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ABSTRACT Detecting epistatic interactions in GWAS (genome-wide association studies) data is of great
significance in studying common and complex diseases; however, the ability to detect high-order epistatic
interactions in GWAS data is still insufficient. Existing methods are usually used to identify two-order
interactions, and they cannot detect a large number of interactions. In this article, we propose a novel
stochastic approach named SHEIB-AGM (stochastic approach for detecting high-order epistatic interactions
using bioinformation with automatic gene matrix). SHEIB-AGM utilizes bioinformation to construct a
gene matrix. In each iteration, it randomly generate a high-order SNP combination based on the gene
matrix. SHEIB-AGM utilizes k2 (the Bayesian network scoring criterion) and G-test to detect epistasis
in the generated combination and automatically update the gene matrix. We have compared SHEIB-AGM
with six other methods, i.e., DECMDR, SNPHarvester, MACOED, AntEpiSeeker, HS-MMGKG and SEE,
on simulated data including 108 epistatic models and 17,600 files. The results demonstrate that SHEIB-AGM
greatly outperforms the above methods in terms of F-measure and power. We utilized SHEIB-AGM (with and
without bioinformation) to analyze a real GWAS dataset from the Wellcome Trust Case Control Consortium.
The results indicate that SHEIB-AGM with bioinformation can detect 33.94~3069.40-times more epistatic
interactions. We have found numerous genes and gene pairs that may play an important role in seven complex
diseases. Some of them have been found in the CTD database (the Comparative Toxicogenomics Database).

INDEX TERMS Epistasis, genome-wide association studies, single-nucleotide polymorphism.

I. INTRODUCTION

Thanks to the development of high-throughput sequencing
technology, it is feasible to measure hundreds of thousands
of SNP (single nucleotide polymorphism) [1], [2] genotypes
from thousands of individuals. Genome-wide association
studies (GWAS) [3]-[8] play a very important role in identi-
fying the causes of common and complex diseases. They aim
to detect relationships between SNPs and phenotype (disease
status) by analyzing GWAS data. The GWAS data typically
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contain thousands of samples (diseased samples and normal
samples) and hundreds of thousands of SNPs. Many SNPs
related to a certain phenotype have been discovered [9]-[14].
To understand the underlying causes of common and complex
diseases, considering joint genetic effects (epistasis) across
the whole genome is necessary. However, this creates huge
computational complexity in the analysis. Epistasis [15]—[20]
is a phenomenon in which the effect of an SNP depends
on other SNPs. It is widely accepted that complex traits or
diseases may be caused by many SNPs. The pathogenic SNPs
may show minimal effects individually but strong effects
jointly. These are epistatic interactions.
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In recent years, numerous methods have been proposed for
detecting epistatic interactions [21]-[30]. MDR (multifactor-
dimensionality reduction) [21] is a method for reducing
the dimensionality of multilocus information to improve the
identification of polymorphism combinations associated with
disease risk. MDR is nonparametric and can be utilized to
detect high-order epistatic interactions. The original MDR is
very time consuming. It can only be used on data contain-
ing dozens of SNPs. DECMDR [22] is a method that com-
bines the DE (differential evolution) algorithm with CMDR
(classification-based multifactor-dimensionality reduction).
It uses the CMDR as a fitness measure to evaluate the solu-
tions in the DE process for scanning the epistatic interac-
tions in GWAS. SNPHarvester [24] is a stochastic search
method used to detect epistatic interactions. SNPHarvester
greatly reduces the number of SNPs. MACOED [25] is
a multi-objective heuristic optimization methodology for
detecting epistatic interactions. MACOED combines two
complementary evaluation objectives from logistical regres-
sion and Bayesian network methods to evaluate SNP com-
binations. MACOED uses a memory-based multi-objective
ACO (ant colony optimization) algorithm. AntEpiSeeker [26]
is a two-stage ant colony optimization algorithm. In the first
stage, AntEpiSeeker searches SNP combinations of suffi-
cient size using ACO. In the second stage, it conducts an
exhaustive search of epistatic interactions within the highly
suspected SNP combinations and the reduced set of SNPs
with top ranking pheromone levels. HS-MMGKG [29] is also
a multi-objective heuristic optimization methodology. It uses
harmony search with five objective functions. SEE [30]
is a multi-objective evolutionary algorithm that uses eight
evolution objectives. Four of these objectives are widely
used to measure the relationship between SNP combina-
tions and phenotype in GWAS. The other four objectives
are measures of the difference between an SNP combina-
tion and its best element. Although a variety of methods
have been proposed, the ability to detect epistatic interac-
tions is still insufficient, especially in detecting high-order
interactions.

In this work, we propose a novel stochastic approach
named SHEIB-AGM (stochastic approach for detecting
high-order epistatic interactions using bioinformation with
automatic gene matrix). Compared with other methods,
SHEIB-AGM has the following main advantages:

1) SHEIB-AGM does not need users to specify the order
of the epistatic interactions. It automatically calculates
mo (maximum order) based on the number of samples
in the GWAS data, and mo can also be specified by
the user. SHEIB-AGM can detect any-order (€ [2, mo))
interactions.

2) SHEIB-AGM is a stochastic approach. In each iter-
ation, it randomly generates an SNP combination
that contains mo SNPs. There is minimal relationship
between iterations; thus, SHEIB-AGM is paralleliz-
able. Users can specify the number of threads by setting
the local parameter.
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3) SHEIB-AGM can build a gene matrix (associated
Genes) based on bioinformation (if provided by users).
In each iteration, the SNP combination can be gen-
erated based on the gene matrix, and the matrix
is updated based on whether an epistatic interac-
tion is found in the generated combination. By using
the matrix, the method greatly improves the perfor-
mance in detecting epistatic interactions by using
bioinformation.

4) SHEIB-AGM utilizes k2 (the Bayesian network
scoring criterion) to find an epistatic interaction
in the generated SNP combination and G-test to
determine whether the interaction is significant.
Thus, it can detect any-order (€ [2,mo)) epistatic
interactions.

5) In the implementation of SHEIB-AGM, it utilizes
a Boolean representation to save the GWAS data.
SHEIB-AGM utilizes logical operations to calculate
k2 and G-test based on the representation. Because
the gene matrix is symmetrical, to avoid wasting
memory, it utilizes an array to save the gene matrix.
All these details of the implementation improve
the speed and reduce the memory consumption
of SHEIB-AGM.

To show the performance of SHEIB-AGM, we have
conducted a lot of experiments both on simulated GWAS
data and real GWAS data. We have compared SHEIB
with DECMDR, SNPHarvester, MACOED, AntEpiSeeker,
HS-MMGKG and SEE on 3 simulated datasets including
108 epistatic models and 17600 files. The results indicate that
SHEIB-AGM greatly outperforms the other six methods in
terms of F-measure and power, especially in detecting 3rd-
order epistatic interactions.

We have utilized SHEIB-AGM (with and without bioinfor-
mation) to analyze a real GWAS dataset from WTCCC (the
Wellcome Trust Case Control Consortium) [31]. The results
demonstrate that SHEIB-AGM can greatly improve the detec-
tion ability by using bioinformation. SHEIB-AGM found
many epistatic interactions of varies of order. Some of the
detected genes have evidence in the CTD database (the Com-
parative Toxicogenomics Database) [32]. We have drawn
SNP networks and gene networks based on the epistatic
interactions found by SHEIB-AGM.We have detected many
novel genes, which may play a key role in the seven
complex diseases studied in the WTCCC dataset, includ-
ing STK32A-AS1, FAM155B, MTRNR2L10, SNHGI14,
NCK1-AS1, MIR1254-1, CSAG4, MIR1254-1, and MEIOB.
We believe that SHEIB-AGM is a powerful tool to help
us in understanding pathogenesis of common and complex
diseases.

Il. MATERIALS AND METHODS

A. HARDWARE

All experiments were performed on a computer using a Linux
system with 48G of RAM and AMD Ryzen Threadripper
1950X CPU.
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FIGURE 1. The Boolean representation of the GWAS data.

B. SHEIB-AGM ALGORITHM

SHEIB-AGM is a stochastic algorithm. In each iteration,
it randomly generates an SNP combination containing
mo SNPs based on bioinformation. If the k2 value of the
combination is less than the average value, SHEIB-AGM will
try to detect an epistatic interaction on the combination. The
pseudo code is shown in Algorithm 1, and detailed descrip-
tions are given in the subsequent subsections.

C. THE BOOLEAN REPRESENTATION AND OPERATION

OF GIWAS DATA

SHEIB-AGM utilizes a Boolean representation and operation
of GWAS data to reduce the computing time and memory
consumption, which is very similar to BOOST [33].

Fig. 1 shows the Boolean representation of the GWAS data.
In Fig. 1, suppose that the GWAS data contain n SNPs, m0
controls, and m1 cases. In SHEIB-AGM, mem0 and mem1
are utilized to store genotype data of controls and cases,
respectively. mem0 is a vector of length n. memO[i] (i € [0, n))
is a vector of length 3 and stores the genotype data of the ith
SNP. memO[i][j] (j € [0, 2]) is a Boolean vector of length m0.
The value of memO[i][j][k] (k € [0, m0)) can only be 1 or 0.
If the genotype of the ith SNP and kth control sample is j,
memO[i][j][k] is 1; otherwise, it is 0. The structure of meml
is similar to mem0. For each SNP and sample, SHEIB-AGM
only needs 3 bits to store the genotype. This greatly reduces
the memory consumption of the GWAS data. Fig. 2 shows
how to calculate k2 or G-test for SNP combination [1,2] in
SHEIB-AGM. In Fig. 2, suppose that each SNP has only two
possible genotypes (0 or 1). The GWAS data contain 8 cases
and 8 controls. It uses the Boolean operation to construct a
contingency table for the combination. k2 and G-test can be
calculated based on the table. The calculation takes advantage
of the Boolean operation on the Boolean representation of
the GWAS data; thus, it greatly reduces the computing time.
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The computation complexity of the Boolean operation
in Fig. 2 is O(m x o x 3°). Where o is the number of
SNPs contained in the SNP combination. m is the number
of samples in the GWAS data. The computation complexity
seems to be very high, but most of the operations are Boolean
logic operations, so the speed is very fast. The speed improve-
ment of the storage structure and Boolean operation has been
proved in other studies [29], [30], [33].

D. CALCULATE MO BASED ON THE NUMBER OF SAMPLES
In contrast to other methods, SHEIB-AGM does not need
users to specify the order of the epistatic interactions.
SHEIB-AGM detects epistatic interactions whose order is
less than mo (maximum order). mo can be specified by the
users or calculated based on the number of samples of GWAS
data [24]. If mo is less than 0, SHEIB-AGM will calculate mo
as shown in (1).

mo = |In(min (my o, my 1)) — 0.5] (1)

In (1), mo is the maximum order. m, ¢ is the number of
controls. m, 1 is the number of samples. In this work, we do
not strictly deduce the formula of mo. The larger the value
of mo, the stronger the detection ability of SHEIB-AGM.
Howerver, the too large value of mo may make many cells
in the multi-SNP comtingence table only have very small
number of samples. This will make the calculation of k2
function inaccurate. In order to ensure the effectiveness of
k2 function, we expect that the average number of samples in
each unit of the contingency table is 3, so mm(n;*# =3.
In (1), we use e (Euler’s Number) to approximate 3 and round
the calculation result of mo.

E. LOAD BIOINFORMATION INTO MEMORY
In this work, the bioinformation is given in a file that records
the mapping between SNPs and genes. It can be obtained
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Suppose we want to calculate k2 or G-test

for SNP combination [1,2].

Suppose there are 8 cases and 8 controls,

each SNP only has two possible genotypes.

construct a

memO[1] memO[2] mem1[1] mem1[2]
0 1 0 1 0 1 0 1
1 0 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 1 0 0 1
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0
0 1 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
|

contingency table |

S\C | 00 01 10 11
0 3 1 1
1 4 1 0 3

w

For each genotype combination (C) and each
sample state (S), boolean operation was used
to count the number of samples and construct
a contingency table.

Calculate k2 or G-test for the combination based on the contingency table

FIGURE 2. The Boolean operation of GWAS data.

0 1 2 3 4 0 1 2 3 4
snp2Genes —< 1 3 3 4 0 2 gene2Snps —< 4 0 0 0 1
2 4 1 4 3 5 1 3
3 5
0 2 3 4
0 1 0. 05 0. 05 0. 05 0. 05
associatedGenes — 1 0.05 0. 05 0. 05 0. 05
2 0. 05 0. 05 1 0. 05 0. 05
3 0. 05 0. 05 0. 05 1 0. 05
4 0. 05 0. 05 0. 05 0. 05 1

—

FIGURE 3. How SHEIB-AGM stores bioinformation in memory.

from dbSNP [34], which is a database established by NCBI
(the National Center for Biotechnology Information) [35].
For each SNP in the WTCCC data (the real GWAS data ),
we obtained the gene or genes related to it in the dbSNP
database.

To use bioinformation in SHEIB-AGM, we have made two
very reasonable assumptions. According to Assumption 1,
the algorithm should have bias such that it can tend to detect
epistasis between SNPs on the same gene. According to
Assumption 2, the algorithm should have bias such that it can
tend to detect epistasis between SNPs on the genes in which
an epistatic interaction has been found.

Assumption 1: Epistasis usually occurs within genes.
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Assumption 2: The epistasis between different genes is
regular. If we have found epistatic interactions on different
genes, we will likely detect more interactions on the genes.

In SHEIB-AGM, as shown in Fig. 3, three variables are
constructed based on gene-mapping data. snp2Genes is uti-
lized to obtain SNPs located in a gene. gene2Snps is utilized
to obtains genes in which an SNP is located. associatedGenes
is a gene matrix. In each iteration, SHEIB-AGM tends to
detect epistasis in an SNP combination whose correspond-
ing genes have lager values in the gene matrix. According
to Assumption 1, during initialization, we make the diag-
onal values of the matrix 1 and the non-diagonal values
minRate. The formula for minRate is shown in (2). In Fig. 3,
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Algorithm 1 The Pseudo Code of SHEIB-AGM Algorithm

Require: pathln is the path of GWAS data; pathOut is the path of result; pathS2G is the path of the file which records
bioinformation; mo is the maximum order, SHEIB-AGM will detect epistatic interactions whose orders are less than mo;

maxGen is the maximum number of iterations;
Ensure: epistatic interactions;

1: procedure SHEIB-AGM(pathin,pathOut ,pathS2G,mo,maxGen)
read from pathin and save GWAS data in memory using the Boolean representation;

if mo == —1 then
calculate mo based on the number of samples;

initialize snp2Genes = null; gene2Snps = null; associatedGenes = null; G = 0; meanK?2 = 0; results = empty set;

2
3
4
5: end if
6
7 if pathS2G # null then
8
9

: construct gene matrix (associatedGenes);
10: end if

construct snp2Genes and gene2Snps based on the content of pathS2G;

11: while G < maxG do

12: randomly generate an SNP combination x based on the bioinformation;
13: calculate k2 of x as k2x;

14: meankK 2= % ;

15: if k2x < meanK?2 then

16: try to detect epistatic interaction on x;

17: if an interaction is found then

18: determine whether the interaction is significant based on G-test;
19: if the interaction is significant then

20: add the interaction into results;

21: end if

22 end if

23: end if

24: update associatedGenes based on whether a new interaction is found in this iteration.
25: G=G+ 1,

26: end while

27: end procedure

suppose that there are 6 SNPs and 4 genes in the GWAS
data. snp2Genes is a hash map. Its key represents an SNP,
and its value represents the genes associated with the SNP.
gene2Snps is also a hash map. Its key represents a gene,
and its value represents the SNPs associated with the gene.
In the three variables, the Oth gene represents the unknown
gene. All SNPs that are not located in any genes are thought
to be located in the unknown gene. associatedGenes is a
symmetric matrix. It maintains a value for each pair of
genes (including the unknown gene). In this figure, pb is set
to 0.8.

1—pb
nGenes

@

minRate =

In (2), pb is a parameter specified by the users. nGenes is
the number of genes in the GWAS data.

F. GENERATE AN SNP COMBINATION BASED ON THE
GENE MATRIX

In each iteration of SHEIB-AGM, it generates an SNP combi-
nation based on associatedGenes. As shown in Algorithm 2,
when x visits a new gene, nextGenes is updated based on
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associatedGenes. While generating each SNP for x, except
for the first SNP, SHEIB-AGM uses roulette to randomly
select a gene based on nextGenes and randomly selects an
SNP in the selected gene to insert into x. If bioinformation
is not provided, it will generate a completely random SNP
combination.

G. DETECT AN EPISTATIC INTERACTION ON AN SNP
COMBINATION BASED ON K2

The Bayesian network scoring criterion (k2) [36] is widely
used in detecting epistatic interactions. The formula for k2 is
shown in (3).

meo! X me 1!

(Mes + D! )

k2,9 =[]

ceC

In (3), k2 is the score used to measure the association
between an SNP combination and the phenotype. S represents
an SNP combination. Y represents the phenotype. C is the set
of the genotype combinations of S (if S contains / SNPs, C
will be a set of 3%). me, « 1s the number of samples whereby the
genotype combinations of the SNP combinations are c. m
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Algorithm 2 Generate an SNP Combination Based on Associatedgenes

Require: mo is the maximum order; n is the number of SNPs in the GWAS data; nGenes is the number of genes in the GWAS
data; snp2Genes, gene2Snps and associatedGenes are the variables containing bioinformation; rand() is a function which

returns a random decimal € [0, 1);
Ensure: an SNP combination x;

1: procedure RanGen(mo,n,nGenes,snp2Genes,gene2Snps,associatedGenes)

2: initialize a vector x of length mo;
3: initialize visitedGenes as an empty hash map;
4: initialize nextGenes as a vector of length nGenes + 1;
5: ti = rand(0, n);
6: x[0] = 1;
7: for i € [1, mo) do
8: if snp2Genes # null then
9: for each gene g € snp2Genes|[ti] do
10: if g € visitedGenes then
11: visitedGenes[gl+ = 1;
12: else
13: visitedGenes[g] = 1;
14: nextGenes+ = associatedGenes[g];
15: end if
16: end for
17 calculate the sum of nextGenes as s;
18: s = rand() % s;
19: for j € [0, nGenes) do
20: s— = nextGenes|j];
21: if s < O then
22: randomly select an SNP from gene2Snps(j] as ti;
23: break;
24: end if
25: end for
26: else
27: randomly select an SNP from the SNPs which are not in x;
28: end if
29: x[i] = ti and ensure that all elements in x are in ascending order;
30: end for

31: end procedure

is the number of controls whereby the genotype combinations
are c. m. is the number of cases whereby the genotype
combinations are c.

k2(Y,S) can measure the quality of the Bayesian net-
work constructed using S and Y. If k2(Y, S) is smaller,
the Bayesian network is more accurate, and the association
between S and Y is more significant. When an SNP x is
removed from §, if x is a noise variable (x has no effect on
the phenotype), the quality of the Bayesian network will be
improved, and k2(Y, S) will be smaller. If x is associated with
the phenotype or x has epistasis with any one of the other
SNPs in S, k2(Y, §) will be larger. The change in k2(Y, S) is
very useful in detecting an epistatic interaction on an SNP
combination. As shown in Algorithm 3, each SNP in the
combination is removed to check if the SNP is associated
with the phenotype or if it is a part of an epistatic interaction.
SHEIB-AGM will attempt to remove SNPs until it cannot
remove anyone of them. If the final combination after the
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removal contains more than two SNPs, it will be an epistatic
interaction.

H. DETERMINE WHETHER THE INTERACTION IS
SIGNIFICANT BASED ON G-TEST

In SHEIB-AGM, epistatic interactions are divided into sig-
nificant interactions and non-significant interactions. Using
Algorithm 3, we can detect numerous epistatic interactions.
In this subsection, SHEIB-AGM determines whether the
interactions are significant by using G-test. G-test [37] is
a likelihood-ratio or maximum likelihood statistical signifi-
cance test. If the interaction is not associated with the phe-
notype, the distribution of G-statistic will be approximately
a chi-squared distribution. It is widely used to screen out
significant interactions. In this work, we utilize the p-value
of G-test (g) and the change in g (gc) [30] to screen out the
significant interactions. The formulas for g and gc are shown
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Algorithm 3 Detect an Epistatic Interaction on an SNP Combination Based on k2

Require: mo is the maximum order; x is the SNP combination generated by SHEIB-AGM, it contains mo SNPs; k2x is the

k2 value of x;

Ensure: an epistatic interaction whose order is in [2, mo) or nothing;

1: procedure DetectEpi(mo,x,k2x)

2 initialize [ = mo;
3 while / # 1 do
4 fori e [0,/)do
5: bBreak = false;
6: initialize xx as a vector of length [ — 1;
7 copy all SNPs of x into xx, except x[i];
8 calculate k2 of xx as k2xx;
9: if k2xx < k2x then
10: X = Xxx;
11: k2x = k2xx;
12: I=1-1,
13: bBreak = true;
14: break;
15: end if
16: end for
17: if bBreak == false then
18: break;
19: end if
20: end while
21: if [ > 1 then
22: return x as the epistatic interaction;
23: end if

24: end procedure

in (4), as shown at the bottom of the next page. The interac-
tions whose g and gc are both less than the thresholds speci-
fied by the users are significant. The significant interactions
are recorded in the result file.

In (4), g(Y; S) is the p-value of G-test. Y represents the
phenotype. S represents an SNP combination. p — value_of
represents the function used to compute the p-value of the
chi-square distribution. C is the set of the genotype combina-
tions of S (if § contains / SNPs, C will be a set of 3'). m is the
number of samples. m, ¢ is the number of controls whereby
the genotype combinations are c. m, 1 is the number of cases
whereby the genotype combinations are c. m, , is the number
of samples whereby the genotype combinations of the SNP
combinations are c. m o is the number of controls. m, | is
the number of cases. rEnensl g(Y; E) represents the g of the SNP

whose g is the smallest in S.

I. UPDATE GENE MATRIX

In this subsection, we describe how to update the gene matrix.
After the initialization, the diagonal values of the matrix
are 1, and the non-diagonal values are minRate (very small).
In each iteration, if a significant epistatic interaction is found,
each pair of the genes in which SNPs in the interaction are
located will be set to 1 in the gene matrix (according to
Assumption 2). In the subsequent iterations, the tendency
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to detect epistasis between the genes will increase.
If SHEIB-AGM cannot detect a significant interaction in
the SNP combination generated by Algorithm 2, each pair
of the genes in which the SNPs in the combination are
located will decrease, as shown in (5). In the subsequent
iterations, the tendency to detect epistasis between the genes
will decrease.

In (5), as shown at the bottom of the next page,
associatedGenesli, j] is the value between the ith gene and
jth gene in the gene matrix. decRate is a parameter specified
by the users.

IIl. RESULTS AND DISCUSSION

A. EXPERIMENTS ON SIMULATED DATA

1) SIMULATED DATASETS

In this work, we compared SHEIB-AGM with six other meth-
ods, DECMDR [22], SNPHarvester [24], MACOED [25],
AntEpiSeeker [26], HS-MMGKG [29] and SEE [30],
on three simulated datasets. All seven software packages and
their parameter settings are shown in Table 1. DECMDR,
MACOED, HS-MMGKG and SEE can detect any specified
order epistatic interactions. SNPHarvester and AntEpiSeeker
can only detect 2-order interactions. Although AntEpiSeeker
was designed to detect any specified order interactions, when
we executed it to detect 3-order interactions, ‘‘segment fault”
occurred. The three simulated datasets are as follows:
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TABLE 1. Introduction of the seven software used in the simulated experiment and their parameter settings.

Parameter setting
Algorithm Language All the three datasets DME and DNME 100 DME and DNME 1000 DNMES3 100
s=1; p = 80; p = 800; p = 80;
DECMDR Java m = 0.5; g = 40; g = 140; g = 400;
r=0.5; 0=2; 0o=2; 0o=23;
SNPHarvester Java there is no parameter not executable
pvalue = 0.05/4950;
taul = 1; num_ant = 80; num_ant = 800; num_ant = 80;
MACOED Matlab T0 =0.8; mazx_iter = 40; max_iter = 140; max_iter = 400;
rou = 0.9; dim_ept = 2; dim_epi = 2; dim_ept = 3;
lambda = 2;
alpha = 1;
iTopModel = 80;
iTopLoci = 16;
rou = 0.05; 1AntCount = 80; 1AntCount = 800;
AntEpiSeeker C++ phe = 100; iItCountLarge = 10; iItCountLarge = 40; not executable
largehapsize = 6; iItCountSmall = 30; | 1I1tCountSmall = 100;
smallhapsize = 3;
iEpiModel = 2;
pvalue = 0.01;
nsolution = 1;
hmer = 0.8; hms = 80/5; hms = 800/5; hms = 80/5;
HS-MMGKG Java par = 0.4; tmax = 80 * 40; tmax = 800 * 140; tmaxz = 80 *x 400;
fold =5; order = 2; order = 2; order = 3;
p — vlaue = 0.05;
pe=1;
cCec = 0;
c(iégzc_—l(.), numPop = 80; numPop = 800; numPop = 80;
SEE C++ ehec= 5 maxlter = 80 * 40; maxlter = 800 * 140; maxlter = 80 x 400;
cGe =1, . _o. _ q.
G = 0.05: order = 2; order = 2; order = 3;
rn =1;
default values for the other parameters;
o= —1;
rm=1;
SHEIB-AGM Java pb = 0.8; maxGen = 80 * 40; maxGen = 800 x 140; maxGen = 80 * 400;
cG = 0.05;
cGe=1;

« DME and DNME 100: This dataset contains 8 DME
(disease loci with marginal effects) and 60 DNME
(disease loci without marginal effects) models.
Each model contains 100 simulated GWAS files.
Each file contains 100 SNPs, 800 cases, and
800 controls. The DME models were obtained from
DECMDR [22] and the DNME models were gen-
erated based on a variety of MAFs [0.2,0.4] and
Heritabilities [0.025,0.05,0.1,0.2,0.3,0.4] by using

GAMETES_2.1 [38]. The penetrance tables of the
68 models are shown in Table S1 in the Supplementary
Appendix.

e« DME and DNME 1000: This dataset is the same

as DME and DNME 100, except that in this
dataset, each simulated GWAS file contains
1000 SNPs.

o DNME3 100: This dataset contains 40 DNME models.

Each model contains 100 simulated GWAS file. Each

g(Y;8) = pvalue_of 2 .cc Me0 X % + me,1 X %)
Y;S ) '
B ming(r; $) £ 0
ming(Y; E) EeS
. TS )
ge¥: )= 11, if 8(Y:$)=0and ming(Y:E) =0
€
4, if gY;S) #0and rbpigg(Y;E)=0
€
T = associatedGenesli, j| x (1 — decRate)
T, if T inRat
associatedGenesli, j| = ) lf ~ mm' are (@)
minRate, if T <= minRate
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FIGURE 4. Power comparisons between DECMDR (D), SNPHarvester (H), MACOED (M), AntEpiSeeker (S), HS-MMGKG (G), SEE (E) and SHEIB-AGM (A) with
the DME and DNME 100 dataset. The bars represent powers of the algorithms.

file contains 100 SNPs, 800 cases, and 800 controls. [0.025,0.05,0.1,0.2]. The penetrance tables of the
The models were generated by GAMETES_2.1 based 40 models are shown in Table S2 in the Supplementary
on a variety of MAFs [0.2,0.4] and Heritabilities Appendix.
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FIGURE 5. F-measure comparisons between DECMDR (D), SNPHarvester (H), MACOED (M), AntEpiSeeker (S), HS-MMGKG (G), SEE (E) and SHEIB-AGM
(A) with the DME and DNME 100 dataset. The bars represent F-measures of the algorithms.

All three simulated datasets were generated by 2) EVALUATION CRITERIA
GAMETES_2.1 based on their penetrance In this work, we utilize the F-measure [25], [30] and
tables. power [22], [39] to evaluate the performance of the methods.
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FIGURE 6. F-measure comparisons between DECMDR (D), SNPHarvester (H), MACOED (M), AntEpiSeeker (S), HS-MMGKG (G), SEE (E) and SHEIB-AGM
(A) with the DME and DNME 1000 dataset. The bars represent F-measures of the algorithms.

They are both widely used criteria to evaluate the ability algorithm detects epistatic interaction in 100 GWAS files.

to detect epistatic interactions. The F-measure and power The power represents the rate at which we have detected the
are calculated as shown in (6). For each disease model, the true epistatic interaction in the files. For each model and each
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FIGURE 7. F-measure comparisons between DECMDR (D), MACOED (M), HS-MMGKG (G), SEE (E) and SHEIB-AGM (A) with the DNME3 100 dataset. The

bars represent F-measures of the algorithms.

algorithm, 100 F-measures are generated from 100 GWAS
files, and the F-measure of the algorithm on the model is the
average of the 100 values.

#(S)
ower = —-
P 100
TP
recall = ———
TP + FN
.. P
precision = ————
TP + FP
2
F — measure = ———— (6)

recall + precision

In (6), power and F — measure are the two evaluation
criteria used in this work. #(S) means the number of files
(100 files in total) in which the algorithm has detected the
true epistatic interaction. TP (true positive) is the number of
true epistatic interactions found by the algorithm. FN (false
negative) is the number of true epistatic interactions not found
by the algorithm. FP is the number of SNP combinations
which are not epistatic interactions and not found by the
algorithm.
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3) COMPARISON OF SEHIB-AGM WITH EXISTING METHODS
ON SIMULATED DATA

On the DME and DNME 100 dataset, we compared
SHEIB-AGM with the other methods. The parameters are
given in Table 1. The average powers of DECMDR, SNPHar-
vester, MACOED, AntEpiSeeker, HS-MMGKG and SEE
are 0.328088235, 0.741029412, 0.483823529, 0.918970588,
0.615735294 and 0.5975, respectively. Their average
F-measures are 0.328088235, 0.740343191, 0.483350868,
0.224458529, 0.615735294, and 0.5975, respectively. The
F-measure and power of SHEIB-AGM are both 0.984558824.
Fig. 4 and Fig. 5 show the comparisons between the seven
methods with the DME and DNME 100 dataset. It is found
that SHEIB-AGM outperforms the other six methods in
terms of power and F-measure with this simulated dataset.
The detailed experiment results are shown in Table S3 and
Table S4 in the Supplementary Appendix.

On the DME and DNME 1000 dataset, there are ten
times as many SNPs in the simulated data, and detect-
ing epistasis is more difficult. The parameters were set as
in Table 1. The average powers of DECMDR, SNPHar-
vester, MACOED, AntEpiSeeker, HS-MMGKG and SEE
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TABLE 2. The final seven GWAS data constructed from the WTCCC dataset.

data disease number of SNPs | number of cases | number of controls | number of samples
bd_gwas Bipolar Disorder 458922 1868 2938 4806
cad_gwas | Coronary Artery Disease 458743 1926 2938 4864
cd_gwas Crohn’s Disease 459472 1748 2938 4686
ht_gwas Hypertension 458851 1952 2938 4890
ra_gwas Rheumatoid Arthritis 458854 1860 2938 4798
tld_gwas Type 1 Diabetes 459244 1963 2938 4901
t2d_gwas Type 2 Diabetes 459112 1924 2938 4862

TABLE 3. The number of epistastic interactions detected on the seven GWAS data using SHEIB-AGM without bioinformation.

epistatic interactions | bd_gwas | cad_gwas | cd_gwas | ht_gwas | ra_gwas | tld_gwas | t2d_gwas
2-order 28 4510 37 35 5867 46 23
3-order 2 624 0 1 757 11 2
4-order 0 31 0 0 23 0 0
S-order 0 3 0 0 0 0 0
total 30 5168 37 36 6647 57 25
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FIGURE 8. The SNP network of the epistatic interactions detected for Bipolar Disorder (only 400 SNP pairs with minimum p-values of G-test). The
SNP networks for the other six diseases are shown in Fig. $3-S8 in the Supplementary Appendix.

are 0.126764706, 0.120882353, 0.196029412, 0.608088235,
0.230441176 and 0.237647059, respectively. Their average
F-measures are 0.126764706, 0.120833338, 0.195931368,
0.038724412, 0.230441176 and 0.237647059, respectively.
The F-measure and power of SHEIB-AGM are both
0.926323529. Fig. 6 shows the F-measure comparisons
between the seven methods on this dataset. Fig. S1 in the

21688

Supplementary Appendix shows the power comparisons
between the seven methods with this dataset. Although there
are many more SNPs in the GWAS data, SHEIB-AGM
still outperforms the other six methods with respect to
power and F-measure. The detailed experimental results are
shown in Table S5 and Table S6 in the Supplementary
Appendix.
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FIGURE 9. The gene network of the epistatic interactions detected for Bipolar Disorder (only 400 gene pairs with the highest frequency of occurrence).

The gene networks for the other six diseases are shown in Fig. $9-S14 in the Supplementary Appendix.

TABLE 4. The number of epistastic interactions detected on the seven GWAS data using SHEIB-AGM with bioinformation.

epistatic interactions | bd_gwas | cad_gwas | cd_gwas | ht_gwas | ra_gwas | tld_gwas | t2d_gwas
2-order 698 45579 174 404 106671 5643 349
3-order 6315 273362 450 1800 358274 60713 2078
4-order 23474 315054 537 4142 219963 71442 4839
5-order 16687 135112 91 3217 55539 31479 3258
6-order 3461 21750 4 856 6057 5499 658
7-order 84 686 0 23 146 180 16
total 50719 791543 1256 10442 746650 174956 11198

On the DNME3 100 dataset, we compared SHEIB-AGM
with the other methods in detecting third-order epistatic inter-
actions. The parameters were as listed in Table 1. The average
powers of DECMDR, MACOED, HS-MMGKG and SEE
are 0.094, 0.00275, 0.14975 and 0.1565, respectively. Their
average F-measures are 0.094, 0.00275, 0.14975 and 0.1565,
respectively. The F-measure and power of SHEIB-AGM
are both 0.8705. Fig. 7 shows the F-measure comparisons
between the five methods with this dataset. Fig. S2 in
the Supplementary Appendix shows the power compar-
isons between the five methods with this dataset. It is
found that SHEIB-AGM outperforms DECMDR, MACOED,
HS-MMGKG and SEE with respect to power and F-measure
on this simulated dataset. The detailed experimental results
are shown in Table S7 and Table S8 in the Supplementary
Appendix.
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B. EXPERIMENTS ON REAL DATA

1) WTCCC DATASET

In this work, we used a real dataset from WTCCC (the
Wellcome Trust Case Control Consortium). In the dataset,
there are approximately 14,000 cases of seven complex
diseases and 3000 controls. The seven diseases are Bipo-
lar Disorder, Coronary Artery Disease, Crohn’s Disease,
Hypertension, Rheumatoid Arthritis, Type 1 Diabetes, and
Type 2 Diabetes. For each disease, there are approximately
2,000 samples. For each sample, the genotype of approxi-
mately 500,000 SNPs has been measured. Table S9 in the
Supplementary Appendix gives a description to the WTCCC
dataset. We combined the cases of each disease and the con-
trols to construct seven GWAS data. Following the WTCCC’s
recommendation, we removed some SNPs and samples. For
each GWAS data, we also removed the SNPs whose genotype
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TABLE 5. Some of the epistastic interactions detected on the seven GWAS data using SHEIB-AGM with bioinformation. The complete table is shown

in Table S11 in the Supplementary Appendix.

g [ gc ] snpl [ snp2 [ snp3 [ snp4 [ snp3 [ snp6 [ snp7
Bipolar Disorder

0] 0 rs1381855 rs12050604 | 1rs1037990

0| O | rs16849921 | rs10197379

0| O | rsl7116145 | rs17116117 rs1176728 rs1176740 rs1176741

0] 0 rs4924705 rs4923955 rs12050604 | rs1037990

0| O | rs16849921 | rs10197379 | rs9638436 rs9638437 1s567696 rs3176398

0] 0 rs6675577 | rs16849921 | rs12694298 rs820564 rs6956354 | rs41436844 1s567696

Coronary Artery Disease

0] 0 1s2266829 523773

0] 0 rs228337 rs17330041 rs5927017

0 | O | rs41435147 | rs34106226 rs115571 rs10521972

0] 0 rs2167594 rs3176406 rs3176398 rs1933428 rs3027898

0| O | rs11249085 | rs16829083 rs3176406 rs3176398 rs1933428 rs3027898

0] 0 12032749 1s5971434 rs5925268 rs1933428 1s5955612 rs916313 rs7878756
Crohn’s Disease

0| 0 | rsl7116117 rs1176728 rs1176738

0| O | rsl7116145 | rs17116117

0| O | rs11921179 rs7154773 rs10142834 | rs17097262

0| O | rs11921179 | rs8011227 rs1887103 rs7154773 rs10142834 | rs8012816

0| O | rs11921179 | rs11064445 | rs1887103 rs7154773 1rs17097262

Hypertension

0] 0 rs8137391 rs16986990

0| O | rs10016497 | rs6840033 rs868653

0] 0 rs1887104 rs7154773 | rs10142834 | rs8012816 | rs17097243 | rs7158657

0] 0 rs6840033 rs883455 rs10519535 rs7678137

0] 0 rs7154773 rs10142834 | rs17097262 | 152972437 rs2972438

0] 0 1rs7867394 rs7045602 rs8011227 rs7154773 rs10142834 | rs8012816 rs7158657

Rheumatoid Arthritis

0] 0 rs7154773 rs10142834 | rs10130695

0] 0 rs5972125 rs5985895

0] 0 rs7154773 rs10142834 | rs10130695 | rs17097243

0| O | rs16836194 | rs16876800 | rs5980711 15727562 rs5987569

0| O | rs11125352 | 1s2075800 1s2722496 | rs17114865 rs6521112 rs5987569

0] 0 rs707974 rs10244032 | rs16886500 | rs16987067 | rs5964260 rs2236153 | rs41371346
Type 1 Diabetes

0| O | rs41417553 | 1s2904776

0 0 rs8011227 187154773 rs10142834 rs7158657

0] 0 rs3016013 1rs2523485 | rs16905827

0 0 rs4861558 rs3177928 rs3135392 157194 rs1051336

0 0 rs3016013 1s2507976 rs4081552 rs9266775 rs17154559 | rs16958762

0 | O | rs34717730 | rs3130284 rs408359 rs3130348 1rs9266774 rs7067635 | rs16958762
Type 2 Diabetes

0| O | rs16849921 | rs10197379

0 | 0 | rs16849921 | rs10197379 | rs12694298

0] O rs8011227 rs7154773 | rs17097243 rs7158657

0] 0 rs6940205 rs10499044 | 154255065 rs6958533 rs6135716

0| 0 | rs17037861 1rs6940205 rs10499044 | 154255065 rs6958533 157256304

0] 0 r$6940205 rs10499044 | rs11033219 | 157195033 rs16958762 | rs16998352 | rs17004654

is unchanged in all samples. Table 2 shows the final seven
GWAS data.

2) RESULTS ON THE SEVEN WTCCC GWAS DATA USING
SHEIB-AGM WITHOUT BIOINFORMATION

According to the previous analysis of the simulation exper-
iments, compared to other methods, the proposed algo-
rithm achieves a good performance on the three simu-
lated datasets. We applied SHEIB-AGM without bioinfor-
mation to analyze the seven GWAS data from WTCCC.

We set pp = 0.9, decRate = 0.01, cG = 0.05,
cGe = 005, 0 = —1, maxGen = 4 x 107, seed =
0, rn = —1, and other parameters as default values.
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We have found many epistatic interactions with varying
orders, as shown in Table 3. It is more difficult to detect higher
order epistatic interactions than lower order interactions.
More detailed results can be found in Table S10 in the
Supplementary Appendix (Table S10-S13 can be obtained at
https://github.com/sunliyan0000/sheib-agm).

3) RESULTS ON THE SEVEN WTCCC GWAS DATA USING
SHEIB-AGM WITH BIOINFORMATION

To verify whether the introduction of bioinformation impro-
ves the detection ability of SHEIB-AGM, we applied SHEIB-
AGM with bioinformation to analyze the seven GWAS data
from WTCCC. We set pb = 0.9, decRate = 0.01, cG = 0.05,
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TABLE 6. Some of the gene pairs of the epistastic interactions detected
on the seven GWAS data using SHEIB-AGM with bioinformation. The
complete table is shown in Table S12 in the Supplementary Appendix.

genel [ ctdl ] gene2 [ ctd2 | number of occurrences
Bipolar Disorder
CABLES] NDE | LOC107984008 NF 5362
CABLESI NDE STK32A-AS1 NF 5362
LOC105372022 NF LOC107984008 NF 5319
LOC105372022 NF STK32A-AS1 NF 5319
Coronary Artery Disease
LOC105371749 NF RPL10 NDE 4549
LOC105371748 NF LOC107987332 NF 4549
LOC105371749 NF LOC107987332 NF 4549
LOC105371748 NF RPL10 NDE 4549
Crohn’s Disease
FAMI155B NF MTRNR2L10 NF 357
PPMI1A NDE PPMIA NDE 334
SNHG11 NDE SNHG14 NF 159
JPT2 NDE SNHG14 NF 159
Hypertension
NCKI1-AS1 NF SLC35G2 NDE 2552
SGSH NDE SLC26A11 NDE 2262
CCARI1 NDE MIR1254-1 NF 1594
CCARI1 NDE CCARI1 NDE 1594
Rheumatoid Arthritis
GABRA3 NDE MAGEA12 NDE 2199
CSAG4 NF GABRA3 NDE 2199
GLRA4 NDE LINC00630 NDE 1668
GLRA4 NDE TMEM27 NDE 1628
Type 1 Diabetes
LOC105379656 NF LOC105379664 NF 17226
LOC105379664 NF LOC107987429 NF 13917
LOC105379656 NF LOC107987429 NF 13917
LOC105379664 NF LOC105379664 NF 8613
Type 2 Diabetes
LOC105377926 NF LOC105377926 NF 3262
MAPKAPKS NDE TMEM116 NDE 2134
ADAMIA NDE MAPKAPKS NDE 1875
CCARI1 NDE MIR1254-1 NF 1531
¢Ge = 0.05, 0 = —1, maxGen = 4 x 107, seed = 0,

rn = —1, and other parameters as default values. The
detected epistatic interactions are shown in Table 4. The
detailed results can be found in Table S11 in the Supple-
mentary Appendix. Compared to Table 3, with bioinforma-
tion, SHEIB-AGM can detect 33.94~3069.40-times more
epistatic interactions. This represents a good performance
in detecting higher order epistatic interactions. The results
demonstrate that Assumption 1 and Assumption 2 are reason-
able. SHEIB-AGM can use bioinformation to greatly improve
the detection ability.

Some of the detected epistatic interactions are shown
in Table 5. The complete list of the interactions is given
in Table S11 in the Supplementary Appendix. Based on
the dbSNP database, many SNPs can be mapped to genes.
We counted the number of occurrences for the genes and
gene pairs. Table 6 and Table 7 show the occurrences of
each gene and each gene pair, respectively. The genes and
gene pairs with high numbers of occurrences may play a very
important role in the corresponding disease. For each of the
seven diseases, we searched for each detected gene on the
CTD database (the Comparative Toxicogenomics Database).
As shown in Table 6 and Table 7, some of the genes have
DE (Direct Evidence) or NDE (Not Direct Evidence) on the
CTD database. The genes that have NF (Not Found) on the
CTD database may be helpful in further understanding the
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TABLE 7. Some of the genes of the epistastic interactions detected on the
seven GWAS data using SHEIB-AGM with bioinformation. The complete
table is shown in Table S13 in the Supplementary Appendix.

gene [ ctd | number of occurrences
Bipolar Disorder
STK32A-AS1 NF 18328
LOC107984008 NF 18328
CABLESI1 NDE 17394
LOC105372022 NF 17303
Coronary Artery Disease
GABRA3 NDE 57583
SNORAT70 NDE 49888
LOC107987332 NF 49888
RPLI10 NDE 49888
Crohn’s Disease
PPMI1A NDE 392
FAM155B NF 357
MTRNR2L10 NF 357
MEIOB NF 213
Hypertension
CCARI NDE 3189
LOC105377926 NF 3170
NCKI1-AS1 NF 2552
SLC35G2 NDE 2552
Rheumatoid Arthritis
GABRA3 NDE 33622
GLRA4 NDE 25130
unknown NF 24566
BAG6 NDE 23587
Type 1 Diabetes
LOC105379664 NF 48774
LOC105379656 NF 48774
LOC107987429 NF 38809
AGPAT1 NDE 31948
Type 2 Diabetes
LOC105377926 NF 6668
CCARI1 NDE 3070
MAPKAPKS NDE 2467
TMEM116 NDE 2159

seven diseases. We have utilized Cytoscape [40] to generate
SNP networks and gene networks for each disease. Fig. 8 and
Fig. 9 are the SNP network and gene network for Bipolar
Disorder. The networks for the other six diseases are shown
in Fig. S3-S14 in the Supplementary Appendix.

IV. CONCLUSION

In this article, we propose a novel stochastic approach named
SHEIB-AGM to detect epistatic interactions in GWAS. The
approach maintains a gene matrix to manage the bioinforma-
tion. In each iteration, it randomly generates an SNP com-
bination containing mo SNPs based on the gene matrix. The
approach utilizes k2 to detect an epistatic interaction on the
combination. According to the detection result, SHEIB-AGM
updates the gene matrix. We have conducted extensive exper-
iments on both simulated data and real GWAS data. The
experimental results demonstrate that the proposed algorithm
outperforms six existing methods: DECMDR, SNPHarvester,
MACOED, AntEpiSeeker, HS-MMGKG and SEE. In addi-
tion, SHEIB-AGM can use bioinformation to greatly improve
the detection ability. We believe that SHEIB-AGM is a pow-
erful tool for helping us understand the pathogenesis of com-
mon and complex diseases.
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