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ABSTRACT In this paper, we integrate the advantages of convolutional neural network (CNN) and bidi-
rectional recurrent neural network (BiRNN) with attention mechanism, and propose a CNN-BiRNN based
method to recognize the individual high resolution range profile (HRRP). In the proposed method, the CNN
is utilized to explore the spatial correlation of raw HRRP data and extract expressive features followed by
a BiRNN taking the full consideration of temporal dependence between range cells. Furthermore, in order
to enhance the robustness to misalignment, an attentional mechanism is employed after BiRNN to allow the
CNN-BiRNN model to focus on the discriminative target area. The combination of CNN and BiRNN with
attention mechanism makes the extracted features are not only efficient, but also strongly resistant to the
time-shift sensitivity. Experimental results on measured HRRP data demonstrate the effectiveness and the
robustness to misalignment of the proposed method.

INDEX TERMS Radar automatic target recognition (RATR), high-resolution range profile (HRRP),
convolutional neural networks (CNNs), recurrent neural networks (RNNs), attention mechanism.

I. INTRODUCTION
Radar High-resolution range profile (HRRP), is composed
of the amplitude of the coherent summations of the com-
plex returns from target scatterers in each range cell, which
represents the projection of the complex returned echoes
from the target scattering centers onto the radar line-of-sight
(LOS). Since HRRP contains abundant target structure signa-
tures, such as target size, scatterer distribution, etc., HRRP-
based radar automatic target recognition (RATR) has received
intensive attention from the RATR community [1]–[24].

Emphasis of HRRP-based RATR mainly laid on how
to extract discriminative features from data robustly and
effectively, and these efforts can be roughly divided into the
following two categories. The first category is physical mech-
anism based methods, and they usually accomplish the recog-
nition tasks in the learned feature subspacewith some specific
physical meanings. In [4], [5], RELAX-based algorithms are
employed to extract the location information of predominant
scatterers from HRRP data as features for recognition tasks.
The researchers investigate the recognition methods based on
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kinds of spectra features in [6]–[8]. Generally, these meth-
ods perform well in practice but heavily rely on personal
experiences and prior knowledge. The second category, data-
driven methods, have attracted increasing attention in past
years due to their ability to learn discriminative features from
the dataset automatically. In [9], the principal components
analysis (PCA)-based feature subspace is constructed to min-
imize reconstruction error for RATR. Given the statistical
correlation of HRRP, the researchers in [10]–[14] employ
statistical models, such as factor analysis (FA) to project
and recognize HRRP in a learned low dimensional latent
feature space. Considering the sparsity within the HRRP,
Feng et al. [15] and Zhou [16] apply sparse constraint on the
feature vectors and solve the problems via l0-minimization.
However, all those methods build linear and shallow archi-
tectures that limit their capability to represent the compli-
cated HRRP data. Advanced data-driven methods, such as
deep neural networks, have been successfully employed in
HRRP-based RATR in recent years due to their powerful
expressive capability. Feng et al. [18] employ the average
profile as the correction terms and stack a series of corrective
autoencoders (CAE) to extract features from HRRP. In view
of the temporal dependence in HRRP, Xu et al. [19] divide

20828 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3281-9312
https://orcid.org/0000-0001-5151-9388
https://orcid.org/0000-0002-8312-0088
https://orcid.org/0000-0002-9154-8308
https://orcid.org/0000-0003-4046-163X
https://orcid.org/0000-0001-6204-9609
https://orcid.org/0000-0002-4059-4806


J. Wan et al.: Recognizing the HRRP by Combining CNN and BiRNN With Attention Mechanism

FIGURE 1. Variation of the recognition rate with the different extents of
misalignment, via CNN and RNN.

the HRRP sample into multiple overlapping sequential fea-
ture and use recurrent neural network (RNN [25]) to learn
latent representation for the recognition task. To explore the
correlation between range cells and extract the structured
discriminative features in HRRP, Wan et al. [20] employ
convolutional neural networks (CNNs [26]) to address the
HRRP-based RATR task.

Although the deep learning based models have shown
better performance than the shallow or linear ones, there
are still some defects. For instance, the CNN model in [20]
mainly focuses on the local structure information without
modeling the global structure or temporal correlation of
HRRP. As a result, their CNN model is sensitive to the
misalignment between HRRPs. As for RNN, the authors
in [19] model the raw HRRP data with fully-connected based
RNN directly, which makes it difficult to extract efficient
features and causes a worse recognition results compared
with CNN [20]. In Fig. 1, we exhibit the recognition results
of CNN and RNN models on measured radar HRRP dataset.
Note that, the structure of CNN follows [20], which can be
regarded as an extended LeNet-5 [35], and it is composed of
three convolutional with kernel size 1× 9, pooling with size
1 × 2, batch normalization layers, one fully connected layer
with size 300 and one classification layer. The structure of
RNN follows [19], which is an RNN encoder containing one
hidden layer with size 200, and the last hidden state is utilized
for the recognition task. As same as [19], in RNN, the HRRP
sample is divided into multiple overlapping sequential feature
with length 32 and overlap 16. Apparently, as shown in Fig. 1,
without misalignment (Translation = 0), the CNN, 92.5%,
performs 2% better than the RNN, 90.1%. The recognition
rates of CNN are almost constant with the misalignment
falls in [−5, 2], as the higher-layer representation of CNN
for small translations of the input within the pooling size
is invariant. However, the CNN is not always robust to the
time misalignment, and when the misalignment exceeds the
pooling size, e.g. [−16, 16], the performance of CNN drops
significantly with the increase of the misalignment units as
shown in Fig. 1. By the contrast, that of the RNN model
dose not change a lot as it utilizes the temporal depen-
dence to dynamically grasp and deliver global discriminative
information.

To address the above issues and combine the advantages
of CNN and RNN models, in this paper, we integrate CNN
and bidirectional RNN (BiRNN)with attentionmechanism to
propose a CNN-BiRNN based method for the single HRRP
recognition. A CNN model is employed to extract expressive
features from the raw HRRP data followed by a BiRNN with
the full consideration of temporal dependence between range
cells in the single HRRP. Furthermore, in order to enhance
the robustness to misalignment, an attention mechanism is
introduced after BiRNN to allow the model to focus on the
discriminative target area automatically. All the components
are trained jointly in an end-to-end fashion. Through the
combination of CNN, BiRNN and attention mechanism, our
method sufficiently exploits the correlation between range
cells and the temporal dependence in an individual HRRP,
which improves the recognition performance and introduces
the robustness to time-shift sensitivity. We evaluate the pro-
posed method on the measured HRRP data. The comprehen-
sive comparisons with several existing methods demonstrate
that the proposed method achieves better performance under
aligned data and remarkably improves the performance under
misalignment.

The remainder of this article is organized as follows.
In Section II, the signal model of HRRP, as well as the funda-
mental of the CNN and RNN model, is introduced. We detail
the CNN-BiRNN and compare it with other related works in
Section III and IV, respectively. In SectionV, the experimental
results on measured HRRP data are shown. Section VI draws
the conclusion.

II. PRELIMINARIES
In this section, we briefly review the HRRP, following which
the architecture of CNN and RNN are provided.

A. HRRP
Generally, the range resolution of high-resolution radar
(HRR) is much smaller than the targets size. Thus, the HRR
can effectively divide the complex targets such as an aircraft
into many range ‘‘cells’’. According to [9], [13], the t-th
complex HRRP can be written as

xC (t) = ejθ (t)
[
x̃1(t), x̃2(t), . . . , x̃L(t)

]
(1)

where θ(t) stands for the initial phase of the t-th returned
echo, and x̃l(t) =

∑Vl
i=1 σlie

jφli(t) denotes the echo of l-th
range cell, which is composed of Vl scatterers of strength
σli and phase φli(t). Then, the t-th time domain HRRP x(t)
is obtained by taking absolute value of xC (t), which can be
represented as

x(t) =
[
|x̃1(t)|, |x̃2(t)|, . . . , |x̃L(t)|

]
=

[ ∣∣∣∣∣
V1∑
i=1

σ1iejφ1i(t)
∣∣∣∣∣ ,
∣∣∣∣∣
V2∑
i=1

σ2iejφ2i(t)
∣∣∣∣∣ ,

. . . ,

∣∣∣∣∣
Vl∑
i=1

σliejφli(t)
∣∣∣∣∣ , . . . ,

∣∣∣∣∣
VL∑
i=1

σLiejφLi(t)
∣∣∣∣∣
]

(2)
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FIGURE 2. Examples of three aircraft and their corresponding time
domain HRRP samples. (a) An-26; (b) Cessna Citation S/II; and (c) Yark-42.

where |·|means taking absolute value. The right side of Fig. 2
presents the time domain HRRP samples from the corre-
sponding three airplane targets, i.e., An-26, Cessna Citation
S/II, andYark-42. For notational convenience, wewill replace
the notation x(t) with x in the following sections.

B. CNN AND RNN
1) CNN
A typical CNN architecture [26]–[28] generally comprises of
alternate layers of convolution and pooling followed by one
or more fully connected layers at the end. Detailedly, we sup-
pose X ∈ RH×W×C is a multichannel input, where each
dimension of X represents the height, width, and the number
of channels, respectively. We also assume that the CNN con-
sists of L convolutional layers, and layer l ∈ {1, . . . ,L} has
Kl filters. For the k-th filter at layer 1, a convolution operation
applies filterW(k,1)

∈ Rh(1)×w(1)
×C toX, which yields feature

map

y(k,1) = f (X ∗W(k,1)
+ b(k,1)) (3)

where ∗ denotes the convolutional operator, b(k,1) is the bias
for the k-th feature map, and f (·) is the RELU nonlinear
activation function. To increase the content covered by a
convolutional kernel and the sparsity of the hidden units,
a convolutional layer is usually followed by a pooling layer.
The resolution of the feature map is reduced by pooling over
the local neighborhood on the feature map. After the convo-
lution and the pooling, k-th feature map at layer 1, h(k,1) =
fp(y(k,1)) ∈ RH (h1)

×W (h1)
×1 is yielded, where H (h1),W (h1)

are the height and width of h(k,1), and fp(·) defines the type
of pooling operation. After applying K1 filters, we have the
feature maps of layer 1, H(1)

∈ RH (h1)
×W (h1)

×K1 .

FIGURE 3. Illustration of the RNN model.

With this convolutional-pooling operation repeated in
sequence for L layers, the feature map of last convolutional
layer, H(L) is obtained, which is usually fed into some fully
connected layers to produce the final classification feature z.
In the end, the feature z goes into a softmax classifier for the
recognition task.

2) RNN
Abasic RNNmodel, as shown in Fig. 3, includes a input layer,
a hidden layer and a output layer. Given a sequential sample
of length T , x = [x1, x2, x3, . . . , xT−1, xT ], the RNN reads x
in order from x1 to xT , and calculates the hidden state ht and
the output ot by iterating the following equations from t = 1
to T

ht = f (Wxh · xt +Whh · ht−1), t = 1 . . . T (4)

ot = f (Whx · ht ), t = 1 . . . T (5)

where Wxh ∈ Rm×d , Whh ∈ Rm×m and Whx ∈ Rm×n

respectively represent the weights of input-hidden, hidden-
hidden and hidden-output, and d,m, n are the size of input,
hidden and output. f (·) refers to the activation function which
operates on each elements. Usually, the last output oT is used
as the feature of the softmax classifier to predict the label,
as it contains information of the whole sequential data x.
Due to the excellent modeling of sequential data, RNN [25]
achieves state-of-the-art performance on different tasks, such
as speech recognition [29], machine translation [30], [31],
HRRP recognition [19] and so on.

In this paper, wewould like tomake full use of the temporal
dependence in HRRP. Hence, we propose to utilize BiRNN
in our model, which is an extended RNN model that includes
forward and backward RNNs.

III. METHOD
The proposed method, as shown in Fig. 4, mainly consists of
three parts: the input HRRP data X at the bottom, a CNN-
BiRNN hybrid model in the middle, and a softmax classifier
on the top. Without loss of generality, we take the time
domainHRRP (2) as input. The proposedmethod includes the
following three steps: the construction of the CNN-BiRNN
model, the training and the test of the model.

A. THE CNN-BIRNN HYBRID MODEL
As shown in the middle of Fig. 4, the CNN-BiRNN hybrid
model contains two components: a CNN with L convolu-
tional layers at the bottom half and a BiRNN with attentional
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FIGURE 4. An overview of the proposed method based on RNN-BiCNN.
A deep CNN is employed to extract expressive feature from X,
the resultant feature map, H(L), is considered as a sequence and passed
into an attentional BiRNN for sequential modeling, and a softmax
classifier receives the features from the attentional BiRNN and outputs
the classification results.

mechanism [31] on the top half. The components of themodel
are trained jointly in an end-to-end fashion.

A single HRRP sample X ∈ R1×W×1 is a real-valued vec-
tor (W is the length of range dimension), thus a 1-dimensional
convolution CNN model is employed, where the convolution
operation only takes place at the range dimension. For the first
layer, as shown at the bottom of Fig. 4, convolution operations
with stride length 1 apply K1 filters,W(1)

∈ R1×w(1)
×1, to X,

resulting in feature map of layer 1, H(1)
∈ R1×W (h1)

×K1 . For
the following L − 1 convolution layers, convolution-pooling
operations repeatedly apply Kl filters, W(l)

∈ R1×w(l)
×Kl−1 ,

toH(l−1), and featuremapH(L)
∈ R1×W (hL)

×KL is gained after
L convolutional layers. Each convolutional layer is followed
by a pooling layer, thus the time (range) dimension is short-
ened and the temporal dependence grows as the convolutional
layer increases. It should also be noted that the discriminative
features extracted by the CNN also preserve the sequence
order that exist in HRRP, which can be naturally applied to
BiRNN for sequential modeling.

Afterwards, to sufficiently utilize the temporal dependence
in HRRP, we pass the H(L) into a BiRNN for a further
processing. In particular, after dropping the singleton dimen-
sion, H(L)

∈ RW (hL)
×KL can be considered as a sequence

of length W (hL) with KL feature vector at each time step.
In the following, we replace the time steps W (hL) with T for
notational convenience. The forward RNN reads H(L) in its
original order and generates a hidden state fht at each time
step, and the backward RNN reads H(L) in its reverse order
and produces bht , i.e.,

fht = f (Wfxh ·H
(L)
t +Wfhh · fht−1), t = 1 . . . T (6)

bht = f (Wbxh ·H
(L)
t +Wbhh · bht−1), t = T . . . 1 (7)

where Wfxh ∈ Rm×KL and Wbxh ∈ Rm×KL are the input-
hidden weights, Wfhh ∈ Rm×m and Wbhh ∈ Rm×m denote
the weights that connect the hidden state,m is the dimension-
ality of hidden state and f (·) refers to the sigmoid activation
function. Then, the concatenation of the forward state fht and
backward state bht creates ht , i.e., ht = [fht ,bht ]. As a
result, each hidden state ht contains information of the whole
target, with strong focus on the parts surrounding the area at
step t .

Generally, in BiRNN, the information at each time step
may gradually lose along the forward and backward propaga-
tion. In order to avoid the information loss and automatically
focus on the discriminative time steps, the attention mech-
anism is introduced, which, as a byproduct, is able to relax
the misalignment issue. In our method, we adopt a multilayer
perceptron to calculate the attention weight based on the
hidden states and denote g as the invariant feature vector,
which is the weighted sum of ht , t = 1 . . . T , i.e.,

g =
T∑
t=1

αt · ht . (8)

The weight αt is computed by

αt =
exp(et )∑
l exp(el)

(9)

et = U>a tanh(Wa · ht ) (10)

where Ua ∈ R1×n, Wa ∈ Rn×2m are the parameters of the
attentional model, and weight αt is the coefficient that scores
the matching degree between the hidden state ht and the
recognition task. The invariant feature vector g integrates the
information at all time steps according to the discrimination
of the hidden state at each time step.

Given the invariant feature vector g, we adopt the softmax
function to predict the label vector of the input sampleX, i.e.,

p(c|g; θ ) =
exp(θ (c)>g)∑C
j=1 exp(θ (j)>g)

(11)

where C represents the number of categories, p(c|g; θ )
denotes the probability of g belonging to the c-th category,
and θ is the parameter of the softmax classifier.

B. TRAINING AND TEST PROCEDURE
The process of HRRP target recognition with the CNN-
BiRNN hybrid model contains two stages, the training stage
and the test stage. In the training stage, we use the training
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Algorithm 1 Training Procedure of the CNN-BiRNN Hybrid Model
1: Obtain the training data D = {X, t}. Set mini-batch size m and the number of convolutional layer L.
2: Initialize the CNN parameter 2CNN , the RNN parameter 2RNN , the attention model parameter 2ATT and the softmax

classifier parameter 2CLS , 2 = {2CNN ;2RNN ;2ATT ;2CLS}.
3: for iter = 1, 2, 3 . . . do
4: Randomly select a mini-batch of m samples from D to form a subset {X, t}(1,m);
5: Obtain H(L) by applying L layers convolutional-pooling operations to {X}(1,m), H(L)

= fCNN ({X}(1,m);2CNN );
6: Calculate the forward and backward states, fht and bht , according to (6) and (7), fht ,bht = fBiRNN (H(L)

;2RNN );
7: Concatenate fht and bht to obtain ht , ht = [fht ,bht ];
8: Calculate the invariant feature vector g according to (8), g = fATT (ht ;2ATT );
9: Predict the label by (11), y = argmax p(c|g;2CLS );

10: Calculate ∇2J (2) according to (13), and update 2 using (14);
11: end for

data to learn the parameters 2 by calculating the gradient of
the cost function J ,

2 = argminJ (2) (12)

where 2 includes all parameters to be trained, and J (2) is
the cross-entropy loss function. Given the ground-truth label
t of X, J (2) is defined as

J (2) = −
1
m

m∑
n=1

C∑
c=1

t (n) ln p(c|X(n)
;2) (13)

where m is the sample number of each mini-batch. The
stochastic gradient descent (SGD) and the back propagation
method are utilized to iteratively optimize the problem in (10)
by

2(i+ 1) = 2(i)− η(i) · ∇2J (14)

where i = 1, 2, ... denotes the iteration number, η(i) is the
learning rate at ith iteration, and ∇2 is the gradient operation
operator with respect to 2. The complete training procedure
is described in Algorithm 1.

In the test stage, the test sample X goes through the model
and the label is obtained by

y = argmax p(c|X(n)
;2). (15)

IV. RELATED WORK
As introduced in section I, among the Radar HRRP target
recognition methods based on deep neural networks (DNNs),
the plain CNN [20] and the target-aware recurrent attentional
network (TARAN) [19] are the closest to our work. In [20],
a 1-dimensional CNNmodel is employed to extract structured
discriminative features from HRRP and shows competitive
results on the recognition task. Different from their work,
we also consider the temporal dependence in HRRP and
replace the fully-connected layers with an attentional BiRNN
to model this dependence, which makes our method robust to
the time-shift sensitivity, and more flexible and practical than
the plain CNN.

An attention RNN model, called TARAN, is proposed
in [19] for HRRP-based target recognition, which employs
the attentional RNN to encode the raw HRRP sequence into

hidden states and weights the hidden state at each time step
to focus on the discriminative regions. Our work is different
from the TARAN in two ways. First, to model the tempo-
ral correlation between range cells, the TARAN builds the
attentional RNN model directly from the raw HRRP sample,
whereas the proposed model treats the feature extracted from
CNN as sequential data to jointly learn the parameters of
CNN and BiRNN. As shown in Fig. 10, features extracted
from CNN are more discriminative for the recognition task
than the raw HRRP data. Meanwhile, the attention mech-
anism in TARAN model only considers the forward state,
which is insufficient to evaluate the contribution of the hidden
states. In contrast, our BiRNN employs both forward and
backward states to calculate the attention weights, which
offers a comprehensive consideration of temporal correlation
in an individual HRRP. In addition, as a preprocessing pro-
cedure, TARAN has to manually segment a single HRRP
sample into multiple time steps before their RNN model
where the segment parameters need to be carefully tuned.
On the contrary, CNN is integrated to extract features and
make our method as an end-to-end style without any manual
segmentation.

V. EXPERIMENTS
To show the effectiveness and the robustness of the proposed
method, we compare it to other counterparts on the measured
data in this section. ThemeasuredHRRP data and the detailed
experiment settings used in our experiments will be intro-
duced firstly. Then, several detailed analysis and discussions
about the recognition performance of our method are pre-
sented and studied, respectively. Meanwhile, the influence of
some model parameters is analyzed and discussed during the
experiments.

A. MEASURED DATA
The results presented in this paper are based on three mea-
sured airplane data, An-26, Cessna Citation S/II and Yark-42,
which are shown in the left side of Fig. 2. An-26 is a medium-
sized propeller aircraft, Cessna Citation S/II is a small-
sized jet aircraft and Yark-42 is a large and medium-sized
jet aircraft. The radar works on C-band with a bandwidth
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TABLE 1. Parameters of radar and planes.

FIGURE 5. Projections of target trajectories onto the ground plane.
(a) An-26; (b) Cessna Citation S/II; and (c) Yark-42. The radar locates
on (0,0).

of 400 MHz and the range resolution is about 0.375 m.
The parameters of the radar and airplane targets are shown
in Table 1, and the projections of target trajectories onto the
ground plane are shown in Fig. 5, from which the target-
aspect angle of an airplane can be estimated according to its
relative position to radar.

From Fig. 5 we can find that the measured data are seg-
mented into several parts. We choose the training and test
datasets based on the following two principles: (i) the training
dataset should cover almost all of the target-aspect angles;
(ii) the elevation angles of the training and the test dataset
are different. Thus, the 5-th and the 6-th segments of An-
26, the 6-th and the 7-th segments of Cessna Citation S/II
and the 2-rd and the 5-th segments of Yak-42 are selected
as training samples, and the rest segments are taken as test
samples. More concretely, there are totally 140, 000 training
samples and 5, 200 test samples involved in our experiments.

As discussed in [22], it is a prerequisite for radar tar-
get recognition to deal with the target-aspect, time-shift,
and amplitude-scale sensitivity. Similar to the previous
study [10], [22], HRRP training samples should be aligned
by the time-shift compensation techniques in ISAR imag-
ing [32] to avoid the influence of time-shift sensitivity. Each
HRRP sample is normalized by l2-normalization algorithm to
avoid the amplitude-scale sensitivity. In the following experi-
ments, unless otherwise stated, all of the HRRPs are assumed

TABLE 2. Average recognition rates of proposed method with various
number of convolutional layers based on aligned test samples.

to be aligned and normalized, and at high signal-to-noise
ratio (SNR).

B. EXPERIMENTAL SETUP
As shown in section III, our CNN-BiRNN based method
consists of L convolutional layers and a fixed-structure bidi-
rectional RNN with attention mechanism. Since the longer
kernels perform better in [20], following their work, we apply
kernel size of 1× 9 in the convolutional layers. Each convo-
lutional layer is followed by a 1 × 2 with stride 2 pooling
layer. The size of the hidden state in BiRNN and the size
of attention in the attention mechanism are both set to 200.
To balance the learning efficiency and stability of the model,
through grid search, we perform RMSProp optimizer with a
learning rate of 0.00001 and a mini-batch size of 100. All
weights are initialized from a normal Gaussian distribution
with its standard deviation set to 0.01. The recognition results
are obtained by averaging classification rates from each cat-
egory. All experiments are performed on a desktop computer
equipped with an Intel Core i7-4770 CPU, 32 GB RAM, and
a graphics card NVIDIA GeForce GTX 1070.

As the HRRP has the characteristic of time-shift sensi-
tivity, the position of target areas in a HRRP sample may
change during measuring. Thus, besides exhibiting the aver-
age recognition rate of the proposed methods with aligned
test samples, we also show that with unaligned test samples to
evaluate the robustness to the time-shift sensitivity. Without
loss of generality, in the experiments of testing time-shift
sensitive, we align each training sample with the centroid of
sample and shift the aligned test samples from −16 to 16
range cells with a step size 1 to simulate the time-shift.

C. IMPACT OF CONVOLUTIONAL LAYERS
Since each convolutional layer is followed with a pooling
layer, the sequence length of H(L)

∈ RW (hL)
×KL shrinks as

the number of convolutional layers L grows. To explore the
relationship between sequence length and recognition result,
and find the optimal network structure, we conduct several
experiments of the proposed method with different numbers
of convolutional layers with aligned and unaligned test sam-
ples. The results are shown in Table 2 and Fig. 6, respectively.
For notational convenience, we denote CNN-BiRNN-L to
represent the recognition method of CNN-BiRNN with L
convolutional layers. Note that we set the output channels of
layers 1 and 2 to 32, double the output channels of layers 3
and 4, and double again at layers 5 and 6.
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FIGURE 6. Variation of the recognition rate with the different extents of
misalignment, via CNN-BiRNN-1, CNN-BiRNN-2, CNN-BiRNN-3,
CNN-BiRNN-4, CNN-BiRNN-5 and CNN-BiRNN-6.

From Table 2, we could know that deeper models with
aligned test samples achieve better results, because they have
more powerful nonlinear expressiveness. However, in Fig. 6,
the deeper the better is not always true, as the ability to resist
time-shift is not benefiting from enlarging the depth of the
model. The reason is that the deeper convolutional network
has the larger receptive field at the top layer. More detailedly,
in our CNN part, since the kernel size is 1× 9, the receptive
fields at the top layer of CNN-BiRNN-4, CNN-BiRNN-5
and CNN-BiRNN-6 are 72, 144 and 288, which, compared
with the lengths/widths of the targets falling in 40 ∼ 100
range cells, are too large and make the sequential of the
top layer representation ambiguous. In Fig. 7, we show the
top layer features learned from CNN-BiRNN-3 and CNN-
BiRNN-5 via a test sample with shift units of −16, 0 and
16, respectively. We can find that the representations at the
top layer of CNN-BiRNN-3 are nearly unchanged owing to a
relatively proper receptive field, while that of CNN-BiRNN-
5 vary greatly. It results in a rapid decline on recognition rate
with shifted test samples, as the models are trained based
on the aligned data. Consequently, to consider both of the
recognition performance and the robustness to the time-shift
sensitivity, we choose CNN-BiRNN-3 for further compar-
isons in the following experiments.

D. RECOGNITION PERFORMANCE
To evaluate the efficiency of the proposed method, we com-
pare CNN-BiRNN-3 with several existing HRRP recognition
methods, including three traditional shallow methods: Maxi-
mum correlation coefficient (MCC) [7], Adaptive Gaussian
classifier (AGC) [10] and Linear support vector machine
(LSVM), and four deep learnin-based methods: Deep Belief
Networks (DBN) [33], Denoising Autoencoders (DAE) [34],
Convolutional neural networks (CNN) [20] and Target-aware
recurrent attentional network (TARAN) [19]. The MCC and
AGC are two classic statistical recognition models that use
Gaussian distribution to model the amplitude of HRRP.

FIGURE 7. (a) an HRRP sample shifted by −16 (top), 0 (middle) and 16
(bottom) units; (b) the top convolutional feature learned from
CNN-BiRNN-3; (c) the top convolutional feature learned from
CNN-BiRNN-5.

TABLE 3. Average Recognition Rates of the Proposed Method and the
Counterpart Methods based on Aligned Test Samples.

The LSVM is an efficient machine learning algorithm
designed to minimize structural risk for good generaliza-
tion performance. The DBN and DAE are two typical fully-
connected neural network based models while the CNN is
an effective local structural feature extractor. Since the three-
layer DBN, DAE and CNN achieve better classification accu-
racy in [18] and [20], we only exhibit the results of these
methods with three hidden layers, denoted as DBN-3, DAE-3
and CNN-3. The TARAN, which contains one hidden layer,
is an RNN with an attention mechanism to model the tempo-
ral dependence and find the informative areas in HRRP.

1) HIGH SNR SCENARIO
We first evaluate the recognition performance of the methods
under raw test data, i.e., high SNR scenario, from two aspects:
the recognition rate with and without the alignment operation
on test samples. The setup of the experiments is the same
as section V-B and the results are shown in Table 3 and
Fig. 8, respectively. Apparently, in the scenario of aligned
test samples, i.e., Table 3, the recognition rates of five deep
methods are better than that of the shallow ones, since the
deep models usually have stronger expressive ability. The
CNN-BiRNN-3 and CNN get a relatively higher recognition
rate than the other deep fully-connected networks, as the con-
volutional operation can extract more discriminative features
from HRRP. The best recognition result is delivered by our
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FIGURE 8. Variation of the recognition rate with the different extents of
misalignment, via MCC, AGC, LSVM, DBN-3, DAE-3, TARAN, CNN-3 and
CNN-BiRNN-3.

CNN-BiRNN-3 as it introduces not only a three layer CNN,
but also an extra BiRNN for feature extraction.

However, the results are quite different in the scenario of
misalignment test samples, i.e., Fig. 8, and the recognition
rates of MCC, AGC, TARAN and CNN-BiRNN-3 are nearly
unchanged during the translations. Although the phenomenon
of time-shift invariance of these methods is similar, the rea-
sons behind it are not all the same. The MCC and AGC are
capable of resisting time-shift sensitivity because they align
the test data with the stored templates during the test phase.
For the CNN-BiRNN-3 and TARAN, they both employ RNN
with attentional mechanism to model the temporal depen-
dence of HRRP, which makes their feature extraction focus
on the target region. For a further investigation, we exhibit
the attention weights learned from CNN-BiRNN-3 via a test
sample with different time-shift units in Fig 9. The envelopes
of a HRRP sample with shift units of −16, 0 and 16 are
shown in Fig 9(a), which have different target regions because
of the time-shift. With the help of the data-dependent atten-
tion mechanism, as shown in Fig 9(b), the attention weights
learned from CNN-BiRNN-3 are focused on and varied with
the target area of HRRP even with the test sample having
different extents of misalignment. As a result, the recognition
results remain unchanged during the translations.

In addition, our CNN-BiRNN-3 performs at least 2% better
than TARAN, as it adopts 3 convolutional layers for fea-
ture extraction rather than modeling the HRRP data directly.
In Fig. 10, we show the first two principal components of the
three aircrafts based on different features, where Fig. 10(a)
is the raw HRRP data and Fig. 10(b) is the feature learned
from the convolutional layer of CNN-BiRNN-3. It should be
clarified that in Fig. 10(b), we perform the principal com-
ponent analysis based on the output of the top convolution
layer, which is also the input of BiRNN. Clearly, compared
to the raw HRRP data (Fig. 10a), the features extracted from
the convolutional layer of CNN-BiRNN-3 (Fig. 10b) are

FIGURE 9. Illustration of the CNN-BiRNN-3 resist time-shift sensitivity;
(a) an HRRP sample with translation units of −16 (top), 0 (middle) and 16
(bottom); (b) the attention weights learned by CNN-BiRNN-3.

FIGURE 10. Distribution of the test samples (a) and their corresponding
representations learned from CNN-BiRNN-3 (b) on the first two principal
components.

FIGURE 11. Variation of the recognition rates with SNR, via MCC, AGC,
LSVM, DBN-3, DAE-3, TARAN, CNN-3 and CNN-BiRNN-3.

more separable between classes and centralized within them,
which intuitively explains why our method achieves a better
recognition rate than TARAN.

In summary, compared with the existing HRRP recogni-
tion methods, the proposed method not only achieves better
recognition rate but also has strong ability to resist time-shift
sensitivity in high SNR scenario.

2) NOISE ROBUSTNESS
In the real application, the noise level of a test sample is
usually different from those of the training samples. Thus, to
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FIGURE 12. Attention weights αt of the test samples learned from
CNN-BiRNN-3. The x-axis 1 ∼ 2000, 2001 ∼ 4000, and 4001 ∼ 5200
respectively represent the test sample index of An-26, Cessna Citation
S/II and Yark-42, while the y-axis corresponds to the time steps.

comprehensively evaluate the proposed method, we also
exhibit the recognition rates under different SNR scenarios
to verify the noise robustness of our method. According to
[12], [13], we add simulated Gaussian white noise to the
inphase and quadrature component of the high SNR raw test
data to create low SNR test data. The SNR is defined as

SNR = 10× log10

(
Px

PNoise

)
= 10× log10

( ∑L
l=1 Pxl

L × PNoise

)
(16)

where Px ,Pxl respectively denote the average power of
HRRP and the power of the original echo per range cell, L
denotes the number of range cells (here L = 256), and PNoise
denotes the power of noise. Without loss of generality, we set
the SNR ranging from 0dB to 35dB with the step size of 5dB,
and the recognition rates are shown in Fig. 11. Generally,
the recognition performance of all methods decreases with
the increasing of the noise. When SNR ≥ 25dB, our method
outperforms other models. When SNR is low, say SNR <

25dB, our method and CNN-3 perform similarly and leading
among all models thanks to CNN’s robustness to noise [36].

E. VISUALIZATION
The proposed method provides an intuitive way to inspect
the importance of time steps (regions) for HRRP samples.
This is done by visualizing the attention weights αt from
(9), as shown in Fig. 12. Each column in Fig. 12 indicates
the weights associated with each HRRP time steps, and the
brighter part is the area that is more relevant to the recognition
task. We can notice that the attention mechanism focuses
on the middle areas and puts relative small weights on the
others. Specifically, the attention weights of Cessna Citation
mainly focus on the time step around 16 while An-26 and
Yark-42 concentrate on larger regions. This phenomenon
coincides with the characteristic of the targets, which
describes that different target area sizes, as introduced in V-A,
are equivalent to different time steps.

VI. CONCLUSION
In this paper, in order to extract efficient and time-shift
invariant features from HRRP, we combine the CNN and
BiRNN, and propose a CNN-BiRNN based method for the

HRRP target recognition problem. In the proposed method,
a CNN is employed to explore the spatial correlation and
extract expressive features from raw HRRP data, and the
resultant feature maps are fed into a BiRNNwith the full con-
sideration of temporal dependence. Furthermore, to enhance
the robustness to misalignment, an attentional mechanism is
employed after BiRNN to allow the method to focus on the
discriminative target area. Experiments based on measured
radar data showed that with the help of the efficient discrimi-
native feature from CNN and the precise sequential modeling
of BiRNN with attention mechanism, the proposed method
not only achieved better recognition rate but also had strong
capability of resisting time-shift sensitivity.
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