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ABSTRACT This paper reports a formal symbolic process virtual machine (FSPVM) denoted as FSPVM-E
for verifying the reliability and security of Ethereum-based services at the source code level of smart
contracts. A Coq proof assistant is employed for programming the system and for proving its correctness.
The current version of FSPVM-E adopts execution-verification isomorphism, which is an application
extension of Curry-Howard isomorphism, as its fundamental theoretical framework to combine symbolic
execution and higher-order logic theorem proving. The four primary components of FSPVM-E include a
general, extensible, and reusable formal memory framework, an extensible and universal formal intermediate
programming language denoted as Lolisa, which is a large subset of the Solidity programming language
using generalized algebraic datatypes, the corresponding formally verified interpreter of Lolisa, denoted as
FEther, and assistant tools and libraries. The self-correctness of all components is certified in Coq. FSPVM-E
supports the ERC20 token standard, and can automatically and symbolically execute Ethereum-based
smart contracts, scan their standard vulnerabilities, and verify their reliability and security properties with
Hoare-style logic in Coq.

INDEX TERMS Blockchain, theorem proving, distributed systems, security, verification.

I. INTRODUCTION
Blockchain [1] is one of the emerging technologies devel-
oped to address a wide range of disparate problems, such
as those associated with cryptocurrency [2] and distributed
storage [3]. Recently, Blockchain-as-a-Service (BaaS), where
blockchain services are obtained from third-party providers,
has established a strong market presence, and is a promising
means of utilizing the blockchain technology. Organizations
like Oracle, Microsoft, and IBM have launched BaaS offer-
ings. Many BaaS offerings are based on or have been inspired
by the Ethereum platform [4], which is one of the most pow-
erful 2.0 blockchain platforms presently available. For exam-
ple, Amazon partnered with Kaleido to offer cloud services
on which to host an Enterprise Ethereum-based architecture.
That makes Kaleido the first managed BaaS offering that is
available on Amazon web service (AWS) regions across the
world.

While BaaS is certainaly a rapidly emerging service,
the continued rapid development of BaaS is limited by
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security issues like those affecting Software-as-a-Service
(SaaS) products. Presently, one of the security issues of
greatest interest for researchers is the reliability and secu-
rity of blockchain smart contracts. Here, blockchain smart
contracts are script programs that provide a kind of special
digital contract where the code is the law, which enables
blockchain transactions to be conducted automatically [5].
One of the challenges that must be confronted in the devel-
opment of secure and reliable smart contracts is that the
programming process for these programs differs from that
of conventional programs. Here, the source code of smart
contracts must represent legal considerations in a manner
similar to contracts written in natural languages. Therefore,
obligations and terms should be presented in smart contracts
explicitly. However, smart contract developers are gener-
ally programmers, rather than legal experts, and their grasp
of legal obligations and terms is secondary to their grasp
of programming. As a result, the programming habits of
programmers introduce legal loopholes in smart contracts.
These loopholes introduce many classes of subtle bugs in
smart contracts, ranging from transaction-ordering dependen-
cies to mishandled exceptions [6], that differ significantly
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TABLE 1. Partial summary of recent ethereum-based smart contract
attack cases.

from common bugs because, while common bugs are eas-
ily detected owing to faulty program execution, these legal
loopholes can result in unintended operations, and can also
be maliciously exploited to circumvent obligation limitations
without affecting the normal execution of the contract proce-
dure, and ultimately result in direct economic loss to users.
For example, some of the largest and best known attacks
on smart contracts involved those based on the Ethereum
platform, such as the attack on the decentralized autonomous
organization (DAO) [7] and the Parity wallet attack [8].
A partial summary of Ethereum-based smart contract attacks
are listed in Table 1, which indicates that Ethereum attack
cases have already resulted in the loss of billions of dollars
worth of virtual currency. Moreover, due to the unique fea-
ture of these vulnerabilities, standard software engineering
techniques employing such static and dynamic analysis tools
as Manticore (https://github.com/trailofbits/manticore) and
Mythril (https://mythx.io/) have not yet been proven to be
effective at increasing the security and reliability of smart
contracts. Thus, an urgent need exists for a verification and
validation technology that can guarantee the security and
reliability of Ethereum-based services in the most rigorous
manner available.

A brief comparison of existing verification and validation
technologies is presented in the Table 2. We note from this
table that formal verification is the only technology that satis-
fies both reliability and completeness simultaneously. Hence,
formal verification is one of the most rigorous theoretical
technologies available for ensuring the security and reliability
of software systems. Consequently, the Ethereum community
has focused on the formal verification of smart contracts,
issuing open calls for formal verification proposals [9] as part
of what has been described as a ‘‘push for formal verifica-
tion’’ [10].

While formal verification is a rigorous approach, differ-
ent formal verification technologies have their own pecu-
liar strengths and weaknesses. Among these, higher-order

1BEC: https://medium.com/@peckshield/ alert-new-batchoverflow-bug-
in-multiple-erc20-smart-contracts-cve-2018-10299-511067db6536

2SMT: https://medium.com/wolf-crypto/batchoverflow-erc20-vulner-
ability-5691e42940de

3ICX: https://medium.com/@tozex/cryptoasset-industry-problems-
smart-contract-security-challenge-cb6aee69d5ef

TABLE 2. Comparisons of different verification and validation
technologies.

logic theorem proving is one of the most rigorous and
flexible technologies for verifying the properties of pro-
grams. However, numerous problems regarding reusability,
consistency, and automation have been encountered when
applying theorem-proving technology to program verifica-
tion [11]. Moreover, the process of model checking is only
applicable to finite state programs. In addition, a number
of well-known frameworks and tools, focused on Solidity
bytecode on the Ethereum virtual machine (EVM) plat-
form, have been developed recently for the verification
of Ethereum smart contracts by symbolic execution. For
example, the formal semantic known as KEVM was devel-
oped for the formal low-level programming verification of
EVM using the K-framework [12]. Since KEVM is exe-
cutable, it can run the validation test suite provided by the
Ethereum foundation. Similarly, a Lem [13] implementation
of EVM provides an executable semantics of EVM for the
formal verification of smart contracts at the bytecode level.
Grishchenko et al.’s [14] and Amani et al.’s [15] applied
F∗ and Isabell/HOL to abstractly formalize the semantics of
EVMbytecode. Unfortunately, few of theseworks formalized
the syntax and semantics of Solidity source code, and verified
the compilation process from Solidity to respective bytecode.
Oyente (https://www.comp.nus.edu.sg/˜loiluu/ oyente.html)
is an EVM symbolic execution engine written in Python sup-
porting most of the EVM opcodes. Several heuristics-based
drivers of the symbolic execution engine are built into the tool
for finding common bugs in EVM programs. However, these
heuristics may introduce false positives in many cases, and
they have not been rigorously proven to accurately capture
their bug classes. In addition, it must be noted that most of
the many recent tools based on symbolic execution adopt
model checking technology as their foundation, and few are
developed in a higher-order logic theorem proving system
to enable real-world programs to be symbolically executed.
In addition, conventional symbolic execution approaches also
suffer from limitations such as path explosion, where the
number of feasible paths in a program grows exponentially,
program-dependent efficiency, and memory, environment,
and constraint solving problems [16]. Moreover, nearly all of
these methods have high learning thresholds. These problems
obstruct formal verification technologies from being applied
commercially.

One of the most important features of the Ethereum plat-
form is that it implements a general-purpose Turing-complete
programming language denoted as Solidity that allows for
the development of arbitrary applications and scripts that
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can be executed in the EVM to conduct blockchain transac-
tions automatically. However, most prominent studies have
focused on the formal verification of the bytecode of the
EVM, and the development of high-level formal specifica-
tions for Solidity and relevant formal verification tools has
attracted considerably less interest despite its importance
in programming and debugging smart contract software.
Although some intermediate specification languages between
Solidity and EVM bytecode have been developed, such as
Scilla [17], Simplicity [18] and Bhargavan et al.’s [19],
the Solidity syntax and semantics have not been formal-
ized in a manner that is consistent with official documenta-
tion. However, the formal syntax and semantics of program-
ming languages actually play a crucial role in several areas
of computer science, particularly in program verification.
For advanced programmers and compiler developers, formal
semantics provide a more precise alternative to the informal
English descriptions that typically pass as language stan-
dards. In the context of formal methods, such as static analy-
sis, model checking, and program proving, formal semantics
are required to validate the abstract interpretations and pro-
gram logic (e.g., axiomatic semantics) used to analyze and
verify programs. Formal semantics for the involved languages
are also a prerequisite for verifying programming tools, such
as compilers, type checkers, static analyzers, and program
verifiers. In other computer science fields, several studies
have focused on developing mechanized formalizations of
operational semantics for different high-level programming
languages. For example, the Cholera project [20] formalized
the static and dynamic semantics of a large subset of the
C language using the HOL proof assistant. The CompCert
project [21] has conducted influential verification work for
C and GCC, and a formal semantics denoted as Clight was
developed for a subset of C. This formed the basis for
VST [22] and CompCertX [23]. In addition, several inter-
esting formal verification studies have been conducted for
operating systems based on the CompCert project. Tews et al.
[24] developed denotational semantics for a subset of the
C++ language that were presented as shallow embedding
in the PVS prover. Igarashi et al. [25] presented a minimal
core calculus for Java and Generic Java, and verified the
important core properties. A similar study was conducted to
prove Java type soundness [26]. In addition, the operational
semantics of JavaScript have been investigated [27], which is
of particular interest in the present work because Solidity is
similar to JavaScript. However, most of these studies focused
on specific domains and programming languages, and cannot
be readily extended for the verification of blockchain smart
contracts.

This paper addresses the above issues by developing a
formal symbolic process virtual machine (FSPVM) denoted
as FSPVM-E for verifying the reliability and security of
Ethereum-based services at the source code level of smart
contracts. The work of this paper was primarily inspired
by the symbolic process virtual machine KLEE [28], which
is a well-known and successful certification tool based on

symbolic execution. The proposed FSPVM-E is formulated
in Coq because it is one of the most highly regarded and
widely employed proof assistants [29]. The present study
capitalizes on our progress over the past year for developing
a powerful hybrid FSPVM system in Coq to verify smart
contract properties on multiple blockchain platforms [11],
[30]–[33]. The proposed system combines the advantages
of virtual machine platforms, static vulnerability scanning,
higher-order logic theorem proving, and symbolic execution
technology based on an extension of Curry-Howard isomor-
phism (CHI) [34], denoted as execution-verification isomor-
phism (EVI) [11], and avoids their respective disadvantages,
to symbolically execute real-world programs and automati-
cally verify the smart contracts of Ethereum-based services.
The present report systematically illustrates the FSPVM-E
architecture, elaborates on the novel features of each compo-
nent, presents experimental results, and introduces real world
application examples. Specifically, the present work makes
the following contributions.
• Formal memory model: We design and implement a
general, extensible, and reusable formal memory frame-
work denoted as the GERM framework to virtualize the
real-world memory hardware, basic memory operations,
and pointer arithmetic in Coq.

• Formal specification language for Solidity: We for-
malize and mechanize an extensible and universal large
subset of the Solidity programming language in Coq
with generalized algebraic datatypes (GADTs) [35].
This represents a formal intermediate programming
language denoted as Lolisa. The supported subset of
Solidity is comparable to the subsets commonly rec-
ommended for writing common Ethereum-based smart
contracts, and includes the built-in functions of the
EVM. It also solves the consistency problem associ-
ated with existing higher-order logic theorem proving
technologies.

• Execution and proof engine: An optimized formal ver-
ified interpreter is developed in Coq for Lolisa, denoted
as FEther, which connects the GERM framework and
Lolisa, and serves as an execution engine to symboli-
cally execute and verify the smart contracts of Ethereum
written in Lolisa within Coq with high level evaluation
efficiency [33].

• Assistant tools and libraries: We provide assistant tools
and libraries, including a specification generator, a lan-
guage translator, a static analysis library, and an auto-
matic tactic library, which are respectively applied to
generate dynamic specifications, translate Solidity into
Lolisa, store the specifications of standard smart con-
tract vulnerabilities, and provide an automatic evalu-
ation strategy. These tools and libraries significantly
improve the degree of automation and the validation
efficiency of FSPVM-E.

The above core components of FSPVM-E are applied to
virtualize Coq as an extensible and general-purpose toolchain
for Ethereum smart contract verification, which reduces the
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verification workload and learning threshold. In addition,
FSPVM-E has the following novel features.

• Executable and Provable: Defining FSPVM-E based
on the GERM framework allows, theoretically, for for-
mal smart contracts to be symbolically executed, and
their properties simultaneously and automatically ver-
ified using higher-order logic theorem-proving assis-
tants, which, when conducted in conjunction with a
formal interpreter, is comparable to the execution of
real-world programs.

• Extensible and Universal: Although FSPVM-E is
designed specifically for the Ethereum platform, each
component includes many general features applicable
to other blockchain platforms. Thus, the core functions
can be extended to formalize similar programming lan-
guages.

• Trusted andCertified: The self-correctness of FSPVM-E
core components is verified in Coq completely, and the
correctness of assistant tools not programmed in Coq is
also guaranteed.

• Hybrid verification system: In conjunction with Lolisa
and the static analysis library, FSPVM-E supports basic
static analysis to automatically scan standard vulnerabil-
ities hidden in source code. In addition, FEther supports
multiple types of symbolic execution for verification
using FSPVM-E. Finally, FSPVM-E provides a debug-
ging mechanism for general programmers to identify the
vulnerabilities of source code. In this manner, users of
FSPVM-E can flexibly select the most suitable method
for analyzing and verifying their programs.

The remainder of this paper is organized as follows.
Section II briefly presents the essential concepts of FSPVM-
E. Section III describes the overall FSPVM-E architec-
ture. Section IV discusses the methods by which the
self-correctness of FSPVM-E is ensured, and also defines the
non-aftereffect property to guarantee the correctness of assis-
tant tools that are not programmed in Coq. Section V presents
simple case studies to illustrate the advantages and novel
features of FSPVM-E for verifying the security and reliability
of smart contracts. Section VI discusses the extensibility and
universality of FSPVM-E, and provides a preliminary scheme
for systematically extending FSPVM-E to support different
blockchain platforms. Section VII provides a comparison
of FSPVM-E with related work for the formal verification
for Ethereum smart contracts. Finally, Section VIII presents
conclusions and future directions of research.

II. FUNDAMENTAL CONCEPTS
Prior to defining the formal specifications of FSPVM-E,
it is necessary first to define the fundamental environment
FSPVM-E.

Table 3 lists the state functions used to calculate commonly
needed values from the current state of the program. All of
these state functions will be encountered in the following dis-
cussion. Components of specific states will be denoted using

TABLE 3. State functions of FSPVM-E.

the appropriate Greek letter subscripted by the state of inter-
est. As shown in Table 3, the proof context [29], [36] (denoted
as 0, 01, etc.) refers to the proof environment or local proof
theory which contains proved local propositions as additional
information, and decorate assumptions by discharge rules that
are applied when leaving a context, and the 0c is adoped as
the current logic context. In the following contents, we will
use context to represent proof context. The formal memory
space in the context is denoted asM, and σ represents specific
memory states. The context of the execution environment is
represented as E, and the env and fenv are adopted as the
current environment that stores the current execution envi-
ronment information, and the super-environment that which
stores the super environment information before the execu-
tion environment transformation. The symbol F represents the
abstract binary relationship that left logic definition could be
unfolded as the right logic expression to get more information
in the proof context. This meaning of the symbol will be
specified in different specific rules. We assign 3 to denote
a set of memory addresses, and we adopt V to represent the
verified logic terms in the proof assistant.

Furthermore, we assign � as the native value set of the
basic logic system. For brevity in the following discussion,
we will assign F to represent the overall formal system.
The operational semantics of Lolisa is abbreviated as S,
and the evaluation process is denoted as ⇓. In addition,
to avoid ambiguity in the following discussion, we employ
the term Program to represent a generic program writ-
ten in a functional specification language, such as Coq,
the term programrw represents a generic program written in a
general-purpose programming languageL, and programformal
represents the formal version of programrw written using the
formalized version of L, denoted as FL.

III. FSPVM-E ARCHITECTURE AND IMPLEMENTATION
The kernel of the FSPVM-E framework was developed
entirely in Coq, and Coq was employed as the trusted com-
putation base (TCB) [37]. Here, Coq served not only as a
prover for conducting semantic preservation proofs, but also
as a programming language for programming all verified
components of the FSPVM-E framework. The specification
language of Coq includes a small, purely functional lan-
guage denoted as Gallina, which features recursive functions
that operate by pattern matching over inductive types (i.e.,
ML- or Haskell-style tree-shaped data types). With some
ingenuity, Gallina is sufficiently sophisticated for pro-
gramming a process virtual machine. However, the highly
imperative algorithms found in programming language and
interpreter textbooksmust rewrite in a purely functional style.
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FIGURE 1. Architecture of the FSPVM-E verification system.

The overall architecture of FSPVM-E is illustrated in Fig.1,
where a dashed arrow (99K) represents a logical dependency
relation, and a solid arrow (−→) represents data transmission.
Here, FSPVM-E is designed according to Von Neuman archi-
tecture, and it is logically constructed based on two sectors:
a foundational sector and an extensible sector. In the founda-
tional sector, the higher-order logic proof environment of Coq
is virtualized as the FSPVM-E execution environment, which
serves as the logic operating environment, and the trusted core
of Coq (TCOC) is virtualized as a central processing unit, and
takes Gallina as the logic machine-level language.

The extensible sector consists of four components. The
first component is the GERM framework. The second com-
ponent is Lolisa. The third component is FEther. The final
component is the set of assistant tools and libraries, includ-
ing translator and generator that are developed in untrusted
domain using C++. The fundamental component is the for-
mal memory model GERM. It serves as logic memory states
to support operational semantics formalization and record all
intermediate states during symbolic execution and verifica-
tion. Based on this formal memory model, the second com-
ponent, a formal intermediate specification language Lolisa,
is able to be defined. It formalizes the selected abstract syntax
and corresponding semantics of Solidity language into Coq.
Finally, based on the GERM and Lolisa, we can construct the
third component that is a formal interpreter FEther. It is used
to symbolically execute the formal programs model written
in Lolisa.

The general workflow is shown in Fig.2. First of all, FEther
will take the initial memory state and formal programs as
parameters. Next, the FEther will parse the formal programs
according to the syntax of Lolisa. Finally, FEther will invoke
the formal operational semantics and interact with GERM to
generate a new formal memory state.

These components in the current version of FSPVM-E
include about 16,000 lines of Coq source code and 4,000 lines

TABLE 4. Workload statistics for constructing the FSPVM-E framework.

of C++ source code. The specific workload for constructing
the FSPVM-E framework is itemized in the Table 4. In this
manner, FSPVM-E simulates the process of program execu-
tion in the real world, in that a program written in a high-level
programming language is interpreted into machine code and
executed on the hardware of the operating environment in
Coq. The details of these four components are respectively
discussed in Subsections III.A to III.D.

A. GENERAL FORMAL MEMORY MODEL
The GERM framework simulates physical memory hardware
structure, including a low-level formal memory space, and
provides a set of simple, nonintrusive application program-
ming interfaces using Coq that can support different formal
verification specifications simultaneously, particularly at the
code level. In theory, it is well suited as a basis for arbitrary
high-level specifications in different formal models for pro-
gram verification.

The overall GERM framework structure is illustrated
in Fig.3. The first component of the formal memory model is
the formal memory space, which is modeled as a collection
of disjoint blocks, and we adopt persistent data structures
that support efficient updates without modifying data inplace.
Likewise, a monadic programming style enables us to encode
exceptions and states in a legible, compositional manner.
According to the figure, the GERM framework is based on
the TCOC, and can be used as a basis for high-level formal
specifications.

The data structure of the formalmemory space is illustrated
by the example given in Fig.4, where each memory record
field specifies a logic memory block with type value. Users
can define specific memory sizes according to their require-
ments with the help of assistant tools, which are introduced
in Subsection III.D. The details regarding the formal memory
space of the GERM framework are presented as follows.

According to the definition of record datatype given by
Coq’s referencemanual [29], each field block bid in Coq has a
unique corresponding field name id , and the data stored in the
bid block of a specific record value rv can be directly accessed
by its corresponding id . In memory, bid represents the logic
memory block, and the corresponding id is formalized as the
memory absolute addressMaddress. In this manner, the GERM
framework statically guarantees that each memory block has
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FIGURE 2. General workflow of the FSPVM-E.

FIGURE 3. Architecture of the GERM memory model.

a uniqueMaddress at the type level. Additionally, in contrast to
relevant data structures based on a tree or graph structure [38],
which must search all nodes individually to modify a memory
block, the GERM framework can access andmodify the block
directly through its correspondingMaddress.
To improve the flexibility of memory operations,

the GERM framework in its current form also provides a
label memory address level. In detail, this level first provides
a special identifier denoted as a label address Laddress, which
is a metavariable defined as an enumeration type in Coq as
follows.
Laddress: := _0x00000000 | [. . . ] | _0xFFFFFFFF |3special
Special address: 3special : :=

_0xinit | _0xsend | _0xsend_re | _0xcall | _0xmsg |
_0xaddress | _0xblock
Here, 3special is used as the reference for data structures

and functions in the EVM standard library. Accordingly,
programmers can define custom mapping strategies Maptac
to map Laddress to Maddress as follows.

Map (Laddress)

= matchMaptac (Laddress)with

|Error → Error

|OK (Maddress)→ úMaddress

end .

FIGURE 4. Formal memory space, including the formal specification of
memory space in Coq (left), and the real-world physical memory space
structure (right).

Here, if the return value is Error , the mapping is deemed
to have failed, and the mapping is successful if the return
value is OK (Maddress). Similarly, Laddress can be employed
in the GERM framework to accurately model pointer arith-
metic. Briefly, users can define pointer objects in high-level
specifications, apply Map (Laddress) to reference a location
in memory, and obtain the logic expressions stored at that
location. The pointer arithmetic mechanism defined in Lolisa
based on Laddress is briefly introduced in Subsection III.B.
Moreover, the label address level reserves the extension space
for simulating virtual memory and memory isolation mecha-
nisms, such as a memory management unit and a TrustZone.

A benefit of designing FSPVM-E according to von Neu-
mann architecture is that the GERM framework memory
space is able to store the program instructions and data values
simultaneously and thereby accurately simulate a real-world
memory space and guarantee the reliability of the formal
memorymodel. Hence, thememory value type value is induc-
tively defined as rule 1.

value ::= blockv→ size→ env→ fenv→ occupy

→ auth→ value (1)

In conjunction with logic memory value blockv, as shown
in rule 1, the corresponding block size, the current and
super logic execution environment information env and fenv,
respectively, block allocation flag occupy, and modifica-
tion authority auth. Currently, blockv supports 14 datatypes,
including basic arithmetic data values (undef, integer, float,
Boolean, string, byte, structure, array, and mapping), pro-
gram instructions (statement), and pointer objects (variable
pointer, parameter pointer, function pointer, and contract
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pointer). One of the benefits of the type constructor of value
is that the safety of memory specifications can be readily
ensured in the GERM framework. For example, a blockv
corresponding to an uninitialized memory block will be ini-
tialized as Undef (tt) rather than as a random value. Simi-
larly, all information regarding the current memory state is
explicitly stored by the corresponding typing constructors.
In this manner, in 0c, the env and fenv record the execution
environment information, and the block information indexed
by an address can be accessed from current memory state.
As abstracted in rule 2, a memory operation opcheck can
modify a specific block by taking current states, address,
env and fenv as parameters, and generated a new optional
memory state, where F represents the binary relation that for
an arbitrary memory address addr can access a defined logic
memory block from the memory state mstate of 0c, and ↪→ is
represented the evaluation process of opcheck .

ε ` envε ` fenv
0c (mstate.addr) F

(
blockv, infor1, . . . , inforn

)
opcheck (mstate.addr, env, fenv) ↪→ [[mv]]

(2)

As such, conventional memory safety problems, such
as buffer overflows and dangling pointers, can be readily
exposed in the GERM framework by symbolic execution.

Although the current version of the GERM framework is
adjusted to support FSPVM-E, users can extend the value
specifications because the GERM framework can function
independently with other formal models. Here, as the abstrac-
tion of the value definition defined in rule 3 programmers
can add new specifications infori into the value constructor
to represent and store new logic information according to the
specific requirements of different projects and situations.

value : blockv→ infor0→ infor1→ [. . . ]

→ inforn→ value, (3)

Finally, we provide 9 classes of basic operations in the
GERM framework, which includemap, initialize, read,write,
address offset, search, allocate, and free. Any higher-order
specifications can take the GERM framework as their fun-
damental logic state, and apply memory operation APIs
to formalize memory-based or memory-related higher level
specifications in Coq, such as formal semantics and operating
systems.

B. LOLISA
Following the process illustrated in Fig.5, most of the syntax
and respective semantics of Lolisa are formalized strictly
following the official Ethereum documentation of Solid-
ity version 0.4. Due to limitation of length, the details of
Lolisa’s formalization have been presented in our online
report (https://arxiv.org/abs/1803.09885).

The specific syntax and semantics of Lolisa are separated
as four layers, from bottom to top, including types, values,
expressions and statements. All reference data structures can
be formalized in Lolisa because each variable identifier vid is

FIGURE 5. Relationships between Solidity and Lolisa.

allocated a memory address based on the GERM framework,
and can be abstracted as an λ-application form according to
the rule 4 where x is a λ-bounded parameter and a is a label
address.

vid := (λ (x : Laddress) .x) (a : Laddress) (4)

As such, the syntax of Lolisa not only includes nearly all
the characteristic components of Solidity, such as array,
mapping, message, send, transfer, address, modifier, con-
tract, and gas types, but it also contains general-purpose pro-
gramming language features, such as multiple return values,
pointer arithmetic, struct, field access,module, and the full
power of functions, including recursive functions and func-
tion pointers. These abstract syntax components are defined
as an inductive type statement, and connected by a list type.
However, there are still some challenges in current version
of Lolisa. The first challenge is inline assembly. The for-
malization of inline assembly needs accurate formal models
of hardware such as registers that has not been supported
in current FSPVM-E. Besides, according to our experimen-
tal results, the precision of formal floating-point datatype
will be lost during unit conversion. Therefore, inline assem-
bly and the explicit ether unit of Solidity are omitted in
Lolisa which are the limitations of current version Lolisa.
Currently, if a code segment includes inline assembly and
explicit ether unit, the code needs to be rebuilt manually.
We have planned to overcome these two challenges in our
future work. In addition, to guarantee structural verification,
the goto statement, and non-structured forms of switching
such as Duff’s device [39] are not supported in Lolisa. In this
manner, the Solidity can be translated into Lolisa consistently.
As explained above, due to limitation of length, the details
about formalizations and properties have been presented in
our online report [11].

In particular, different from other FSLs of Solid-
ity, such as K framework based Solidity semantics
(https://github.com/kframework/solidity-semantics) the for-
mal syntax of Lolisa [11] is defined using generalized alge-
braic datatypes (GADTs). As indicated by the rule 5, a syntax
token T is specified by static type annotations τi for all values
and expressions of Lolisa.

T :: τ0→ [. . .]→ τn→ Type, (5)
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FIGURE 6. Simple example of an error message generated by the type-checking mechanism of Coq in response to the ill-typed If statement
∀ss

′
: statement,

(
If

(
Econst

(
Vundef

(
tt

)))
ss

′
)

in Lolisa.

This ensures that the formal syntax of values and expressions
is more clear and abstract, and facilitates the strict main-
tenance of type safety for Lolisa expressions. In addition,
employing a combination of type annotations facilitates the
definition of a very large number of different expressions
based on equivalent constructors. The application scope of
different statements is limited by different combinations of
τin and τout . For example, in the specification of If statement
defined in rule 6, the input type τin of the condition expression
has no limitation, but the return type τout of the condition
expression must be Boolean type Tbool. Different from If
statement, in the specification of Assign statement defined in
rule 7, the input type τ and τ0 of the left and right expressions
have no limitation, but the τout of the left and right expres-
sions must be equivalent τ1.

If : ∀ (τ : type) , exprτTbool → statement → statement

→ statement, (6)

Assign : ∀ (ττ0τ1 : type) , exprττ1 → exprτ0τ1
→ statement, (7)

However, the application of GADTs provides Lolisa with a
stronger static type system than Solidity because the type
system of Lolisa strictly defines the syntax rules and rele-
vant limitations in the formal specifications as typing judg-
ments. For example, in the If statement defined in rule 6,
its condition expression is limited by type exprτTbool , which
specifies that the normal form of a specific condition must
be a Boolean type. As such, an ill-typed If statement, such
as ∀ss′ : statement,

(
If (Econst (Vundef (tt))) ss′

)
, would be

disclosed by the type-checking mechanism of Coq, which
would then present the error message shown in Fig.6.
An additional benefit to the use of GADTs in Lolisa is that the
resulting strong static type-checking system assists in discov-
ering errors imported when translating Solidity into Lolisa.
This is particularly beneficial because, although syntax errors
would be discovered during compilation in the EVM, imple-
menting a compiler mechanism in Coq to check for syntac-
tical correctness when translating Solidity into Lolisa would
be an extremely challenging task. Moreover, such errors can
seriously affect the evaluation of programs in higher-order
theorem-proving assistants.

In addition, because Solidity can be translated into Lolisa
line-by-line, the strong static type-checking system also
assists in discovering ill-typed terms in Solidity source code.

FIGURE 7. Diagram for the correctness certification of Lolisa semantics.

To our knowledge, Lolisa is the first formal specification
language of Solidity using GADTs.

The semantics of Lolisa are formally defined as big-step
operational semantics with two forms: inductive relational
forms and executable function forms. The operational seman-
tics of Lolisa defined as the relational form are unified with
symbol Srel , and the executable operational semantics are
represented as symbol Sexe. Srel is applied to verify properties
of Solidity, and Sexe is developed as the kernel of symbolic
execution engine that can be invoked by FEther. Because
Lolisa is employed as a formal intermediate language for
Solidity, which should be able to be parsed, executed, and
verified in Coq or a similar proof assistant, the semantics of
Lolisa are deterministic, and are also based on the GERM
framework. The equivalence between the inductive relational
forms Srel and the executable function forms Sexe of the
operational semantics of Lolisa is certified by the following
simulation diagram theorem, where the n represents the step
limitation which will be explained in the next section.
Theorem: (simulation diagram): Let ε,M ,F `ins

σ, opars, env, fenv, binfor be the initial evaluation environ-
ment, and let Req represent an equivalence relationship
between any two terms. Then, any relational semantic Srel and
executable semantic Sexe must satisfy the simulation diagram
(Fig.7).

In addition, the development of FEther in Coq and its ver-
ification process will be simplified if a programformal written
in Lolisa is maintained as a structural program. To ensure this
condition, the semantics of Lolisa are made to adhere to the
following program counter axiom.
Axiom (ProgramCounter): Suppose that, for all statements

s, if s is the next execution statement, it must be the head of
the statement sequence in the next execution iteration.

It must also be noted that the formal syntax of Lolisa
contains numerous typing limitations, and is overly complex
to accommodate its adoption by general users, as illustrated

21418 VOLUME 8, 2020



Z. Yang et al.: Hybrid Formal Verification System in Coq

FIGURE 8. Example of macro definitions of the Lolisa formal abstract syntax tree.

by the example If statement given in Fig.8a and 8b. Therefore,
Lolisa is made more intuitive by encapsulating the abstract
syntax tree of Lolisa into symbol abbreviations based on the
macro-mechanism of Coq, which is denoted as the notation
mechanism. A notation is a symbolic abbreviation denoting
some term or term pattern, which can be parsed by Coq
automatically. For example, the notation shown in Fig.8c can
be employed to encapsulate the If statement given in Fig.8b,
with the result shown in Fig.8d. The use of the notationmech-
anism in Lolisa is illustrated by the components enclosed
within the dashed-line box in Fig.5. As a result, the fixed
formal syntax components of Lolisa used in verification are
transparent to users, and thereby provide users with a simpler
syntax. Moreover, this mechanism makes the consistency
between real-world languages and Lolisa far more intuitive
and user friendly. An additional benefit of this mechanism is
that it provides for improved automation of the formalization
process. Here, as was conducted when converting Fig.8b to
Fig.8d, the syntactic sugar is the interface to connect the
translator. The translator is constructed by three modules:
lexical analysis module, syntax analysis module and program
specification generation module. The lexical analysis module
consists of two components: pattern matching sub-module
and behavior matching sub-module. The kernel of this mod-
ule is Flex lexical analysis generator that uses regular expres-
sion mechanism to form morphemes of characters in source
programs. The syntax analysis module is used to generate the
abstract syntax tree based on left-child right-sibling binary
tree algorithm. Finally, the program specification generation
module converts the abstract syntax tree from C++ into the
corresponding syntax sugar notations of Lolisa. In addition,
these macro-definitions are helpful for promoting extensibil-
ity to other programming languages, the details of which are
discussed in Section VI.

Finally, we have developed a small standard library in Coq
that incorporates the built-in data structures and functions
of the EVM to facilitate the execution and verification of
Solidity programs rewritten in Lolisa using higher-order logic
theorem-proving assistants directly. Currently, this standard
library is a small subset that includes the syntax components
msg, address, block, send, call, and requires. Lolisa is the
first mechanized and validated formal syntax and semantics
developed for Solidity. The consistency relationship between
Solidity and Lolisa is defined according to the following
rule 8, where s is the statement of Solidity and T reprents
the translation process from Solidity into Lolisa.

∀s, s ∈ Solidity ∧ T (s) ∈ Lolisa ` s ≡ T (s) (8)

C. FETHER
FEther is an extensible definitional interpreter that is com-
pletely developed in Coq based on the GERM framework and
Lolisa. The overall FEther structure is illustrated in Fig.9.
FEther is entirely constructed in the TCOC, and logically
comprises three main components from left to right: a parser,
an instruction set architecture (ISA) based on Lolisa seman-
tics, and a validation checking mechanism.

The parser is employed to analyze the syntax of a
programformal written in Lolisa, extract the tokens from
programformal , and invoke corresponding semantics. As men-
tioned above, Lolisa types are used as the type signatures
in Lolisa value and expression layers, and are depen-
dent on corresponding Lolisa values. Therefore, the parsing
and execution processes of types and values are combined
together.

Because FEther is a very large function written in the Gal-
lina specification language, FEther differs from the kernel of
other real-world virtual machines of high-level programming
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FIGURE 9. Architecture of FEther.

languages, such as Smalltalk, Java, and Net, which support
bytecode as their ISA, and are implemented by translating the
bytecode for commonly used code paths into native machine
code. In our work, FEther takes the executable semantics of
Lolisa as the ISA, which is employed to specify the semantics
of the syntax tokens to represent their execution behaviors
accurately. Currently, FEther fully supports all semantics of
Lolisa.

The validation checking mechanism includes both check-
ing the validation of the results (including memory states
and memory values) and checking the execution condition.
Because all functions are vulnerable to undefined conditions
due to various causes, we develop functions with the help of
a monad [40]. Here, all functions are tagged by an option
type. If a function generates a valid result, the result will be
returned in the form of Some t . Otherwise, it will be returned
as an undefined value None. In addition, the symbol [[t]]
represents a term t tagged by the option type.
To avoid the execution of infinite loops in programs,

FSPVM-E also adopts aK -step limitationmechanism, where,
similar to Bounded Model Checking (BMC) [41], we limit
FEther to executing a programformalK times at most. This gas
mechanism design well suits the BMC approach. Therefore,
our implementation uses gas to limit the execution of Lolisa
programs in FEther. To be specific, The semantics governing
the execution of a Lolisa program programformal (abbreviated

as P (stt)) are defined by the rule 9 and 10, where∞ refers to
infinite execution and T represents the set of termination con-
ditions for finite execution. These rules represent two condi-
tions of P (stt) execution. Under the first condition governed
by the rule 9, P (stt) terminates once a finite number of steps
owing to some reasons, such as exception or natural termi-
nation. And the FEther

([[
m′state

]]
, env′, fenv, args,P (stt)

)
represents the specific enter point of the whole FEther inter-
preter. Under the second condition governed by the rule
10, P (stt) cannot terminate via its internal logic and would
undergo an infinite number of steps. Therefore, P (stt) is
deliberately stopped via the gas limitation checking mech-
anism that the execution will be terminated after the gas
balance is reduced to zero. Here, opars represents a list of
optional arguments. In addition, the initial environment env
and super-environment fenv are equivalent, except for their
gas values, which are initialized by the helper function initenv,
and the initial gas value of env is set by setgas. Finally,
the initial memory state is set by initmem, considering P (stt)
and the standard library lib as arguments.
In addition, according to the construction of Lolisa men-

tioned previously, FEther is also separated as four levels, and
it benefits from Lolisa by achieving low coupling between the
executable semantics at same layers and at different layers.
Specifically, the executable semantics at same levels are inde-
pendent of each other, and are encapsulated as modules with a

ε ` env, fenv M ` σ, binfor F ` opars ε,M ,F ` P (stt) ε,M ,F ` lib
env = setgas (initenv (P (stt))) fenv = initenv (P (stt))
σ = initmem (P (stt) , lib)

ε,M ,F ` FEther
([[
m′state

]]
, env′, fenv, args,P (stt)

) execute,T
H⇒ 〈σ ′, envfenv〉

(9)

ε ` env, fenv M ` σ, binfor F ` opars ε,M ,F ` P (stt) ε,M ,F ` lib
env = setgas (initenv (P (stt))) fenv = initenv (P (stt))
σ = initmem (P (stt) , lib)

ε,M ,F ` FEther
([[
m′state

]]
, env′, fenv, args,P (stt)

) execute,∞
H⇒ 〈σ ′, env′fenv〉 ∨ env′. (gas)→ (¬fenv. (gasLimit))

execute,T
H⇒ 〈σ ′, env′fenv〉

(10)
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set of interfaces. At different layers, higher-layers’ semantics
can only access lower-layers’ semantics via interfaces, and
the implementation details of lower-layer semantics are trans-
parent to higher-layer semantics, which is represented by the
dashed-line box in Fig.5. The implementation of higher-layer
semantics is also not dependent on the details of lower-layer
semantics. In this manner, FEther can be extended, as is
discussed in Section VI.

D. ASSISTANT TOOLS AND LIBRARIES
The assistant tools and automation-assisting libraries of
FSPVM-E are used to reduce the manual workload and
increase the degree of automation when users deploy
FSPVM-E, formalize target smart contracts, and verify prop-
erties.

1) ASSISTANT TOOLS
As discussed previously, FSPVM-E includes customizable
components for implementing the specific requirements of
users, such as memory space and label addresses, that must
be defined dynamically. Taking the memory space given in
Fig.4 as an example, the size of the specific formal memory
space depends on the size that users require. The enumeration
of memory blocks is conducted manually as rule 11.

memory ≡ Record
〈
m∗addr , m

∗

value
〉

(11)

Clearly, defining a specific memory space by enumerating
blocks manually would be very tedious work. Fortunately,
all dynamic specifications like rule 11 above have fixed
abstract models. Therefore, these dynamic specifications can
be generated recursively by a generator written in a high-level
programming language such as Java or C++. In addition,
smart contracts written in Solidity can be translated into
Lolisa, and vice versa, with a line-by-line correspondence,
which are operations that can negatively impact consistency.
Similar to the process of converting Fig.8a–d, we develop a
translator as a compiler front end to automatically convert
Solidity programs into the macro definitions of the Lolisa
abstract syntax tree. The abstraction process is given formally
by the rule 12.

0 ` Tools (r) ↪→ specifications
yields
−→ .v files (12)

Here, in the rule 12, assistant tools function Tools employs
a specific user requirement r with type R as a parameter
within the proof context 0. Assistant tools then generate the
respective formal specifications and export them as .v files
that can be loaded in Coq directly. In thismanner, themechan-
ical processes of FSPVM-E initialization and translation
from Solidity into Lolisa can be completed automatically.
However, as introduced above, the assistant tools of current
framework are developed in C++ without certification. This
limitation will be resovled in our next version by developing
them in Coq directly.

2) ASSISTANT LIBRARIES
In standard manual modeling technology, different formal
models with significantly different structures and verification

processes can be constructed in various programs. Hence,
designing a set of tactics that automatically verifies models in
different programs is nearly impossible. However, symbolic
execution in FSPVM-E corresponds to both function evalua-
tion and program verification, as indicated by the rule 13.

�,M ,F `ins Pexe ≡ Peval ≡ Pverify (13)

Specifically, the verification process Pverify of different
programs is equivalent with the respective symbolic execu-
tion process Pexe in FSPVM-E. In other words, the symbolic
execution process unifies the verification processes of dif-
ferent programs in higher-order theorem-proving assistants
by simplifying the program evaluation process of FEther
with different programsformal in FSPVM-E. Because FEther
takes the executable semantics of Lolisa as the ISA,
FEther execution constitutes a fixed and finite semantics set{
Sexe0 , Sexe1 , . . . , Sexen

}
. Accordingly, we can design a corre-

sponding automatic tactic set ti for each executable semantic
Sexei , as rule 14.

∀i, Sexei ↔ ti G Ti
{
st i0, st

i
1, . . . , st

i
n

}
(14)

This can be expanded to accommodate all possible seman-
tic conditions. We exploit this advantage for designing prim-
itive automatic tactics to automatically execute and verify
the properties of smart contracts using the Ltac mechanism
provided by Coq. As shown in Fig.10, the Ltac-based tactic
modeling is constructed from three components: memory
operating tactics(MTS), execution tactics(ETS), and verifi-
cation tactics(VTS). As the component names suggest, MTS
is applied to evaluate the requests of GERM APIs, ETS
is used to simplify the executable semantics of Lolisa, and
VTS can simplify the pre conditions and post conditions
and complete the mathematical reasoning during property
verification. The workflow of the tactic modeling is also
defined in Fig.10. For Coq operating in the proof pattern,
the observe (OB) function scans the current context C to
obtain the current goal. Each component in sequence attempts
to capture the operational characteristic of the current goal
and select the matching tactics. The selected tactics are com-
bined into a solution tactic Ltaci that solves the goal in the
TCOC. The new contextC ′ is compared withC in contextdec.
If C ′ and C are identical, the current tactics cannot solve the
goal automatically, and the tactic modeling process is termi-
nated. Otherwise, the tactic modeling continuously attempts
to simplify the goal of C ′.

An example of the Ltac-based tactic modeling is given as
rule 15.

Ltac unfoldmodify
:= match goal with

|
[∣∣− context[?Y (?X : memory)(?Z : value)]]
⇒ unfold Y in ∗; cbn in ∗

end . (15)

Here, the unfold_modify tactic is a sub-tactic of a memory
operation that captures parts of the operational characteristics
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FIGURE 10. Automatic tactic modeling process based on the Ltac
mechanism provided by Coq. The process is constructed from three
components: memory operating tactics (MTS), execution tactics (ETS), and
verification tactics (VTS), where each component in sequence attempts to
capture the operational characteristic of the current goal and select the
matching tactics that are combined into a solution tactic Ltaci.

of a specific writedir function, and evaluates writedir using
basic built-in tactics.

Another assistant library is the static analysis library that is
used to collect the formal specifications of standard vulner-
abilities relevant to coding conventions. This static analysis
module is an independent auxiliary module besides the core
hybrid verification module. This module is used to check the
basic and common vulnerabilities, such as such as integer
overflow, unchecked send bug4 and divide zero, to reduce
workload of hybrid verification and improve efficiency of
FSPVM-E. These formal specifications are used to construct
a static analysis mechanism to quickly scan for bugs in the
source code. The details of this library are discussed in Sub-
section V.A.

IV. SELF-CORRECTNESS CERTIFICATION
An essential issue that must be addressed before we can
verify smart contracts in FSPVM-E is the self-correctness
of FSPVM-E. Because FSPVM-E is employed as the TCB
solver for the evaluation and derivation of the formal spec-
ification models and properties of smart contracts, the
credibility of the analysis results is strongly associated
with the correctness of the TCB. Similarly, ensuring the
self-correctness of the verification TCB for all static analysis
tools is an unavoidable issue. However, the work of Gödel
has established that a logic cannot prove its own consistency.
As such, the fact that verifiers cannot verify themselves
presents a paradox. Actually, most theorem proving assistants
based on satisfiability modulo theories (SMT) [42] and other
types of static analysis tools based on symbolic execution
technologies assume that their computation cores are correct,
although correctness has not been certified. Therefore, these
tools are classified as untrusted in many studies. In con-
trast, one of the most important features of FSPVM-E is
that its self-correctness can be ensured with a very high
degree. This is explained in the following subsections. Here,
we first demonstrate that the components of FSPVM-E in
the trusted domain of Coq can be verified directly. Secondly,
we demonstrate that the components in the untrusted domain

4unchecked send bug: http://hackingdistributed.com/2016/06/16/
scanning-live-ethereum-contracts-for-bugs/

have no effect on the self-correctness of FSPVM-E from the
perspectives of the minimum trusted computational base and
the non-aftereffect property.

A. MINIMUM TRUSTED COMPUTATIONAL BASE
The development of methods to avoid the above-discussed
paradox has been conducted since the 1940s, and these
approaches have been summarized for proof assistants [37].
Briefly, the manual review of a very small kernel by experts
and the de Bruijn criterion [43] are two key approaches for
ensuring the trustworthiness of a proof assistant. However,
the TCB ofmost static analysis tools is an untrusted black box
with a very large kernel that cannot be certified mathemati-
cally. Nor does it satisfy the de Bruijn criterion. This has been
addressed by the Coq team by making the TCOC very small,
which has enabled the correctness of the core code to be ver-
ified by the manual review of experts. Moreover, the TCOC
also completely satisfies the de Bruijn criterion. In addition,
Harrison [44] has proven the consistency of the HOL Light
logical core (or, strictly speaking, a subset of the logical core)
using HOL Light itself based on the self-verification concept
denoted as reflection, which is also supported in the TCOC.
This proof is also completed supported by Coq. Therefore,
the TCOC, including the fundamental theory and specific
implementation, is currently widely recognized as one of the
most reliable trusted cores available.

Besides, another benefit is that the self-correctness of
functions and programs developed in Coq using native logic
language Gallina, denoted as F (Program ), can be certified
in Coq directly.

Taking a very simple example, when we develop an addi-
tion add in Coq using Gallina language shown as below,
we can directly define critical properties in Coq by apply-
ing add function, such as associative property of addition
plus_assoc shown below, to certify the self-correctness of this
function directly.
add = fix add (n m : nat) {struct n} : nat : =
match n with
| 0 => m
| S p => S (add p m)
end.
Theorem plus_assoc :∀n m p : nat, add n (add m p) = add
(add n m) p.
Accordingly, FSPVM-E has a natural advantage compared

with other program verification or analysis tools in that its
three essential components are wholly developed in Coq,
and it employs the TCOC as the TCB. In addition, the core
components of FSPVM-E, including the GERM framework,
Lolisa, and FEther, are all implemented using the Gal-
lina specification language. Therefore, these are respectively
denoted as F (GERM), F (Lolisa), and F (FEther). As such,
the correctness of these three components can be directly
certified in Coq. Thus, compared with other static analysis
tools that must assume the correctness of the TCB, the smart
contract verifications that take the proposed FSPVM-E as
the TCB must only trust the TCOC. The corresponding
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FIGURE 11. Non-aftereffect relation between the dynamically generated
specifications of assistant tools with the direct certification of their
self-correctness in Coq.

verification details are given elsewhere [11], [31], [32].
At present, the core functions of FSPVM-E, which includes
74 theorems and 183 lemmas in Coq, have been completely
verified.

B. NON-AFTEREFFECT PROPERTY
Although the kernel of FSPVM-E in Coq is verified, the assis-
tant tools are developed in the untrusted domain using
general-purpose programming languages. Therefore, these
tools are obviously vulnerable to incorrect specifications that
can have an impact on the correctness of FSPVM-E. How-
ever, the correctness of assistant tools is difficult to audit
and certify. Fortunately, the relationship between the assistant
tools and their respective results satisfies the non-aftereffect
property. Here, although the assistant tools are developed in
the untrusted world to automatically generate the dynamic
situation-dependent specifications of FSPVM-E, these gen-
erated specifications are defined using Gallina, and therefore
can be verified in Coq straightly. Hence, as illustrated in
Fig.11, the self-correctness of generated specifications can be
certified in Coq directly. As such, we can conclude that the
component of FSPVM-E affected by generated specifications
is correct if the generated specifications pass their correctness
certifications. As such, the correctness of FSPVM-E is not
influenced by the means through which the assistant tools are
implemented.

V. EXPERIMENT
We demonstrate the workflow and novel features of our
new toolchain in real-world practice by applying FSPVM-E
to formalize and verify a Smart Sponsor Contract (SSC).
An SSC is a simple but classic Ethereum sponsor contract
demo for new users on the IBM Cloud Laboratory website
(https://developer.ibm.com/clouddataservices/2016/05/19/
block-chain-technology-smart-contracts-and-ethereum/). Its
simplicity makes it an ideal example in the present
work. This example offers an additional benefit, in that
we have verified this smart contract in our past work
using a standard theorem proving approach in Coq [45],
and the source code can be downloaded from our Gitee
site (https://gitee.com/zyangFV/SSC-manual-verification).
Therefore, we can clearly illustrate the advantages of
FSPVM-E by comparison with our past work. Only the
necessary code segments are presented in the following
discussion to enhance the readability; however, the complete
code of this example is given in the Appendix, and can also be
downloaded from the cited IBM website. The experimental

environment employed 5 identical personal computers with
equivalent hardware, including 8 GB RAM and a 3.20 GHz
CPU, and equivalent software, including Windows 10 and
CoqIDE 8.6.

A. CASE STUDY: HYBRID VERIFICATION SYSTEM
Workflow. The general workflow of FSPVM-E can be
defined in conjunction with Fig.12 that is explained as fol-
lows. First, users should provide a smart contract. According
to the design requirements of smart contracts, users should
abstract them as pre and post conditions of Hoare style
properties. Next, users deploy this system in a specific cir-
cumstance by applying the generator and translator provided
by the assistant tools. The generated formal specifications
are certified by the self-correctness theorems stored in the
assistant libraries before initializing. These specifications
are adopted in FSPVM-E if they satisfy the self-correctness
theorems; otherwise, the verification process is terminated.
The translator automatically reads the .sol file, translates the
Solidity smart contract into the respective formal form in
Lolisa, defines the program model, and allocates logic mem-
ory blocks for all variables. Next, the static analysis module
will apply the predefined theorems about basic vulnerabili-
ties to scan the formal version source code of target smart
contracts. The analysis results will be printed in the proof
goals directly. After that, the formal specification of smart
contracts will be parameterized into the properties of program
requirements which are defined by users manually. Finally,
the users need to open the proof universe, and the hybrid
verification engine will finish the verification automatically.

A section of the SSC generadted by the translator is
shown in Fig.13, where C represents the code segment, 0[C]
denotes the current global context of C, ci represents a single
instruction, d represents a child definition, d̄ denotes possible
sequences d0, . . . , dn, and D is a set of definitions. It should
be noted that the essence of smart contract segment specifica-
tions in Coq is a logic termwith a specific logic type list state-
ment declared by a definition, and FEther is driven by the exe-
cutable semantics of each abstract syntax. The abstract syntax
of code segment definition is also summarized in Fig.13.
Hence, FEther has no limitations on the size and continuity
of an input programformal , and even a single statement can be
defined in the proof context of FSPVM-E and symbolically
executed by FEther. As an example of the translation process,
a formal model of a partial SSC (please see the Appendix) is
shown in Fig.14. In addition, the formal version of the pledge
function of the SSC is presented in Fig.15. We note that the
formal version of the pledge function is very intuitive, and
the critical requirement is the pledge operation succeeds if
the input value is not 0, and the closed flags complete and
refunded are false. Finally, users need only operate Coq in its
proof pattern, and launch FSPVM-E to automatically analyze
and verify the smart contracts based on the requirements
specified by the user. We provide the following three basic
analysis and verification mechanisms in FSPVM-E: static
analysis, hybrid verification, and a debugging mechanism.
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FIGURE 12. Summary of FSPVM-E workflow.

FIGURE 13. Abstract syntax of a code segment definition in FSPVM-E,
where C represents the code segment, 0[C] denotes the current global
context of C, ci represents a single instruction, d represents a child
definition, d̄ denotes possible sequences d0,. . . , dn, and D is a set of
definitions.

In Static Analysis Mechanism subsection, we will introduce
the process that static analysis module analyzes the pledge
function and finds out the basic vulnerabilities. In Hybrid
Property Verification with Hoare Style subsection, we will
illustrate the details that hybrid verification engine verifies
important properties of SSC smart contract.

1) STATIC ANALYSIS MECHANISM
The static analysis mechanism is an independent module,
which is embedded within FSPVM-E to identify standard
vulnerabilities related to coding conventions and coding
mechanisms in smart contracts, such as integer overflow and
unchecked send bug, rather than the logic of the service
design. Of course, these vulnerabilities can be accurately
identified by defining and verifying corresponding theorems,
but this process generates a heavy and tedious workload.
However, these vulnerabilities have distinct features that
clearly distinguish them from logical vulnerabilities, and are
accordingly identified easily and quickly using conventional
static analysis technology. Therefore, static analysis is a better

FIGURE 14. Partial Smart Sponsor Contract (SSC) model.

choice for supporting this type of security. Moreover, the
line-by-line translation between Lolisa and Solidity ensures
the consistency between smart contracts and corresponding
formal models.

As introduced in Subsection III.D, FSPVM-E includes a
static analysis library that contains standard vulnerability
features and scanning functions. The abstract definition of
scan function is defined in rule 16. Here, a scan function takes
a signed by option type that the all code segments of context
0 will be scanned in the static analysis module.

0[C] ` scan
(
programformal, featurei

)
⇒ [[c]] (16)

If the scan function locates vulnerabilities, it will return
Somecerror . Otherwise, it will returnNone. For example, if we
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FIGURE 15. Formal version of the pledge function of the SSC.

want to check if an unchecked send bug problem exists in
the pledge function, we need only apply the correspond-
ing scan function to validate the source code, as shown
in Fig.16. A scanning result of None indicates that the target
programformal contains no code segment with a potential risk
of the corresponding feature featurei. Otherwise, the code
segment with the potential vulnerability will be located in
the proof context. We have encapsulated rule 16 in the cur-
rent version of FSPVM-E with fixed features to obtain the
following particular scan functions.

scanfeaturei :: list statement → option statement

scanfeaturei := λ (p : list statement) .scan (p, featurei)

In this manner, the generator can automatically replace p
with the target programformal in all feature scanning func-
tions, and automatically analyze programformal according to
all of its vulnerability features. This mechanism provides
FSPVM-E with the following advantages. First, it provides
an optional choice for users to check individual security
vulnerabilities efficiently. Second, higher-order logic can be
employed to formalize specifications that are more com-
plex than standard specifications. Thirdly, the static analysis
library can be extended by adding new specifications and
functions for new vulnerabilities. Finally, as discussed in
Subsection IV.A, this mechanism is completely developed in
Coq, so its correctness can be certified in Coq. Currently,
the demo version of FSPVM-E can scan integer overflow,
stack overflow and unchecked send bug.

Of course, like similar conventional mechanisms, this
mechanism also has the potential for issuing false alarms and
providing insufficient error reporting. Therefore, it is pro-
vided only as an optional and independent assistant mecha-
nism for users to employ prior to property verification. To our
best knowledge, this is the first time that a static analysis
mechanism has been embedded within a Coq proof system
for Ethereum validation.

2) HYBRID PROPERTY VERIFICATION WITH HOARE STYLE
As discussed in Section I, potential legal loopholes in smart
contracts represent subtle bugs that cannot be detected by
standard scanning technologies because these loopholes are
closely related to the logic of the specific source code.

Solving this problem bymeans of automated theorem proving
represents the most important core function of FSPVM-E.
Here, FSPVM-E automatically verifies the requirement prop-
erties defined by users based on higher-order logic using
Hoare style proof derivations according to the rule 17 which
contains three parts.

P {minit}FEther
(
minit, programformal, ∗

)
Q {mfinal} (17)

First, the precondition P is defined by the initial memory
state minit . The minit stores the essential constraints that are
formalized based on smart contracts design requirements.

Second, the FEther
(
minit , programformal, ∗

)
is the entry

point of the symbolic execution engine. FEther should take
minit , the target smart contract programformal , and other inputs
as parameters.

Third, the postcondition Q is defined by the expected final
memory statemfinal , which represents the expected obligation
of programformal .

This method has no strict restrictions on the specification
form of initial and final memory state definitions. The prop-
erty formalization process will be given as a case study in the
next subsection.

Because the Hoare logic derivation is equivalent to the
trusted execution of operational semantics, the execution of
FEther can be seen as a derivation process based on Hoare
logic following the executable semantics of Lolisa.

P {minit } c0
FEther(minit ,c0,∗)––––––––––––−→



FEther(minit ,c0,∗)––––––––––––−→ Q0
0

{
m0
0

}
c1

FEther(minit ,c0,∗)––––––––––––−→ Q1
0

{
m1
0

}
c1

. . .

FEther(minit ,c0,∗)––––––––––––−→ Qi0
{
mi0
}
c1

→→



cnQ0
n

{
m0
n

}
cnQ1

n

{
m1

n

}
. . .

cnQjn
{
mjn
}

?
←→ Q

{
mfinal

}
, i ≥ 0, j ≥ 0

(18)
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FIGURE 16. Simple case study of scanning send check vulnerability.

The inference process is given by the rule 18. Beginning
withminit as the precondition of program verification, FEther
generates all possible proof subgoals, and logically modifies
the current memory state mji−1, (j ∈ N) according to the
semantics of each statement ci to generate all possible new
postconditions Qji

{
mji
}
(i.e., the preconditions of ci). The

theorems need only judge whether the final output memory
state mn obtained after executing the final statement matches
the correct memory state mfinal . Specifically, users need only
apply the automatic tactics to automatically complete the
symbolic execution of programformal , and prove the equiva-
lence between the results of FEther

(
minit , programformal, ∗

)
and Q

{
mfinal

}
. If the equivalence is true, programformal sat-

isfies the respective property theorem.
Because the FEther is a black box for users, general pro-

grammers need only be familiar with the mechanical process
of applying assistant tools and defining the initial and final
memory states with Hoare style logic. Therefore, FSPVM-E
reduces the difficulty with which general programmers can
apply higher-order theorem proving technology to verify their
smart contracts in Coq. In addition, users can alter the sym-
bolic execution process (including static, concolic, and selec-
tive symbolic execution) during the verification process by
defining the preconditions in different ways. This is explained
in the following subsections taking the pledge function of the
SSC as an example.

a: STATIC SYMBOLIC EXECUTION
The basic verification process is based on conventional sym-
bolic execution. When the initial arguments are inductively
defined with quantifiers such as ∀ and ∃, the verification
engine FEther will follow the logic of the source code to
traverse all cases that satisfy the preconditions. Specifically,
according to the requirement given in Workflow subsection,
if one of the sponsor termination flags complete and refund is
set as true or the donation amount is zero, the smart contract
must be discarded. Following this requirement, the property
formalization is given bellow.

First, the Lemma pledge_false defined in Fig.17 initializes
(Bool (Some?X)), (Bool (Some?Y )), and (INT I64 Signed?Z )
by specifying ?X , ?Y , and ?Z as inductive values representing
all possible conditions of initial termination flags and the
donation amount, namely, as ∀ (cp : bool) (Bool (Some cp)),
∀ (rf : bool) (Bool (Some rf )), and ∀ (num : int)

(
INT I64

Signed?Z
)
, respectively.

Specifically, the initial memory states m to m4 that satisfy
the pledge function and other essential preconditions are
defined first.

Second, according to the requirement, the constraint of
donation amont, complete and refund are defined asmoney =
0 ∨ complete = true ∨ refund = true.
Third, the formal specification fun_pledge and precondi-

tions are given into the entry pointer of FEther, denoted as
test. Next, the expected postcondition that the pledge func-
tion is not applied successfully is defined as Someinit_m′

in Fig.17.
Finally, users need only mechanically apply the composi-

tive automatic tactics to initialize the preconditions as the ini-
tial execution environment, symbolically execute fun_pledge,
and verify the equivalence between the execution result and
the postcondition by forward reasoning. This represents the
complete property verification process. Programmers can
execute and complete this property verification using the
automatic tactics of FEther within 0.861 s (right-hand side
of Fig.17).

b: CONCOLIC SYMBOLIC EXECUTION
Because Coq is also a kind of functional programming lan-
guage, it supports the evaluation of specific real inputs.
As shown in Fig.18, the entry points test and code pledge
are unmodified, and complete and refunded are replaced with
specific values true and false, respectively. The other con-
straints are still inductively defined as abstract symbols. The
functional correctness with the specific inputs is then proven
by the lemma pledge_false. Because the inputs are specified,
the number of possible execution paths is limited, and the
execution time is reduced to 0.222 s (right-hand side of
Fig.18). This mechanism leaves extensible space support for
standard testing. Users can extend the generator or implement
a new test mechanism to automatically generate test script to
modify the initial arguments and validate target programs.

c: SELECTIVE SYMBOLIC EXECUTION
This verification process allows programmers to extract seg-
ments of code from target programs, verify the properties of
the selected code segments separately, and apply these veri-
fied properties to simplify the verification process of target
programs. For example, a code segment C can be redefined
as follows.

C
def
= dc = [c0, .., ci]++ . . .++

[
cj, .., ck

]
++ . . .

++ [cm, .., cn]++ . . .++
[
cy, .., cz

]
= [c0, .., ci]++ . . .++di ++ . . .++dj

++ . . .++ [cm, .., cn] F 0′(di
def
=
[
cj, .., ck

]
,

dj
def
= [cm, .., cn])
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FIGURE 17. Static symbolic execution process for verifying the pledge function with abstract symbol arguments.

FIGURE 18. Concolic symbolic execution process for verifying the pledge function.

= [c0, .., ci]++ . . .++di ++ . . .++Dk

F0′
(
di

def
=
[
cj, .., ck

]
,Dk

def
= dj

F0
′′
(
dj

def
= [cm, .., cn]

))
Verify (C) = Verify ([c0, .., ci]++. . .++di ++. . .++Dk)

Therefore, the key point is whether Verify
(
[c0, .., ci] + +

. . .++di++ . . .++Dk
)
is equivalent to Verify ([c0, .., ci])+

+ . . .++Verify (di)++ . . .++Verify (Dk).
First of all, any code segment d that satisfies the syntax

given in Fig.13 will not be unfolded and executed and verified
in FEther according to the rule 19 (19), as shown at the bottom
of the next page.

Obviously, we obtain the result Pd {md } d Qd
{
mdf

}
,

which means that, according to the purposed precondition
Pd {md }, FEther (md , d, ∗) will obtain the expected logic
state Q

{
mdf

}
. In addition, because Coq employs a call-by-

name evaluation strategy [46], the bodies of all definitions,
including functions and values, are stored in their own con-
texts, and are not evaluated until they are needed in the current
proof context 0c. Therefore, any segment d of the logic
expression ε in the current proof context will not be unfolded
during the proof process until all instructions prior to d have
been executed in the proof context, as indicated by the rule
20, where F denotes the binary relationship that each context
has subcontext with enscapluated definitions recursively.

0 FD
(
d0, 0′FD

(
d0′ , 0

′′

FD
(
d
0
′′ , . . .

)))
` εreduction––−→ εnf

0′ FD
(
d0′ , 0

′′
FD

(
d
0
′′ , . . .

))
` εnf ⊕d0

(20)

Moreover, if a proposition Q is a subset of a proposition P,
P can imply Q, which is denoted as ∀Q.Q ⊆ P ` P → Q.
This is formalized as the rule 21.

P {minit } c→→ Qc {mc}⊆Pd {md } dQd
{
mdf

}
specify
––––−→

Qdc
{
mdfc

}
c′→→ . . .

?
←→ Q

{
mfinal

}
(21)

Here, if the final logic memory stateQc {mc} of the instruc-
tion set c prior to d is a subset of the precondition Pd {md },
which has already been verified, Pd {md } can be specified
as Qc {mc} by applying Pd {md } → Qc {mc}, and Qd

{
mdf

}
can also be determined according to the specific Pd {md }.
This process is executed, and can be automatically completed
in Coq using the eapply, eauto, and Hint Resolve tactics.
As introduced previously, FSPVM-E takes the GERM logic
memory state as the pre and post conditions in the Hoare
triple. Therefore, the excepted abstract or specific final mem-
ory state of c can be taken as the initial memory state of d .
Obviously, if c is correct, its final logic memory state is a sub-
set of its expected logic memory state. The same procedure
can be adapted to an arbitrary definition set D. Hence, speci-
fying all preconditions of d andD by the input post conditions
yields Verify ([c0, .., ci]++ . . .++di ++ . . .++Dk) =
Verify ([c0, .., ci]) + + . . . + +Verify (di) + + . . . +
+Verify (Dk).

As shown by the example in Fig.19, the pledge func-
tion can be varied by exploiting the selective symbolic
execution of FEther. Programmers can extract the core
code segment if (msg.value = 0||complete||refnd)throw(); }
from the pledge function and redefine it as a new for-
mal definition d denoted as fun_pledge_if, as shown in the
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FIGURE 19. Selective symbolic execution process for verifying the pledge function.

red box, which can in turn be independently verified by
the pledge_false_select lemma. After combining the veri-
fied fun_pledge_if code segment into the pledge function,
the verification of the pledge_false theorem can be com-
pleted by invoking the pledge_false_select lemma. Clearly,
the pledge_false_select lemma can also assist in any other
proofs that use the fun_pledge_if code segment. Capitalizing
on this feature, FSPVM-E is able to improve its reusabil-
ity and mitigate the effects of path explosion by extract-
ing important or universal code segments, and verifying
them separately. The details of this process are discussed in
Subsection V.D.

d: DEBUGGING MECHANISM
Finally, FEther provides an interactive debugging mecha-
nism for users. Because FEther is developed based on the
GERM memory model, the formal intermediate memory
states record the proof information, such as logic invari-
ants and expressions, of all variables during the execution
and verification process. The proposed mechanism employs
the debugging tactic step_debug to enable the step-by-step
debugging of a smart contract by manually tracing these

intermediate memory states. As shown in Fig.20, the states
of all memory blocks at the current break point are printed
in the proof context. Programmers can extract a target code
segment using selective symbolic execution with debug-
ging tactics, and trace the intermediate memory states to
locate bugs. Fig.21 shows the formal intermediate mem-
ory states obtained during the execution and verification
of the pledge function using FEther in the proof context.
Then, we can compare the mechanized verification results
and the manually obtained results to validate the seman-
tics of Lolisa. In addition, the application of FEther based
on Lolisa and the GERM framework also certifies that
our proposed FSPVM-E is feasible. Here, the logic mem-
ory states during execution can be observed in the proof
context.

B. ADVANCED FSPVM-E FEATURES
The advanced features of the purposed FSPVM-E include
consistency, automation, and evaluation efficiency, which are
summarized individually in the following subsections.
Consistency. The consistency feature of FSPVM-E

includes language formalization consistency and execution
and verification consistency.

P {minit } c0
FEther(minit ,c0,∗)––––––––––−→ Q0{m0}dFEther(m0,d,∗)–––––––––−→ Q1 {m1} ci→→ . . .

?
←→ Q

{
mfinal

}
(19)
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FIGURE 20. Example of the debugging mechanism provided by FSPVM-E.

FIGURE 21. Formal intermediate memory states during the verification process of the pledge function.

FIGURE 22. Manually translated version of the formalized pledge
function [45].

1) LANGUAGE FORMALIZATION CONSISTENCY
This consistency feature refers to the line-by-line translation
between Solidity and Lolisa following the formalized syntax
of Solidity. Many well known higher-order logic theorem
proving frameworks, such as deep specifications [23], require
researchers to manually abstract or rebuild the resource code
of target programs as computational formal specifications in
higher-order logic theorem proof assistants, and the over-
all process depends entirely on the experience, knowledge,
and proficiency of researchers rather than on a standard-
ized and mechanized criterion. As a result, the consistency
between the formal model and the original program cannot
be ensured formally, which represents one of the most trou-
bling problems associated with higher-order theorem proving

technology. As shown in Fig.22, which was extracted from
our previous work [33], the abstract formal specification of
the pledge function in the Gallina specification language is
far different from the corresponding source code given in
Fig.15 and the Appendix, even though it accurately defines
the behavior of the pledge function. This flexibility in the
abstraction and translation processes leads to a general lack
of consistency between the formalization results obtained by
different researchers, and the consistency between formal
specifications and corresponding source programs is also
very difficult to certify. As a result, the formal model runs
the risk of misunderstanding the source program logic and
implementation, and may import vulnerabilities not existing
in the original program, or remove vulnerabilities existing in
the source code as an unintended result of the abstraction and
translation processes.

Although, in current FSPVM-E, the translator is developed
in untrusted domain using C++ that we cannot guarantee the
correctness of it, as indicated by the following rule

programrw ∈ Solidity ∧ T (programrw) ∈ Lolisa `

programrw ≡ programformal (22)
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FIGURE 23. Verification of the pledge function using the built-in tactics of Coq.

FIGURE 24. Comparison of the verification workloads of a conventional
theorem proving approach and FSPVM-E for SSCs.

where the symbol T represents the translation process, in con-
trast with conventional approaches, Lolisa has mechanized
most syntax and corresponding semantics of Solidity into
Coq. In addition, the formal syntax of Lolisa has also been
encapsulated into the syntactic abbreviations using the Nota-
tion macro mechanism, and hides the fixed formal syntactic
components. Benefiting from this, theoretically, the formal
version of smart contracts is very similar to their original
version, so the equivalency of small size smart contracts
could be reviewed by experts or third-party plug-ins. Hence,
as demonstrated by Figs.14 and 15, smart contracts can be
translated from Solidity into Lolisa line-by-line. Therefore,
rule 22 above can be transformed into the following rule:

programformal ≡ programmodel (23)

and programformal can be directly executed and verified in
Coq with the help of FEther. Accordingly, programformal
is actually the corresponding formal specification model
programmodel at the code level. Furthermore, according to
logic transitivity, rules 8, 19, and 23 can be combined to

obtain the following rule.

programrw ∈ Solidity ∧ T (programrw) ∈ Lolisa `

programrw ≡ programformal ≡ programmodel (24)

Therefore, the target smart contract programrw is consis-
tent with its formal model programmodel in the proposed
FSPVM-E.
Because a simple translator can translate Solidity into

Lolisa line-by-line automatically, and researchers can check
the consistency between programformal and programmodel ,
this process ensures the objectivity of the formal model, and
depends in no way on the experience, knowledge, and profi-
ciency of researchers. Thus, this process guarantees consis-
tency between the source program and the respective formal
model. Although the equivalence between Solidity and Lolisa
cannot be totally guaranteed in current version FSPVM-E
due to the limitation of the translator, this is a best effort
to preserve the equivalence between two languages. Besides,
we also have planned to develop a trusted translator in Coq
directly.

2) EXECUTION AND VERIFICATION CONSISTENCY
The execution consistency refers to the accuracy with which
the symbolic execution of smart contracts in FSPVM-E sim-
ulates the actual behaviors of smart contracts when they
are executed in the real world. As elaborated by the design
and the case studies given above, this feature is successfully
facilitated in FSPVM-E by several ways. First, the GERM
framework virtualizes the architecture and operations of real
world memory hardware, and the semantics of Solidity has
been mechanized into Coq as the core of FEther. Moreover,
Ethereum smart contracts written in Lolisa can be directly
executed in FSPVM-E. Hence, the execution and verifica-
tion level of FEther functions directly on what is essentially
Solidity code rather than byte code, which avoids the risk of
errors during compilation. Therefore, the symbolic execution
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of target smart contracts in FSPVM-E accurately reflects their
behaviors in the formal systems of Coq.

a: AUTOMATION
As demonstrated by the case studies, another very impor-
tant feature of FSPVM-E is its high level automation of
higher-order theorem proving. The ratio of source code size
to proof code size in many conventional higher-order theorem
proving approaches (e.g., [23], [47]) varies linearly in the
range of about 20 : 1 to 40 : 1, and the workload can be
summarized by the rule 25, including the size of manual
formalization and verification.

workloadmanual = size (formalization)+ size (verification)

+ size (property) (25)

Similar to these conventional approaches, properties must
be manually defined in FSPVM-E. However, the size of the
source code and the size of the proof code no longer have any
direct relationship in FSPVM-E owing to the high level of
automation of the formalization and verification processes.

The individual components of the workload for
FSPVM-E (i.e., workloadFSPVM−E ) can be analyzed as fol-
lows. First, as introduced in the above discussion regarding
language formalization consistency, the formalization pro-
cess is entirely unified as a line-by-line translation from
Solidity to Lolisa, and we have already implemented a
translator to make the translation process fully automatic.
Therefore, size (formalization) is zero. Second, the ability of
most mainstream interactive proof assistants, such as Coq and
Isabelle, to reduce the workload associated with verification
is limited, despite the fact that they provide tacticmechanisms
to help users design proving tactics to simplify the program
evaluation process and construct proofs automatically. This is
because the above discussed differences among the different
formal models derived from manual design make it difficult
to design tactics that can verify formal models in a fully
automatic fashion. However, in contrast to conventional veri-
fication approaches and frameworks, FSPVM-E standardizes
the verification process as the execution of smart contracts in
FSPVM-E according to rule 13. In addition, as discussed in
Subsection III.D, the finite number of executable semantics
and operations in FSPVM-E facilitates the development of
design strategy sets to automatically accommodate all pos-
sible semantic conditions, and these strategies are encap-
sulated as three basic tactics. The substantial reduction in
size (verification) facilitated by FSPVM-E is well illustrated
by comparing the verification of the pledge_false theorem
shown in Fig.17, which requires only a single line of code,
with that obtained by directly verifying pledge_false using
the conventional tactics of Coq, as shown in Fig.23, which
requires 20 lines of complex tactics. dThese three basic
tactics can be applied manually or invoked automatically
with the help of script programs. According to these fea-
tures of FSPVM-E, size (verification) can be reduced to zero
theoretically.

Finally, the above discussion indicates that
workloadFSPVM−E is related only to the size of the verifi-
cation properties, i.e., workloadFSPVM−E = size (property),
which depends on the complexity of the requirements of
target programs rather than on the size of their source code.

Fig.24 shows that, compared with our previous work for
SSC verification [45], the workload of FSPVM-E has been
significantly reduced. Here, theworkload of the formalization
and verification processes in our previous work are 1283 lines
of Coq, which represents a source code size to proof code
size ratio of about 27 : 1. However, the manual workload in
FSPVM-E is only 210 lines of Coq, which represents a source
code size to proof code size ratio of about 4 : 1.

b: HIGH EVALUATION EFFICIENCY
Although high level automated verification is very important,
the computing efficiency of the formal verification engine is
also an essential evaluation criterion. Our previous version
of FEther obtained good computing efficiency during verifi-
cation relative to most verification tools for which the com-
puting efficiency is generally quite low. However, we found
that call-by-name termination (CBNT), information redun-
dancy explosion (IRE), and concurrent reduction(CR) prob-
lems could greatly reduce the computational efficiency of
FEther when verifying large programs. Therefore, we have
applied the optimization algorithms in [33] that are dedicated
to solving these problems to optimize FEther. Briefly, if the
CBNT, IRE, and CR problems are triggered simultaneously,
the evaluation strategy of higher-order logic proof assistants
will cause FEther to employ the entire Programformal rather
than a single statement as an evaluation unit, which generates
a very large amount of redundant logic information. This
condition is summarized by the formulae 26 where cnosub
represents the average number of constructors without sub-
branches, csub represents the average number of constructors
with sub-branches, csubj and cnosubj represent the number of
sub-branches of csubi (i, j ∈ N, 0 ≤ i ≤ j), r0 to ri represent
the number of values constructed by different datatypes, and
size0 to sizei represent the number of constructors for each
respective datatype. In addition, inforsize also contains basic
expressions and definitions that can be evaluated directly, and
the average number of these basic expressions and definitions
are defined as esi and dsi, respectively.

inforsize ≡

∑n

i=0

esi + dsi + cnosubi + [ r0 . . . ri
]

∗

 size0. . .

sizei

 ∗ csubi−1 !
+size (programformal)

(26)

The previous version of FEther was developed strictly
following standard interpreter tutorials that explicitly declare
sequence statement semantics. As such, the basic functional-
ity of this version can be illustrated by the following simple
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FIGURE 25. Execution time of the original non-optimized version of FEther for the simple conditional statement pledge obligation given in (35).

FIGURE 26. Execution time of the optimized version of FEther for the simple conditional statement pledge obligation given in (35).

FIGURE 27. Comparison of the average evaluation times of optimized (Op) and non-optimized (NOp)
FEther under specific initial states (Spec) and abstract initial states (Abs) for previously published
example smart contracts [4] as a function of the number of program lines.

conditional statement of obligationthrow rule 27.

obligationthrow
def
= ∀

(
s, s′ : statement

)
,

if (true) {throw(); } else {s; } s′ (27)

This simple code segment will execute throw() to throw
out an executing program and return the initial memory state
minit when the condition (value == 0 ∨ completed ∨ refnd)
is evaluated as true. However, the evaluation process of
obligationthrow generates 10,736 lines of logic expressions,
and, as shown in Fig.25, executing (i.e., verifying) this very
simple code segment using the non-optimized development
of FEther requires an execution time of 92.546 s, which is
unacceptably long.

In response to this issue, we optimized FEther [32] by
applying three proposed optimization schemes, including
redefining semantics, deeply embedding, andmultiple pumps.
This optimized version of FEther is that employed for the pro-
posed FSPVM-E discussed in the present report. The current
version of FEther takes a single statement as an evaluation
unit, as indicated by the rule 28. Here, we assign es0 as the
number of basic optimal expressions in the context 0, and
assign ds0 and dsg as the number of all bound names of
definitions and general definitions in the context 0, which
are the entry points of the respective definition bodies.

inforsize ≡ es0 + ds0 + dsg + size (statement) (28)
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FIGURE 28. Architecture for extending the core components of FSPVM-E
to support other general-purpose programming languages of multiple
blockchain platforms.

In this manner, the logic information size of an evalua-
tion unit is maintained within a stable range without being
affected by the size of the program.A comparison of the result
given in Fig.25 for the verification of obligationthrow using
the non-optimized version of FEther with the result given
in Fig.26 using the current version of FEther indicates that
the symbolic execution time was decreased from 92.546 s
to 0.035 s. As such, the optimized version requires just
3/10000 of the time required by the non-optimized version.
In fact, the entire example verifications presented in Subsec-
tion V.A required less than 1 s. In addition, we also compared
the results obtained with the optimized and non-optimized
versions of FEther under equivalent experimental environ-
ments with an equivalent data set extracted from a previous
study. Under the experimental environment given above, each
computer executed the same data set 150 times to obtain
the average number of executions required by the FEther
evaluation process. In addition, we set an execution time limit
of 3600 s to obtain sufficient experimental data. The exper-
imental environments included a specific initial state and an
abstract initial state, whose initial arguments of the programs
are defined inductively using quantifiers (such as ∀ and ∃)
to logically express all possibilities. As shown in Fig.27,
the average execution times of the non-optimized version of
FEther with both the specific initial state (SpecNOp) and
the abstract initial state (AbsNOp) increase rapidly with an
increasing number of program lines, and exceed the time
limitation of 3600 s after executing about 30 and 20 pro-
gram lines, respectively. Moreover, the ranges of fluctuations
in the execution times are large, as indicated by the error
bars. In contrast, the optimized version of FEther with both
the specific initial state (SpecOp) and the abstract initial
state (AbsOp) exhibit a steadily increasing average execution
time with respect to an increasing number of program lines.
In addition, the error bars are much smaller in this case.

These results indicate that the execution efficiency of the
current version of FEther far exceeded that of the previous
non-optimized version of FEther developed in Coq in accor-
dance with the standard tutorial.

VI. EXTENSIBILITY AND UNIVERSALITY
While ensuring that the developed Ethereum-based
verification platform faithfully captures the intended service
properties of smart contracts written in Solidity is essential,
further ensuring that this development can be applied to mul-
tiple blockchain platforms is also of great value. Therefore,
implementing extensibility and universality in the FSPVM-E
design was a goal considered from the beginning of its
development.

First, we note that the implementations of the GERM
framework and the assistant tools and libraries are not
dependent on high-level specifications. Therefore, these com-
ponents of FSPVM-E can be extended by adding new
independent types, function specifications, and theorems to
support new requirements. The means of facilitating this
extensibility were briefly introduced in previous sections.
Thus, the extensibility and universality of FSPVM-E are
highly dependent on the extensibility of Lolisa and FEther.
We deliberately incorporated sufficient extensible space in
Lolisa and FEther to extend features, such as pointer formal-
ization and the implementation of independent operator defi-
nitions. The architecture of the proposed preliminary scheme
for extending Lolisa and FEther to other general-purpose
programming languages is illustrated in Fig.28. Extensibility
is further realized by the independence of syntax inductive
predicates in the same level, which is further supported in
the definitions of the semantics. Therefore, Lolisa can be
extended to incorporate the features of other languages by
adding new typing rule constructors in the formal abstract
syntax and the corresponding formal semantics in FEther.
As shown in Fig.28, except for the accommodation of spe-
cific Solidity data structures, such as contracts and mapping,
the remainder of the Lolisa syntax definitions and seman-
tics were designed to be universally applicable to any other
general-purpose programming language. Furthermore, Lolisa
and FEther were designed based on the GERM framework,
which are appropriate for the formalization of any program-
ming language. Finally, as discussed previously, the complex
Lolisa formal syntax is hidden in the syntactic abbreviations,
which improves user-friendliness significantly.

We treat Lolisa as the core formal language, which is
transparent for real-world users, and we logically classify the
formal syntax and semantics of Lolisa according to a general
component G and n special components Si, as defined by the
rule 29.

Lolisa def
= G ∪

(
n⋃
i=0

Si

)
(29)

As a result, a general-purpose programming language Li
can be formalized by the Lolisa subset G ∪ Si by encapsulat-
ing the subset using notation as a symbolic abbreviation Ni
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TABLE 5. Feature comparisons of FEther semantics and existing software quality tools.

for Li, which adopts syntax symbols that are nearly equiva-
lent to the original syntax symbols of Li. With this method,
each Li has a corresponding notation set Ni that satisfies
Ni ⊆ Lolisa. This relation is defined by the rule 30.

∀i ∈ N.Li ↔ Ni ≡ G ∪ Si (30)

As the corresponding definitional interpreter of Lolisa,
FEther inherits the extensibility advantages of Lolisa. At the
same level, any executable semantic Sexe is independent of
any other semantics, and all same-level semantics are encap-
sulated into an independent module Therefore, FEther is
also extendible to new executable semantics to support new
abstract syntax of Lolisa without affecting the old semantics.

VII. COMPARISON WITH RELATED WORK
Compared with most recent tools based on symbolic execu-
tion, FSVPM-E supports symbolic execution in higher-order
logic systems. Benefiting from this feature, FSPVM-E
not only can flexibly formalize and verify properties of
Ethereum-based services with Hoare style, but also obtains
higher evaluation efficiency and degree of automation com-
pared to standard higher-order logic theorem proving tech-
nologies. Moreover, FSPVM-E provides a formal memory
model, a virtual symbolic execution environment, and single
statement unit evaluation, which solves the memory, environ-
ment, and constraint solving problems of conventional tools
based on symbolic execution. Moreover, FSPVM-E is first
the verification system that provides a large subset of Solidity
formal syntax and semantics with GADTs, and it is also the
first proof virtual machine can directly execute and verify
Solidity programs in Coq.

To compare differences between FSPVM-E and the related
works that have pulished open-source tools introduced in
Section I, more intuitively, we summarized the differences
in Table 5. The compared features are listed and defined as
follows:

• Spec.: suitable as a formal specification of the EVM
language;

• Exec.: executable on concrete tests;
• Certif.: certifiable self-correctness;
• Verif.: verifiable properties of EVM programs;
• Debug.: provision of an interactive EVM debugger;

• Gas: tools for analyzing the gas complexity of an EVM
program;

• Level: analysis or verification level of code;
• Logic: types of essential logic supported;
• Hybrid: support for hybrid verification methods.

VIII. CONCLUSION AND FUTURE WORK
We have presented a hybrid formal verification system
denoted as FSPVM-E, which combines symbolic execu-
tion and higher-order logic theorem proving for verifying
the security and reliability of Ethereum-based smart con-
tract services. An analysis of past studies indicates that the
present work represents the first hybrid formal verification
system implemented in Coq for Ethereum-based smart con-
tracts that is applied at the Solidity source code level. The
foundation of FSPVM-E is a general formal memory model
that simulates real world memory operations and provides
a basic pointer arithmetic mechanism. The source code of
FSPVM-E is Lolisa, which is a large subset of the Solidity
programming language. Lolisa is strongly typed according
to GADTs, and includes nearly all of the syntax in Solidity.
Therefore, the two languages are equivalent, which solves the
consistency problem in formalization. The execution engine
of FSPVM-E is FEther, which supports static, concolic, and
selective symbolic execution simultaneously. The execution
engine is driven by the executable formal semantics of Lolisa,
and is able to strictly simulate the service behaviors of smart
contracts. In addition, we provide two assistant tools and two
assistant libraries to increase the degree of automation in the
FSPVM-E verification process. Specifically, the two assistant
tools are a translator and a generator, which are respectively
applied to automatically translate Solidity into Lolisa, and
generate specific formal specifications based on a specified
execution environment. The two assistant libraries include a
static analysis library and an automation tactic library, which
are respectively used to scan for standard vulnerabilities in
smart contracts, and provide fully-automatic execution (veri-
fication) tactics. In addition, we ensured that FSPVM-E is a
trusted verification engine by verifying the self-correctness of
the core components of FSPVM-E in Coq. We have also pro-
vided simple case studies to demonstrate the novel features
of FSPVM-E, which include hybrid analysis functions, con-
sistency, automation, and high evaluation efficiency. Finally,
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FIGURE 29. The source code of Smart Sponsor contract.

the extensibility and universality of FSPVM-E was demon-
strated, and a preliminary scheme was proposed to systemat-
ically extend FSPVM-E to support the verification ofmultiple
blockchain platforms. As a result, we can now directly verify
Ethereum-based service contracts with high automation and
evaluation efficiency in Coq directly.

In the future, the Solidity language is still under devel-
opment and is therefore changing quickly, thus the Lolisa
language will be updated quite often in order to cope for
that. Besides, we expect to further develop FSPVM-E until
it is sufficiently powerful and friendly for use by general
programmers to automatically verify the properties of their
smart contract programming. First, we are working to intro-
duce support for other Solidity features, such as inline assem-
bly and float datatype. Second, we will develop a trusted
translator in Coq directly and certify the correctness of it.
Third, we will attempt to implement support for the EOS
(https://eos.io/) blockchain platform. Finally, we will design
a new verification strategy to improve the automation of
modular verification in FSPVM-E.

APPENDIX
See Fig. 29
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