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ABSTRACT Global horizontal irradiance (GHI) is a critical index to indicate the output power of the
photovaltaic (PV). In traditional approaches, the local GHI can bemeasured with very expensive instruments,
and the large-area GHI collection depends on complex satellite-based models, solargis algorithms, and
the high-performance computers (HPC). In this paper, a novel approach is proposed to capture the GHI
conveniently and accurately. Considering the nonstationary property of the GHI on cloudy days, the GHI
capturing is cast as an image regression problem. In traditional approaches, the image regression problem is
treated as two parts, feature extraction (for the images) and regression model (for the regression targets),
which are optimized separately and blocked the interconnections. Considering the nonlinear regression
capability, a convolutional neural network (CNN) based image regression approach is proposed to provide
an End-to-End solution for the cloudy day GHI capturing problem in this paper. The multilayer CNN is
based on the AlexNet and VGG. The L2 (least square errors) with regularization is used as the loss function
in the regression layer. For data cleaning, the Gaussian mixture model with Bayesian inference is employed
to detect and eliminate the anomaly data in a nonparametric manner. The purified data are used as input
data for the proposed image regression approach. In the experiments, three-month sky images and GHI data
(with 1-min resolution) are provided by the National Renewable Energy Laboratory (NREL) with the HPC
system. The numerical results demonstrate the feasibility and effectiveness of the proposed approach.

INDEX TERMS Convolutional neural network, solar irradiation, global horizontal irradiance, image
regression, variational inference, Bayesian theory, Dirichlet process, deep learning, sky image.

NOMENCLATURE
PARAMETERS AND VARIABLES
tsri2 : The times of sunrise for day i2
tssi2 : The times of sunset for day i2
βmiss(t2) : The missing GHI data at time t2
hj2 , aj2 : Coefficients of the spline interpolation
X : The sample set or the observation set (GHI)
Z : The component index set
π : The mixing weights
µ: The mean of the normal distributions
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3: The precision matrix
p(Z |π ): Given mixing weights, the conditional distribution

of Z
p(X |Z , µ,3): Given latent variables Z , µ,3, the condi-

tional distribution of p(X |Z , µ,3)
Dir(π |α0): The Dirichlet distribution with given concen-

tration parameter α0
C(α0): The normalization item for Dirichlet distribution
p(µ,3): The joint probability distribution of µ and 3
2: A sample space with a distribution G0
N (·): The normal distribution
Beta(1, β): Beta distribution with stick-breaking construc-

tion and parameters 1 and β
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qι(·): The defined exponential distribution family
D(qι(Z )||p(Z |X , ϑ)): The KL divergence between qι(Z )

and p(Z |X , ϑ)
X : The collected sky image set
Y: The collected GHI value set
D: The training samples D = {xi, yi}

N1
i=1

E : The objective function with mean-square-error
δm: The error in last layer m
wk+1jl : The weight for node j for incoming node l in

layer k + 1
ok−1i : The output for node i in layer k
H1, W1: The hight and width of the sky image
k1, k2: The hight and width of the filter in 2-dimensional

CNN
bki1,j1 : The bias for node with position i1, j1 at layer k in 2-

dimensional CNN
χki1,j1 : The convolved input vector at layer k with position

i1, j1 in 2-dimensional CNN

I. INTRODUCTION
With a low cost, the penetration of rooftop PV is increas-
ing fast in recently years, which can be seemed as
an indispensable component for modern power system
integration [1]–[5]. Solar power, especially behind-meter
solar power forecast is an important aspect for operating the
grid with high level of PV penetration [6], [7]. The GHI is
defined as the sum of the total received direct and diffuse
shortwave solar irradiation on a horizontal plane. It is widely
used to indicate the output power of PV [6], [7]. In traditional
approaches, the local GHI can be collected with very expen-
sive instruments, which are inconvenient to be moved and
can hardly be used for large-area monitoring. For large-area
monitoring, the radiative transfer models are widely used.
However, these depend on the complex models and HPC.
In this paper, a deep learning-based approach, a CNN-based
approach is proposed to capture the GHI conveniently and
accurately, which can also be implemented into large-area
monitoring.

As shown in Fig. 1, in traditional approach (a), GHI is
routinely measured by ground-based radiometers, e.g. pyra-
nometers, use either thermoelectric or photoelectric detec-
tors [8]. The reliability of this measurements is highly depend
on installation scheme, hardware maintenance, calibration
technology and frequency [9]. The availability of the mea-
surements is often restricted by the high cost. In traditional
approach (b), GHI can be numerically simulated by radia-
tive transfer models, which account for the atmospheric
absorption and scattering by air molecules, aerosols, and
clouds [10]. However, accurate simulation of GHI replies
on comprehensive measurements or retrievals of atmospheric
constituents and land surface that are sparsely available over
large scale areas. Conventional radiative transfer models are
often challenged by computation complexity by solving the
radiative transfer equation and considering the interactions
between the atmosphere and land surface. In traditional
approach (c), the processing approach includes two parts:

feature engineering and further processing [11]–[14]. Feature
engineering is similar as feature extraction, which extract
the image features with different approaches such as filter-
ing, Fourier transform, principle component analysis, wavelet
analysis, and autoencoder related approaches [12], [15]. The
extracted features are the inputs for next step, which is used
for classification, pattern recognition, anomaly detection, and
regression with different approaches such as hidden Markov
model, support vector machine, neural network, logistical
regression, random forest, and Bayesian network [12], [16]–
[20]. The two parts framework in approach (c) is disconnected
and has no communication between them, which results in a
lower the performance of the approach [12], [21], [22]. In the
approach (d), it provides an End-to-End learning framework
for the image regression task, which combines the feature
extraction and regression part together to higher the efficiency
and performance. As discussed above, the Pros and Cons of
the 4 methods are summarized and presented in Table 1.

In this paper, thee-month data (minutes level resolution
data) are provided by the NREL. Considering the huge vol-
ume of data, a data cleaning procedure is used to eliminate the
errors and inconsistencies for improving the input data qual-
ity, which contains data selection, calibration, missing data
reconstruction, data standardization, and normalization. This
procedure is significantly indispensable and greatly impacts
the final performance. Gaussian mixture model is an useful
method to detect the anomaly data, however, the number
of the mixture components is difficult to determine. Based
on the Dirichlet process, variational inference, and Bayesian
theory, a Gaussian mixture model with Bayesian inference
approach is employed to determine the number of the mix-
ture components automatically [23]–[29]. Compared with
Markov Chain Monte Carlo (MCMC), the variational infer-
ence is fast (it doesn’t require many samples and saves sam-
pling time). The expectation propagation is very similar with
the variational inference, which can be regarded as the same
category [23]–[25], [35]. Considering the real-application in
power systems, the important factors such as temperature and
Zenith angle are collected to detect the anomaly data.

In cloudy days, the profile of solar irradiation has a lot of
stochastic deviations such as abrupt decreasing and increas-
ing, which cause the deviations of output power of the PV.
With the increasing penetration of PV, the large deviations
of the PV output power result in a series problem such
as voltage deviation, frequency oscillation, even unplanned
islanding. Based on this [30]–[34], the proposed CNN based
image regression model is focusing on building a relation-
ship between the input cloudy sky images and the solar
irradiations. Recently, the CNN based image processing,
especially for image classification, is developing very fast.
In 2012 ImageNet Large Scale Visual Recognition Com-
petition (ILSVRC), the AlexNet (a type of CNN) [37] is
proposed with 16.4 % error rate, which is considerably better
than the previous shallow machine learning model (similar
as approach (c) in Fig.1 with error 25.8 %). From then on,
the CNN based image processing is attracting more attention
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FIGURE 1. The proposed approach compared with the traditional approaches.

TABLE 1. The comparison of different approaches in Fig.1.

in computer vision area. In 2014, the VGG with 19 layers
and GoogleNet with 22 layer achieved 7.3 % and 6.7 % error
rate, respectively, which further demonstrate the capability
of CNN in computer vision processing [38], [39]. In 2015,
a big improvement is provide by the 152 layers ResNet with
3.57 % error rate, which is better than human expert (5.1 %
error rate) [40].

The proposed image regression problem is similar with
the age estimation problem in computer vision area, which
want to build a map between the input human images and the
corresponding ages. In [41], the age estimation is studied with

a shallow machine learning model, support vector machine.
In [42], a CNN based regression approach is proposed to
estimate human age with the images of human face as the
input data. However, the proposed multi-output CNN is also
a classification problem, and people with different ages are
classified into different small groups. Because the solar irra-
diation is a continuous variable with a relatively big range,
the classification of the solar irradiation brings a big error
and deviation for the system. Therefore, in this paper, a CNN
based image regression approach is proposed to provide a fast
and accurate solar irradiation capturing.
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Themain contributions of this paper are:
1) A big data processing approach is used in renewable

energy area for solar irradiation capturing, which con-
tains big data cleaning and deep learning based image
regression. Compared with the traditional solar irradi-
ation capturing approach, the CNN based approach is
cheap, fast, accurate, and convenient to be extended for
large-area monitoring.

2) Based on the Dirichlet process, variational inference,
and Bayesian theory, a Gaussian mixture model with
Bayesian inference approach is employed to determine
themixture components automatically. Considering the
real-application in power systems, the important factors
such as temperature and Zenith angle data are also
collected to detect and eliminate the anomaly data.

3) Based on the CNN architecture for classification,
a new regression CNN architecture is designed for
image regression problem. The input of the proposed
approach is the image set and the output is the contin-
uous variable set, which can be extended for multiple
regression problems. According to Deep dream related
algorithms, the CNN working manner is illustrated
layer by layer with Figures, which help researchers
deeply understand the working manner of deep learn-
ing. In the future study, the related problems, for exam-
ple, the large-area PV output forecasting, can be studied
based on our research.

As shown in the Fig. 2, this paper consists of three
major components: data cleaning, CNN based image regres-
sion, and results validation, which are described as follows.
In Section II, data cleaning is introduced with 7 steps, and
the Bayesian inference is used to detect the anomaly data in a
nonparametric manner. In Section III, the CNN based image
regression approach is introduced for solar irradiation captur-
ing, and the characteristic of the proposed CNN architecture
is detailed analyzed. In Section IV, the numerical results are
presented to validate the proposed approach. Finally, the con-
clusion is presented in Section V.

FIGURE 2. The flowchart of proposed approach.

II. DATA CLEANING
Inmachine learning, data cleaning is a significant component,
which tremendously affect the performance of the whole
approach. In this paper, the original data including the GHI
data and sky images are directly collected from the devices in
NREL’s Solar Radiation Research Laboratory, which needs
the data cleaning for the CNN learning. As shown in Fig. 3,
the proposed data cleaning approach contains 7 steps: data
merge, data calibration, missing data recovery, data normal-
ization, anomaly detection, data standard, and data verify
and map.

FIGURE 3. The flowchart of data cleaning in proposed approach.

A. DATA MERGE, CALIBRATION, AND MISSING DATA
RECOVERY
In this paper, the data merge, calibration, and missing data
recovery are explained together as pre-data processing for the
data cleaning. The original data including the GHI data and
sky image data are collected with sample rate 1 sample/min.
Because the period of the sky image is 24 hours, we merge
24 hours data as a section for each day. Because the CNN
is used to build a regression relationship between the sky
images and GHI data, the original data need to be calibrated
and recovered, and the problem is list as follows:

1) The sky image camera only capturing the sky image
from sunrise to sunset, the length is variant everyday
(with some random offsets of the camera).

2) The GHI data are collected 24 hours, but the corre-
sponding time index is Greenwich Mean Time (GMT).

3) There are random sky images and GHI data missing
in the sky image series and GHI data everyday, which
cause the mismatching between the sky images and
GHI data.

The times of sunrise tsri2 and sunset tssi2 for day i2 are
collected from National Oceanic and Atmosphere Admin-
istration (NOAA). The accurate length between tsri2 and tssi2
can be calculated as: 1ti2 = tssi2 - tsri2 , which can be used to
eliminate the random offsets of the camera, and delete the
useless sky image captured in the night (as shown in Fig. 5).
Then, the corresponding GHI data can be sectioned with1ti2 ,
and the time index is transfered from GMT to Mountain
Time (MT).

In the collected original data, there are random sky images
and GHI missing. For the sky images missing, the corre-
sponding GHI data are deleted to keep the one to one map-
ping relationship. Because the sky images is continuously
changing and the sample rate 1 sample/min is relatively high,
the missing GHI data can be recovered by the spline interpo-
lation as equation 1. βmiss(t2) is the missing GHI data, t2,j2
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FIGURE 4. The graphic model of the Gaussian mixture model with
Bayesian inference.

indicates the time index j2 to discriminate with the missing
GHI time t2, hj2 and aj2 are coefficients. Then, the missing
GHI data at time t2 can be recovered.

B. ANOMALY DETECTION
1) PROBLEM DESCRIPTION
In this paper, we collected a large volume of original data
from the sky image camera and GHI sensors, which contains
a lot of anomaly data sets. These anomaly data sets can
pollute the input data, and generate irrelevant information
during the learning process [43], [44], [46]–[48]. As in Fig.5,
because we are focusing on the solar irradiance capturing for
the cloudy sky days (causing large deviations of PV output
power), this means that the sky images of the sunrise, sunset,
and clean days are seemed as the anomaly data and need to
be cleaned. (1), is obtained by the equation as shown at the
bottom of this page.

In oder to detect the anomaly conveniently, the data are
normalized to range (0, 1) with the approach in [13], and the
corresponding sky images are stored and tagged in a database.
In this paper, a nonparameter and fast anomaly detection
method is employed to detect the anomaly data as shown
in Fig. 5.

2) PROBLEM FORMULATION
As shown in Fig. 4, the anomaly detection method is based on
Gaussian mixture model with Bayesian inference [23]–[27].
The full joint distribution can be formulated as follows:

p(X ,Z , π, µ,3) = p(X |Z , µ,3)p(Z |π )p(π )p(µ|3)p(3)

(2)

where

FIGURE 5. The selected anomaly sky images taken by different devices
(a) the sky image of sunrise, (b) the sky image of sunset, (c) the sky image
polluted by rain and snow, (d) the sky image of a clean day without any
clouds.

1) X is the sample set or the observation set, X =
{x1, · · · , xN }. In this paper, X is the collected GHI.

2) Z is the component index set Z = {z1, · · · , zN }, which
also indicate the total category is K .

3) π is the mixing weights, specifically, different from
Dirichlet distribution, in Dirichlet process π =

{π1, π2, · · · , π∞}.
4) µ is the mean of the normal distributions, which is with

a normal distribution prior as shown in Fig. 4 with a
mean µ0 and precision matrix λ0.

5) 3 is the precision matrix, which is with a Wishart
prior (or Gamma, Gamma distribution is equivalent to a
one-dimensionalWishart distribution [49]) with a scale
matrix 30 and a degree of freedom ν0.

In the Gaussian mixture model (GMM), the number of the
Gaussian components gives the prior distribution estimation
of the whole distribution. If this number is given, the whole
distribution can be solved in a convenient manner. Therefore,
the character Z here is used as a latent variable to indicate the
number of the Gaussian components, which is formulated as

βmiss(t2) =
aj2+1(t2 − t2,j2 )

3
+ aj2 (t2,j2+1 − t2)

3

6hj2
+

(
βj2+1

hj2
−
hj2
6
ai2+1

)
(t2 − tj2 )+

(
βj2

hj2
−
hj2
6
ai2

)
(tj2+1 − t2) (1a)

hj2 = t2,j2+1 − t2,j2 , and a0 = 0, and an2 = 0 (1b)

hi2−1aj2−1 + 2aj2 (hi2−1 + hi2 )+ aj2+1hj2 = 6
(
βj2+1 − βj2

hj2
−
βj2 − βj2−1

hj2−1

)
(1c)
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a categorical distribution and its conjugate distribution is the
Dirichlet distribution.

Based on (2), the relationship and probabilities can be
formulated as follows. The conditional distribution of Z given
a mixing weight:

p(Z |π ) =
N3∏
n3=1

K3∏
k3=1

π
znk
k (3)

Then, given the latent variables Z , µ,3, the conditional dis-
tribution of the observed data can be formulated as:

p(X |Z , µ,3) =
N3∏
n3=1

K3∏
k3=1

N (xn3 |µk3 ,3
−1
k3

)Zn3,k3 (4)

Here, the Bayesian inference is employed to estimate how
many clusters are required for the observation data, which
means the hyperparameters can be generated with nonin-
formative hyperprior distributions. Firstly, the nonparametic
prior titled as Dirichlet distribution is employed to build
the finite Gaussians. Then, the Dirichlet process is used to
generalize it into infinite Gaussians.

p(π ) = Dir(π |α0) = C(α0)
K3∏
k3=1

π
α0−1
k3

(5)

where Dir is the Dirichlet distribution, α0 is the concentra-
tion parameter, and C(α0) is a normalizing item which can
be expressed with Gamma Function and also be named as
multivariate Beta function [24], [49], [50]. Then, according
to (2), the Gaussian-Wishart prior can be introduced for the
mean µ and precision matrix 3.

p(µ,3)= p(µ|3)p(3) (6a)

=

K3∏
k3=1

N (µk3 |µ0, (λ03k3 )
−1)W(3k3 |30, ν0) (6b)

where µ0 is a mean, λ0 is a precision matrix, 30 is a scale
matrix, and ν0 is degree of freedom.

As in (5), the Dirichlet distribution can be seemed as the
conjugate prior for the categorical distribution. To generalize
it into infinite and nonparametric distribution, the Dirichlet
process can be seemed as its conjugate prior. For a sample
space 2, G0 is a distribution over 2 with a positive factor β,
and the Dirichlet process can be generated with G0 over 2.

(G(A1), · · · ,G(AK3 ))∼Dir(βG0(A1), · · · , βG0(AK3 )) (7a)

G∼DP(β,G0) (7b)

where AK3 is a finite measurable partition over 2, and the
positive factor β controls the density of G [24], [26]. Here,
the stick-breaking construction is used for the weights πk3 :

π ′k3 ∼ Beta(1, β) (8a)

πk3 = π
′
k3

k3−1∏
i3=1

(1− π ′i3 ) (8b)

where π = {π1, · · · , π∞} which indicate the original model
is generalized into infinite Gaussians with Dirichlet process.

3) VARIATIONAL INFERENCE
In this paper, the Bayesian theorem based variational infer-
ence algorithm is employed for the Dirichlet process based
Gaussian mixture models. The posterior distribution of Z can
be computed as

log p(Z |X , ϑ) = log p(X ,Z |ϑ)− log p(X |ϑ) (9)

where ϑ is the parameters, and this Bayesian theorem based
variational inference provide a bridge to the likelihood func-
tion and prior function, which can also be seemed as a regu-
larization item for the likelihood function.

Here, we introduce qι(W ), qι(W ) is defined as a distribu-
tion family, for example, the exponential distribution family,
and ι is the parameter. Then, according to Jensen’s equation:

log p(X |ϑ) ≥ Eq[log p(Z ,X |ϑ)]− Eq[logqι (Z )] (10)

where (10) is the evidence of low bound (ELOB), and the
gap is the Kullback-Leibler (KL) divergence between qι(Z )
and p(Z |X , ϑ), which can be derived as

D(qι(Z )||p(Z |X , ϑ))

= Eq[logqι (Z )]− Eq[log p(Z ,X |ϑ)]+ log p(X |ϑ) (11)

In optimization, we can maximize the ELOB, which is an
alternatively option for minimizing (11) [51], [52]. And the
detail information can be found in [23]–[27].

Specifically, the temperature is an indispensable factor
to impact the efficiency of the PV, PV battery, and related
systems [53]. In this paper, we also collect corresponding
temperature information to eliminate the anomaly data as
shown in Fig. 5. Similarly, the Zenith angle is a critical factor
for the GHI [54], which is also collected to eliminate the
anomaly data.

After this process, the anomaly data shown in Fig. 5 can be
detected and only the sky images with clouds can be selected
for next step. Then, all the selected sky images are merged
together with the temporal and GHI information for CNN
regression.

III. CONSTITUTIONAL NEURAL NETWORK BASED
IMAGE REGRESSION
A. PROBLEM FORMULATION
After the data cleaning as discussed above, the collected sky
images and GHI values are formed as one-to-one correspon-
dence. Then, an input spaceX ={x1, · · · , xN1} consists of the
collected sky images. Because a sky image is a three dimen-
sional matrix including red, green, and blue color, we use
xi to denote the i-th sky image. The corresponding output
spaceY = {y1, · · · , yN1} consists of the collected GHI values,
where yi is the i-th GHI value. Given the training samples
D = {xi, yi}

N1
i=1, the proposed CNN based image regression

approach aims to find a mapping from images to GHI values
h(·):X 7→ Y with a predefined cost functionC :X ×Y 7→ R.

From the traditional optimization perspective, in the train-
ing part, the cost function C(h) needs to be minimized
with several different approaches such as stochastic gradient
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FIGURE 6. The selected normal sky images with some clouds (a) few
cloud with okta 1 to 2 in a sky image, (b) cloud with okta 3 to 4 in a sky
image, (c) cloud with okta 5 to 6 in a sky image, (d) cloud with okta 7 to
8 in a sky image.

descent (SGD), momentum, and Nesterov momentum, and
in this paper, ADAM is used [22], [55]. However, differ-
ent from the traditional optimization, in machine learning,
the distribution of the training space is usually different from
the distribution in the testing space, which requires a good
generalization characteristic for the selected h(·). If using
the traditional optimization approaches without any revision
during the training, several problems such as ill-condition,
local minimum, cliffs, and etc. can dramatically damage the
testing performance. Therefore, the are several basic methods
such as early stopping, parameters/hyperparameters initial-
ization, adaptive learning, and the detailed information can be
found in [22].

B. THE ARCHITECTURE OF THE PROPOSED CNN
After data clean, the sky images of normal cloudy days are
selected as shown in Fig. 6, where okta is a unit of mea-
surement to describe the cloud cover in meteorology [56].
Compared with the images in ImageNet (a large-scale image
database) [57], as shown in Fig. 6, the patterns of the cloud
in the sky images are simpler, which doesn’t requires very
complex architectures.

As shown in Fig. 7, the architecture of the proposed CNN
is designed with 5 convolution layers, batch normalization,
rectified linear unit (ReLU) (activation function), and max-
pooling, which is based on the VGG 16 architecture [38],
[39]. For each convolutional block, the detailed design is
shown in Fig. 7 and described as follows:

1) The first part is the convolutional layer. Compared with
Alexnet 11 ∗ 11 or other 7 ∗ 7 perception fields, 3 ∗ 3 is
implemented to increasing the nonlinear characteristics
and reduce the computation load [38], [39]. At the same
time, the stride step is set as 1 and padding is also set
as 1, which keeps the size of the sky image for next
block processing [22], [38], [39].

2) The second part is the batch normalization part, which
is aiming to solve the interal covariance shift [45]. With
the increasing layers of the CNN, the distribution of the
inputs changes gradually, which causes the proposed
CNN unstable and very difficult to train. With the batch
normalization part, the unwanted distribution shift
can be reduced, the training speed can be increased,
and the proposed CNN is more stable [45]. And
the inference part of the batch normalization can be
found in [22], [45].

3) The third part is the ReLU part, which can be seemed as
the activation function and brings nonlinear character-
istics for the proposed CNN. Compared with other acti-
vation functions such as sigmoid, hyberbolic tangenet,
and Gaussian, the ReLU function is more convenient to
compute the derivative, fewer vanishing gradient, and
fewer saturate parts [22]. Specifically, in this proposed
CNN, the target is the solar irraidance, which means all
the output should be positive real numbers. The ReLU
function can meet this requirement perfectly [22].

4) The parameter set for the convolutional block, for
example (112, 112, 48), indicates the output dimension
of the convolutional block is 112∗112, and 48 indicates
there are 48 feature maps (or feature images). This
means the features can be selected in different feature
maps, which provide a more convenient way for the
feature extraction.

5) The last part is the max pooling part. In this paper,
themax pooling is design as 2∗2with stride 2∗2, which
select the maximum value over the 2 ∗ 2 part. This part
can be seemed as a down-sampling part, which select
the feature of the 2∗2 and non-overlapping area, reduce
the dimensionality of the input, and pass the selected
features to the next convolution block.

After 5 convolutional block, the dimensional of the input
image is changed from 224 ∗ 224 ∗ 3 = 150, 528 to 7 ∗ 7 ∗
388 = 19, 012, which means only 12.63% data can represent
the features of the original image. Then, the output is flatten
into a vector and treat as an input for the fully connected layer
with 1000 neurons for the final regression.

C. LEARNING OF THE PROPOSED CNN
1) LAST LAYER
In classification problem, the last layer usually uses the
softmax activation function and cross entropy as objec-
tive function. However, considering the regression objective,
the mean-square-error is employed as the objective function,

VOLUME 8, 2020 22241



H. Jiang et al.: Solar Irradiance Capturing in Cloudy Sky Days

FIGURE 7. The architecture of the proposed CNN.

and linear function is used as activation function.

E =
1
2
(gfinal(χm1 )− y)

2
+ regl2 (12)

where gfinal is the activation function, which is ReLU as
shown in Fig. 7, χm1 is the only one output in last layer m,
y is a general form of the GHI value, and regl2 is a weighted
L2 regularization item, and the elastic (combined L1 and L2)
can also be implemented here [24], and E is the loss. Then,
the error can be derived as:

δm1 ≡
∂E
∂χm1

= (gfinal(χm1 )− y)g
′
final(χ

m
1 ) (13)

where the derivative of ReLU is

g′final(χ
m
1 ) =

{
1, if χm1 > 0
0, otherwise

(14)

2) HIDDEN LAYER
In the hidden layer, the error item can be derived as following:

δkj = g′(χkj )
∑
l=1

wk+1jl δk+1l (15)

where k + 1 indicates the layer, δk is the error in last layer k ,
wk+1jl is a weight for node j for incoming node l in layer k+1.
And the weight can be derived as:

∂E

∂wkij
= ok−1i g′(χkj )

rk+1∑
l=1

wk+1jl δk+1l (16)

where ok−1i is the output for node i in layer k , r is the total
number for node l.

3) EXTENDED TO 2-DIMENSIONAL CNN
In this paper, the proposed approach is based on CNN and
aims to build a mapping between sky images and GHI values,
which requires a extension from 1 dimensional backward
propagation to 2 dimensional backward propagation. The
weight can be computed as

∂E

∂wkm′,n′
=

H1−k1∑
i1=0

W1−k2∑
j1=0

δki1,j1o
k−1
i1+m′,j1+n′

= δ̂ki1,j1 ∗ o
k−1
m′,n′ (17)

where ∗ indicates a 2-dimensional (H1 and W1 indicates the
hight and width of the sky image) convolution in CNN [22],
[55], k1 × k2 is the dimension of the filter, δ̂ki,j indicates
the flipped kernel [58]. δ and o are the same as defined
above. Then, similar with equation (13) the error can be
computed as:

∂E

∂χki′,j′
=

k1−1∑
m=0

k2−1∑
n=0

δk+1i′−m,j′−nw
k+1
m,n f

′

(
χki′,j′

)
(18)

where χ is defined as:

χki1,j1 =
∑
m

∑
n

wlm,no
k−1
i1+m,j1+n

+ bki1,j1 (19)

where bki1,j1 is the bias for node with position i1, j1 in layer k .
In sum, the 2-dimensional CNN formulated for the proposed
sky image processing.
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FIGURE 8. Anomaly detection for the GHI data.

IV. NUMERICAL RESULTS
In this paper, the image data and GHI data are provided
NREL, which includes about thee-month data in the Autumn
of 2016 and Summer of 2017. The sampling rate of the
sky imager is 1 sample/min from sunrise to sunset per day.
The sampling rate of the GHI measurement device is also
1 sample/min for 24 hours per day.

A. ANOMALY DETECTION AND ELIMINATION
First, the original GHI data are modeled with the Gaussian
mixture model with Bayesian inference. Compared with the
Gaussian mixture model without Bayesian inference (indi-
cated as Single GMM with magenta), the GHI data can be
more precisely modeled with 3 Gaussian models instead of 1
Gaussianmodel. According to our requirements, the GHI val-
ues located in the areas close to 0 and 800 can be considered
as sunrise, sunset, and clean sky data.

Second, as mentioned above, the Zenith angle and tem-
perature are considered as useful factors, the Gaussian mix-
ture model with Bayesian inference are employed to detect
the anomaly data with them. To show the results clearly,
the result of Zenith angle and temperate are shown separately
as in Fig. 9 and Fig. 10.

In the upper part of Fig. 9, the collected data can be
modeled with a single Gaussian model, which means a lot
of useful data are classified into anomaly data side. In the
lower part, the collected data can be modeled with 4 Gaussian
models, the anomaly data are indicated corresponding to the
sky images of sunrise and sunset (with the green dots close to
0 GHI and 50◦ Zenith angle). The yellow dots located close
to 800 GHI are corresponding to the sky images of clean sky
without clouds.

Similarly, in the upper part of Fig. 10, the collected data
can be modeled with 2 single Gaussian model, which means
a lot of useful data are classified into anomaly data side. In the
lower part, the collected data can be modeled with 5 Gaussian
models, the anomaly data are indicated corresponding to the
sky images of sunrise and sunset (with the yellow dots close

FIGURE 9. Anomaly detection for the GHI and Zenith Angle data.

FIGURE 10. Anomaly detection for the GHI and Temperature data.

to 0 GHI and 10◦C temperature). The light blue dots located
close to 800 GHI are corresponding to the sky images of clean
sky without clouds.

B. CNN BASED REGRESSION
Considering the limitation of the computer memory (64 GB),
the data (including the sky images and corresponding GHI
values) of 1, 2, 3, 4, and 5 days are used as training data,
separately, and 70 randomly selected sky images and corre-
sponding GHI values are used as testing data. As discussed
above, the proposed CNN based image regression approach
aims to build a mapping relationship from images to GHI
values h(·): X 7→ Y .
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FIGURE 11. Feature expression of CNN (a) the original sky image demo,
(b) the feature of conv1, (c) the feature of conv2, (d) the feature of conv3,
(e) the feature of conv4.

1) FEATURE ANALYSIS
To illustrate clearly the operation manner of CNN, a demo
of sky image is get from [36], and its feature analysis or
content reconstruction is shown in Fig. 11. In Fig. 11(a),
the original figure is shown, which is extracted from the
beginning side of the flowchart in Fig. 7. Fig. 11(b) is almost
identical with Fig. 11(a), and the small and tiny crinkles
indicates the feature and edges of the clouds are extracted
by the CNN. In Fig. 11(c), it is clearly that the edges of
the clouds are selected by the crinkles, which means the
features of the major parts are identified and located in the
image. Furthermore, in Fig. 11(d) and Fig. 11(e), the features
of the small parts are also identified and located. In brief,
with deeper layers in the CNN, more and more features are
extracted in differently layers gradually. With the extracted
features, the regression analysis is introduced in next step.

FIGURE 12. Image regression for GHI with different training data length:
(a) 1 day data as training data, (b) 3 day data as training data, and
(c) 5 day data as training data.

2) REGRESSION ANALYSIS
As shown in Fig.12, the top image regression results of
training data with 1, 3, and 5 days are presented in red curves,
and the testing data are presented with blue curves. The
results of 1 day training data and testing data are presented
in Fig. 12 (a), which contains a relatively big errors. Specifi-
cally, as shown with the blue curve, there are 4 peaks located
in samples 20, 25, 65, and 70, which indicate high solar irra-
diance at these time slots. However, with 1 day training data,
the results of the proposed approach are much lower, which
indicates a big mismatch between the proposed approach and
measured data. In addition, in the samples between 45 to
65, there is a big valley in the testing GHI values. However,
as shown in Fig. 12 (a), the proposed approach also contains
a big error from the measured GHI values. In Fig. 12 (a),
the mean absolute percentage error (MAPE) is 21.8%, which
indicates the 1 day training data is not sufficient to achieve a
acceptable result.

Compared with Fig. 12 (a), the results presented
in Fig. 12 (b) and Fig. 12 (c) with 3 and 5 days training
data contain smaller errors. In Fig. 12 (b), it is obviously
that the peak errors in samples 20, 25, 65, and 70 are much
smaller than Fig. 12 (a), and the valley errors from samples
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45 to 65 are also smaller than Fig. 12 (a). In Fig. 12 (c),
the best regression results are presented with 5 days training
data. The peak errors and valley errors are very small, and
the blue curve and red curve are almost identical in the rest
samples, which present are very accurate image regression
results for solar irradiance capturing. In Fig. 12 (b) and
Fig. 12 (c), the MAPE are 12.6% and 8.1%, which indicates
the regression error is decreasing with the increasing training
data length.

C. COMPARISON AND DISCUSSION
To comprehensive evaluate the proposed approach, several
high impacted algorithms are investigated, and the compar-
ison and analysis are shown as follows.

1) BENCHMARK COMPARISON
In [62], the persistence approach is introduced to evaluate the
solar irradiance, which is a widely used approach to build
the benchmark data [61]. In this paper, we also implement
the persistence approach to estimate the solar irradiance.
The MAPE of the persistence approach is 27.8% and root-
mean-square error (RMSE) is 29.2%, which are much larger
than the proposed approach with MAPE 8.1% and RMSE
8.7%. In [61], [65], the auto-regression integrated moving
average (ARIMA) technique is also a widely used approach
for solar irradiance forecasting, which requires stationary for
the time series. For the cloudy days data, the MAPE and the
RMSE of the ARIMA approach are 31.2% and and 32.7%,
which are also very high.

2) OTHER APPROACHES COMPARISON
In [59], a image regression approach is proposed to predict
solar irradiance with sky image, which consists of feature
extracting and regression model with promising results. The
MAPE 8.1% of the proposed approach is lower than 21.91%
with approach in [59]. In [60], a statistic based artificial
neural network approach is used to provide solar irradiance
forecasting with minimum root-mean-square error (RMSE)
about 15%, which is higher than our proposed approach
with 8.7%. In the review paper [61], a lot of recent solar
irradiation capturing and forecasting approach are collected
and analyzed, and the best RMSE is about 10%, which is also
higher than the proposed approach. Recently, in [63], a short-
term solar irradiance forecasting approach is proposed with
satellite and model coupling. In this approach, the sky images
are captured by geostationary satellite and the typical errors
ranges are from 8.5% to 17.2%, which is very close but still a
little higher than the proposed approach. Furthermore, com-
paredwith the high-cost geostationary satellites, the proposed
approach only requires the sky images, which can be eas-
ily captured by sky imagers, cameras, and even cellphones.
In [64], several machine learning based approaches are used
such as leapForward model and Spikeslab model to forecast
the solar irradiance. Compared with the proposed approach,
this proposed approach uses the measured solar irradiance as
input, which indicates this method is heavily relies on the

expensive solar irradiance measurement devices and not easy
to extend on large-scale solar irradiance capturing. In [66],
a solar irradiance forecasting approach is proposed with
wavelet-based feature extraction, and this approach is focus-
ing on the clear-sky days. Considering the large deviation
profile of the PV output caused by clouds, the proposed
approach is investigating in the cloudy days, which have
larger impacts on power system operations. The randomness
and stochastic characteristics of the cloud movements also
increase the difficulties of the regression.

In this paper, we only investigating in the sky images taken
with visible light as a primer exploration, which indicates
other images such as 10-12 µm normalization radiance and
R/B ratio mask are ignored. However, according to [59]–[61],
these images contains useful information and can be treated
as a good assistance information for image regression. Beside
the Zenith angle and temperature, the other parameters such
as humidity, air condition, and solar periods can also be
seemed as assistance inputs for the proposed regression
approach. In this primer exploration, we only collected three
month data in the Autumn of 2016 and Summer of 2017 to
validate the proposed approach. In the next step, we will
collected at least three years data to further investigate the
solar image regression.

As discussed above, the main advantages of the proposed
approach is shown as following:

1) Compared with the traditional solar irradiation captur-
ing approaches, the proposed approach doesn’t require
the expensive high-resolution image captured by geo-
stationary satellites. The data collection cost (sky
image) of the proposed approach is lower, which indi-
cates the proposed approach is convenient to widely
use and extend for very large-scale solar irradiance
monitoring.

2) Comparedwith the results of benchmark and traditional
machine learning approaches, the proposed approach
provides an end-to-end manner to capture the solar
irradiances. This not only reduces the information loss
between the feature engineering and regression pro-
cessing, but also improve the learning efficiency of the
proposed approach.

3) In power system operations, the clouds movements
causes a lot random deviations of PV outputs, which
dramatically impact the health of the power sys-
tems. The proposed approach is focusing on the
cloudy days solar irradiance capturing, which can
be easily extended to PV output regression and
power system stability forecasting in the next step
research.

In addition, as a deep learning approach, CNN is widely
used in a lot of areas such as medical, auto-driving, traffic,
robotics, etc.. How to built a deep learning work automati-
cally, how to reduce the training time or high efficient training
the deep learning network, and how to reduce the depen-
dency on big training data are the interesting topics for future
research.
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V. CONCLUSION
In this paper, a novel solar irradiance capturing approach
is proposed with a CNN framework. For data cleaning,
a Bayesian inference based automatic anomaly data detection
is designed to eliminate the bad data in a nonparametric man-
ner. Based on the existing CNN architecture, a proposed CNN
is used to capture the GHI with the sky images. Compared
with the traditional approaches, the proposed approach is
accurate, flexible and convenient to be widely deployed for
large-area solar irradiance capturing. Furthermore, the pro-
posed approach can also be used as an automatic and multi-
functional platform for other image regression projects such
as tidal and geothermal power estimation.

Deep learning is an emerging technology with powerful
ability in many aspects; however, it also contains many prob-
lems such as initial point setting, optimization, and architec-
ture design. In the next step, we will collect more data, and
focusing on improving the training efficiency, reducing the
network complexity, and increasing its capability to provide
more useful information for power system operation and
control.
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