the AGD algorithm.
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by the following formula:

E{e o)
k=—— 1L 2 (i:O,l,---,Zk—l) ®)
{lex )}

By accumulating the above kurtosis values, a fast kurtosis
graph is constructed, and the resonance band signal with the
deepest color in the multimedia graph is intercepted as x(¢) .

(2) The resonance band signal is processed by envelopment
analysis. The analytical signal of x(¢) is calculated by

yi(t) = x1(t) + jH (x1(2)) ®

where H (x1(t)) is the Hilbert transform of x(¢). y;(¢) is then
used to calculate the signal envelope as

At) = \/y1(t)2 +H(yi(1)? (10)

(3) The enveloped signal is analyzed by the algorithm in
Section III part B, and the instantaneous frequency curve of
the single component signal is estimated. The specific steps
are as follows:

First, the peak search algorithm [42] is used to calculate
the local peak value, and formula (11) is the peak calculation
formula

IFE(n1, k1) = argmax {SPEC(n,k)}
ko—p=<k<ko+p
IFE(n;, ki) =  argmax  {SPEC(n, k)} (11)
n=njx|

kix1—p=<k=<kix1+p

In the formula (11) n;, = n £ 1,ny £ 2,---;
ni € (OOM — 1) and k; € (O,N — 1), where M is the
number of time lines in the time-frequency grid. N is the
number of frequency lines in the time-frequency grid. IFE
is the peak search function, and arg max is the parameter
when the maximum value of the objective function is taken.
SPEC is the corresponding time-frequency map. (n1, k1) is
the first instantaneous frequency coordinate obtained by the
peak search with (n1, ko) as the starting point. p is the range
of the peak search, and (n;, k;) is the instantaneous frequency
coordinate of each time result obtained through the peak
search.

Next, the instantaneous frequency is calculated at each
point according to the following formula (12).

f(ni)zjM
q

(12)
where f,(n;) represents the instantaneous frequency of each
point obtained by the peak search. g represents the order
of fault characteristics corresponding to the instantaneous
frequency. n; represents the corresponding point in time.
Finally, the discrete instantaneous frequency obtained
above is transferred to perform a least squares fit. The poly-
nomial degree is selected according to the instantaneous fre-
quency change trend of each point. Generally, the speed does
not change abruptly, and a low-order polynomial fit can be
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selected. Taking a quadratic as an example, the fitting formula
is as follows:

f(t)=at2+bz+c (13)

A
where ¢ represents time, and f'(¢) represents the fitted instan-
taneous frequency transfer function. a, b, and ¢ are undeter-
mined coefficients. The square error formula is as follows:

M A AN 2
F(a,b,¢) =Y _[f(t) — f(n)] (14)
i=1
We determine a, b, and ¢ according to % =0, % =0,

%—f =0. Finally, the instantaneous frequency curve c(t) func-
tion is fitted.

(4) The AGD algorithm combines the fault characteristic
coefficient of the rolling bearings and the instantaneous fre-
quency c(t) to calculate s;(z), where s;(¢) is the i-th phase
function of x;(t).

si(t) = % (15)

8 is the fault characteristic coefficient.

(5) Formula (16) is the result of generalized demodulation
of each signal components by using phase function.

o0
Xi(f) = / xi(t)e 2501 gy (16)
— 00

In the multimedia time-frequency diagram, the signal
component curves are parallel to the time axis in the time
domain. f represents the instantaneous frequency fault point,
which can take the ordinate of the initial point of the curve in
the actual project.

(6) The summation result is the summation of the
demodulated component signals. The summation formula is
expressed as

K
X(H) =) Xif) (17)
i=1

(7) Next, we perform FFT on the accumulated result to
obtain the spectrum identification model and the final spec-
trum diagram. The formula is expressed as

N-—1
X (@)=Y xmW (18)
n=0

In formula (18) the k = 0,1,---N — 1, Wy = e /7,
and x (n) = X (f). By observing the peak value of each
component in the multimedia spectrum diagram, we extract
the fault features and achieve the fault diagnosis.

IV. EXPERIMENT ANALYSIS

In this paper, the AGD algorithm is compared with the IGD
algorithm, and the actual data based on the simulation data
are compared with the actual conditions. In the comparison
part of the bearing simulation data, signal data are generated
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through a simulation model of rolling bearing faults that
has been proposed in the literature [43], and simulated fault
bearing signals under two working conditions are designed
to compare and verify the spectral recognition rate and noise
resistance of the algorithm under different signal to noise
ratios (SNR). For the actual signal component, the equipment
is a rotating machinery vibration and fault simulation test
bench QPZZ - 1I. The fault signal of the outer ring of the
rolling bearing is selected for comparative verification. The
vibration signal is collected by the network sensor, and the
spectrum recognition rate of the algorithm is compared and
verified.

A. SIMULATION SIGNAL ANALYSIS OF FAULT BEARING
First, the accuracy of the algorithm must be verified accord-
ing to reference [43] to generate a fault bearing simulation
signal.

M
x(t)= Z Lyne P07 sin[w,(r — ty)|u(t — t) + n(t) (19)

m=1

here M is the number of impulse responses, L, is the m-th
impulse response amplitude coefficient, T}, is the response
period, B is the structural attenuation coefficient, w, is the
natural damping coefficient of the system, u() is the unit step
function, n(t) is Gaussian white noise, and t,, is the time when
the m impulse occurs, whose formula is:

1 =1+ wll/f(0)]

tm =

(I + w1/fe0) + 1/fe(r) + ... + 1/fe(tm—1)]
m=23,....M

(20)

where p is the error caused by each fault impulse inter-
val with a value generally from 0.01 ~ 0.02, f, = 4&f; is
the fault characteristic frequency, f, is the bearing rotation
frequency, and § is the fault characteristic coefficient. The
specific parameter values are shown in Table 1.

TABLE 1. Simulation parameter values of fault bearing.

Speed curve function — 5g13 % ¢ 96 X 1"2428.8 X 14584
Duration 10s 3s
Speed change range 20-50 Hz 58.4-80 Hz
Resonance frequency 4000 Hz 4000 Hz
Sampling frequency 20 kHz 20 kHz
Fault characteristic 3.5 3.5
coefficient
Attenuation coefficient 500 500
Signal to noise 8 8
ratio(SNR)
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1) LIFTING SPEED SIMULATION ANALYSIS

We design a set of speed-up simulation signals to test the
performance of the algorithm under ramp-up conditions. The
speed selection refers to the empirical value of the actual
working conditions and is defined as 20 + 3¢. Table 1 shows
the specific parameters. Finally, the simulation signal is gen-
erated as shown in Fig. 2 (a). The signal amplitude increases
with time, and the pulse impact interval decreases.

5
=
E
[0}
©
2
=)
€
<

-5

0 5 10
Time (s)
(a)

K aX=Ieve| 2.5, Bw= 1600Hz, fc=4000Hz

m

1.5

o o o o o o

Level k
NP P%uPrPuNou2ao

0 2000 4000 6000 8000
Frequency (Hz)

(b)

FIGURE 2. The signal preprocessing results for the simulated signal:
(a) Time domain diagram of a simulated signal; (b) Fast kurtogram results
of simulated signals.

In the simulation analysis, the number of extraction curves
is 3. The signal is preprocessed according to the first step
of the algorithm proposed in Section III part B, and the
simulated signal is subjected to a fast kurtogram filtering
algorithm to intercept signals with bright colors. The area
shown by the red box (3200 Hz ~ 4800 Hz) in Fig. 2 (b),
forms the resonance band signal and obtains the envelope of
the resonance band signal.

The multimedia time-frequency diagram of the envelope
signal is shown in Fig. 3 (a). The arrows indicate 1-3 times
the characteristic frequency of the fault, which are 70 Hz,
140 Hz, and 210 Hz. Next, the adaptive algorithm mentioned
in the step 2 of Section III part B is used to extract the
multidimensional features of the envelope signal, as shown
in Fig. 3 (b). The remaining signal components after decom-
posing the first component in Fig. 3 (c), and according to
the step 3 in Section III part B, the instantaneous frequency
curve function of the simulated signal is solved, as shown
in Fig. 3 (d). The fault characteristic frequency and fault char-
acteristic coefficient of the simulation signal are combined
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FIGURE 3. Multidimensional feature signal extraction: (a) envelope
time-frequency diagram; (b) the first component decomposed;

(c) time-frequency diagram after decomposing the first component;
(d) comparison of the actual rotational frequency and the estimated
rotational frequency.

to calculate the instantaneous rotational frequency, and the
results are compared with the actual frequency. The phase
function s(r) = 3 x 3.5 + 2% = 5.25¢2 required for demodu-
lation is determined by the estimated instantaneous rotational
frequency and the set fault characteristic coefficient 3.5.
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The instantaneous frequency fault point f = 70Hz is calcu-
lated by the first component decomposed in Fig. 3 (b). Finally,
according to step 4 in Section III part B, generalized demodu-
lation is performed on the extracted single-component signal,
the demodulation results are accumulated, and the FFT spec-
trum recognition model is established. The peak value of the
spectrum is observed through the multimedia time-frequency
diagram and compared with the actual value.

After the above decomposition process, Fig. 4 (a) shows
the accumulated results after generalized demodulation for
each component. As seen in the figure, the fault characteristic
frequency of 1-3 times parallel to the time axis, and the com-
ponents are well distinguished, establishing the FFT spectrum
fault diagnosis model. In Fig. 4 (b), we can see that the
multimedia spectrum plots peak at 70.01, 140.2, and 210.3.
It can be verified that the characteristic frequency is equal
to the frequency multiplied by the characteristic coefficient,
which is consistent with the characteristic frequency of the
simulation signal 1 x 20 x 3.5,2 x 20 x 3.5,3 x 20 x 3.5
(frequency multiplier x rotational frequency x failure
factor).
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FIGURE 4. The AGD algorithm diagnosis results: (a) accumulated signal
after generalized demodulation; (b) FFT spectrogram.

Using the IGD algorithm to compare the method proposed
in this article, Fig. 5 (a) shows the effect of the third itera-
tion, which can be seen from the time-frequency diagram.
Although the 3 fault characteristic frequency is parallel to
the time axis, there are cross interference terms around it.
Fig. 5 (b) shows the FFT results after IGD. From the FFT
results, it can be intuitively seen that although there is a peak
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FIGURE 5. The IGD algorithm diagnosis results: (a) time-frequency
diagram of the third iteration; (b) FFT spectrogram.

value in the frequency doubling of IGD, the interference term
affects the fault diagnosis.

It can be seen from the comparison results of the two
pictures in Fig. 4 and Fig. 5 that the IGD exhibits a spectral
aliasing phenomenon in the third iteration. The generalized
demodulation is insufficient, and the bandpass filter parame-
ters need to be selected multiple times, which increases the
influence of manual intervention. The algorithm has poor
self-adaptability. The method proposed in this paper success-
fully avoids the above problems and greatly improves the
diagnostic accuracy.

To test the diagnostic accuracy and noise immunity of AGD
and to quantitatively measure the accuracy of the method
proposed in this paper, the fault diagnosis accuracy was mea-
sured under the same signal with a different SNR. According
to reference [44], this paper defines the frequency spectrum
recognition rate of rolling bearing fault diagnosis as:

_ MAX({Spectral curve energy of characteristic frequency}
N AVERAGE({Noise energy}

21

The performance of the proposed method for simulated
signals with different SNRs is tested, as shown in Table 2.
Six SNR values are taken from -8 dB to 8 dB. In each case,
the diagnostic accuracy of AGD is higher than that of IGD.
In addition, with increasing SNR, the relative accuracy of
both increases, that is to say, the higher the SNR is, the higher
the diagnostic accuracy of AGD is. In addition, as the noise
intensity increases, the errors of AGD and IGD both increase.
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TABLE 2. Spectrum recognition rate.

P AGD IGD
SNR=8 15.17 9.05
SNR=4 14.36 8.22
SNR=2 12.67 75
SNR=0 10.59 433
SNR=-4 8.84 2.78
SNR=-8 536 1.49

As the SNR increases from -8 dB to 8 dB, the spectrum recog-
nition rate of the AGD algorithm increases from 5.36 to 15.17,
but that of the IGD algorithm increases from 1.49 to 9.05.
On the other hand, by comparing the data in Table 2, the aver-
age relative accuracy is 5.603, that is, the average of the
difference between the spectrum identification rates between
AGD and IGD under all SNR conditions.

It can be seen from the above analysis that the AGD method
is superior to the IGD in terms of noise immunity and that
with the same SNR, the spectrum recognition rate is higher
than that of the IGD.

2) COMPLEX WORKING CONDITION

To simulate the real bearing signals of complicated condi-
tions, the designed speed function is —9.612 +28.81 + 58.4,
and the specified parameters are shown in Table 1. Fig. 6 (a) is
the time-frequency diagram of the simulated enveloped signal
after calculating the fast kurtogram algorithm. These arrows
point to the 1-3 times fault characteristic frequency of the sig-
nals. Fig. 6 (b) shows the extracted instantaneous rotational
frequency curve after being processed by the third step of the
algorithm in Section III part B. The instantaneous frequency
and the known fault characteristic coefficient (3.5) determine
the phase function, which is applicable to the generalized
demodulation. Using the phase function to perform the gener-
alized demodulation transformation on the three components

85
oy >
% g 75
> 370 ] Estimated rotational |
S g 7 frequency
= e Actual rotational
L - 65 frequency
60
0 1 2 3
Time (s) Time (s)
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FIGURE 6. The signal envelope and the calculated rotational frequency:
(a) the envelope time-frequency diagram obtained by signal
preprocessing; (b) the comparison of calculated rotational frequencies.
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and accumulating these demodulated components establishes
the spectrum identification model of FFT. The spectral peak
of the multimedia time-frequency diagram are observed and
compared with the actual value.

As shown in Fig. 7 (a), clear peaks appear at 1-3 times the
fault characteristic frequency, and there are no interference
terms. Fig. 7 (b) shows the results of IGD, and although we
can see three clear peaks, there is a significant error in the
extracted fault characteristic frequency within 5-30 Hz, which
is not acceptable in practical engineering.
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FIGURE 7. The comparison fault diagnosis results between AGD and IGD
for a simulated signal: (a) FFT spectrogram of AGD; (b) FFT spectrogram
of IGD.

Under the simulated signal of this complex condition,
the frequency spectrum recognition rates under different
SNRs are shown in Table 3. In each SNR case, the diag-
nostic accuracy of AGD is higher than that of IGD, and the
average relative accuracy is approximately 8.89 times higher.
Meanwhile, with increasing SNR, the relative accuracy and
diagnostic accuracy of both approaches increase. In addi-
tion, with increasing noise intensity, the errors from AGD
and IGD increase. When the SNR increases from —8 dB to
8 dB, the frequency spectrum recognition rate of the AGD
algorithm increases from 2.11 to 24.32, and the frequency
spectrum recognition rate of the IGD algorithm increases
from 0.13 to 10.6. It is shown that the noise immunity of the
AGD algorithm is better than that of IGD.

The AGD algorithm will extract one component each time,
and then perform generalized demodulation for each signal
component in turn, which seems to be a cyclic process.
In fact, AGD can decompose a single component and make a
generalized demodulation transformation of the component,
which is essentially a top-down process; this process avoids
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TABLE 3. Spectrum recognition rate.

P AGD IGD
SNR=8 29.52 14.75
SNR=4 20.67 10.2
SNR=2 19.66 75
SNR=0 13.59 3.68
SNR=-4 5.79 1.86
SNR=-8 3.17 1.03

the iterative process of the generalized demodulation cycle
and effectively solves the problem of multiple selections
of bandpass filter parameters, which reduces the diagnosis
error and effectively improves the self-adaptability of fault
diagnosis.

As the above analysis results fully explain, the fault char-
acteristic frequencies are 3.5 times the actual speed in the
two bearing simulation signals, and they contain 1-3 times the
fault characteristic frequency fault points. This finding is con-
sistent with the assumptions of the simulation model, which
verifies the effectiveness of the AGD algorithm. In addition,
the AGD method also has a high-precision spectrum recog-
nition rate when the SNR is less than zero, which improves
fault diagnosis accuracy and noise immunity.

B. ACTUAL SIGNAL ANALYSIS OF FAULT BEARING

The feasibility of the AGD method was verified by measuring
the fault signals of the outer ring rolling bearing. The equip-
ment used in this paper is a QPZZ-II system of a rotating
machinery vibration and fault simulation test bench, as shown
in Fig. 8. Fig. 8 (a) uses a sensor with IoT technology to
collect vibration signals, and 2 is a laser tachometer for
measuring the actual speed. Fig. 8 (b) shows the installation
position of the vibration acceleration sensor. The rolling bear-
ing model parameters are shown in Table 4. The bearing outer
ring fault characteristic coefficient is 5.284.

TABLE 4. Target bearing parameters.

Bearing The Diameter of Diameter of Contact-
type number rollingbody  pitch circle angle o
of rolling
bodies
U205EM 13 7.2 mm 38.5 mm 0

The sampling frequency set in the experiment is 25600 Hz,
and the sampling time is 5 s. The two signals from the bearing
vibration signal and the laser tachometer are collected sepa-
rately. The collected vibration signal is shown in Fig. 9 (a).
After the fast kurtogram algorithm is applied, the envelope
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FIGURE 8. Vibration and fault simulation test bench for rotating
machinery: (a) simulation experiment platform; (b) installation position
of vibration acceleration sensor.

4

N

Amplitude (mV)
o

21
4 .
0 1 2 3 4 5
Time (s)
600
=
— 400
>
o
C
[0
>
g 200
L
0

FIGURE 9. The signal preprocessing results for actual signals: (a) time
domain diagram of actual signals; (b) envelope time-frequency diagram.

signal is adaptively processed, and the first decomposed
signal is used to estimate the rotational frequency. This
estimation is compared with the actual rotational frequency
measured by the laser tachometer, as shown in Fig. 10. We use
the estimated rotational frequency to perform a generalized
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FIGURE 10. Comparison of the actual rotational frequency and the
estimated rotational frequency.

demodulation transformation on the corresponding decom-
posed components, so the curve in the multimedia time-
frequency diagram is parallel to the time axis, and then
the demodulation results are accumulated and summed up.
A spectrum identification model of FFT for the accumulated
signal, as shown in Fig. 11 (a). Fig. 11 (b) is the result of the
spectrum identification model of IGD. It can be seen from
the comparison that the AGD method can more accurately
extract 1-3 times the fault characteristic frequency, which
are 1 x 11.4 x 528, 2 x 114 x 5.28,3 x 114 x 5.28
(frequency multiplier x rotational frequen(():32/0§<2 fault factor).

The fault spectrum identification rate is 0.00519 = 37.313,

perfectly fitting the bearing outer ring fault type. The IGD
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FIGURE 11. The comparison of fault diagnosis results between AGD and
IGD for an actual signal: (a) FFT spectrogram of AGD; (b) FFT spectrogram
of IGD.
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has a 3-5 Hz error in extracting the characteristic frequency
of the fault, and there are many interference terms at the third
frequency. At this time, the fault spectrum recognition rate
is J:08698 — 20.76.

To summarize, the diagnostic accuracy of the AGD method
is better than that of the IGD method, which has a good
suppression effect on the interference terms and eliminates
the repeated selection of the bandpass filter parameters in
the iteration process. In the simulation signal verification,
the average spectrum recognition rate is increased to 2.6 times
that of the IGD, and in the real signal verification, the spec-
trum recognition rate is increased by more than 1.7 times,
which improves the fault diagnosis accuracy of rolling bear-
ings. The noise of the actual signal has been determined.
If noise is artificially added, it leads to unreliability in the
experimental data. Therefore, in the actual signal section, the
noise resistance is not analyzed.

V. CONCLUSION

Based on the advantages of the generalized demodulation and
adaptive algorithm, the AGD method is proposed for diag-
nosing rolling bearing faults at variable speeds. This method
solves the demodulation deficiency of IGD by extracting the
fault characteristics of rolling bearings, extracting the over-
lapping fault features, and selecting the bandpass parameters
repeatedly. This approach enhances the adaptive ability of
the algorithm and improves the recognition rate of the fault
spectrum and noise resistance. The study draws the following
main conclusions:

(1) Integrating the ACMD algorithm with generalized
demodulation and introducing it into the field of rolling bear-
ing fault diagnosis can take full advantage of the generalized
demodulation and adaptively perform multidimensional fea-
ture extraction of vibration signals. The ACMD signal adap-
tively decomposes into K components. K is determined by
the signal itself and does not need to set parameters manually.
This approach solves the problem of the artificial error in the
algorithm and has inherent advantages in the preprocessing
of rotating machinery signals.

(2) Compared with the IGD algorithm, the method pro-
posed in this paper improves the spectrum recognition rate
in the verification processing of simulation signals and real
signals, so the fault diagnosis accuracy is higher.

(3) The algorithm is verified based on bearing simulation
signals and experimental data. The method proposed in this
paper can solve the problem of selecting the parameters of
a bandpass filter many times by IGD and effectively avoids
the error caused by setting the parameters manually. This
approach also improves the noise resistance of the algorithm,
which is more suitable for practical engineering applications.
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