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ABSTRACT Clustering is a classical research field due to its broad applications in data mining such as
emotion detection, event extraction and topic discovery. It aims to discover intrinsic patterns which can be
formed as clusters from a collection of data. Significant progress have been made by the Density-based Spa-
tial Clustering of Applications with Noise (DBSCAN) and its variants. However, there is a major limitation
that current density-based algorithms suffer from linear connection problem, where they perform poorly to
discriminate objective clusters which are ‘‘connected’’ by a few data points. Moreover, the parameter setting
and the time cost make it hard to be well-adapted in massive data analysis. To address these problems,
we propose a novel adaptive density-based spatial clustering algorithm called Ada-DBSCAN, which consists
of a data block splitter and a data block merger, coordinated by local clustering and global clustering.
We conduct extensive experiments on both artificial and real-world datasets to evaluate the effectiveness of
Ada-DBSCAN. Experimental results show that our algorithm evidently outperforms several strong baselines
in both clustering accuracy and human evaluation. Besides, Ada-DBSCAN shows significant improvement
of efficiency compared with DBSCAN.

INDEX TERMS Clustering, density-based algorithms, linear connection, data block splitter, data block
merger.

I. INTRODUCTION
With the growing of large collection of data in various
domains like business management and cloud services [1],
much attention has been given to data mining algorithms,
which can be applied to many tasks such as event detec-
tion [2], personalized recommendation [3] and the Internet
of Things (IoT) [4]. As a typical data mining algorithm,
clustering shows broad applications in data analysis, where
density-based clustering algorithms play a crucial role [5].
Conventional density-based clustering algorithms such as
Density-based Spatial Clustering of Applications with Noise
(DBSCAN) [6] and its variant OPTICS [7], can discover
cluster structures of data points as well as filter out noise.
It is the advantage of DBSCAN that makes it require
no prior knowledge of the number of clusters in contrast
to distance-based clustering algorithms like K-Means [8].

The associate editor coordinating the review of this manuscript and
approving it for publication was Ahmet M. Elbir.

Previous studies revealed that DBSCAN can be widely
applied in numerous fields [9]–[11].

Several studies have been explored to improve the short-
comings of DBSCAN, such as parameter setting improve-
ment [7] and efficiency optimization [12]–[14]. Despite the
progress of these algorithms, there are still several challenges
for discovering clusters effectively and efficiently, which are
not addressed well in previous works. First, DBSCAN and
its extended density-based clustering algorithms suffer from
linear connection problem, which refers to that they perform
poorly when different objective clusters are ‘‘connected’’ by
a few data points with strong inner association shaped like a
line. Current density-based clustering algorithms are difficult
to distinguish such patterns and tend to recognize the two
objective clusters as the same cluster. As an example occurs
in event detection shown in Fig. 1, the left-side words are
covered by event of quantum mechanics, while the right-side
words are covered by event of computer science. There are
several words with strong relevance between two objective
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FIGURE 1. An example of linear connection in clustering.

events, i.e., ‘‘Physics’’, ‘‘John Von Neumann’’, ‘‘Mathemat-
ics’’ and ‘‘Computer Scientist’’, which prevent DBSCAN
from discriminating the two cluster structures, resulting in
an incorrect cluster obtained finally. It is because the data
points located in the line connecting two individual clusters
are actually directly reachable to data points located in both
clusters, causing DBSCANwiden the radius range of cluster-
ing. Although some methods are proposed to set parameters
more stringently to obtain cluster centers and then expand
them cautiously [15], they still suffer from another problem
because adjusting parameters may break the structures of
either originally discovered clusters or other clusters out of
linear connection. More seriously, some clusters may no
longer be discovered with strictly constrained parameters,
since the data points causing linear connection may have
strong correlation with each other which should be regarded
as centers of clusters. Furthermore, other density-based clus-
tering algorithms almost fail to take the linear connection
problem into consideration.

Second, DBSCAN requires two key parameters keeping
fixed to perform clustering, including the maximum radius
range (eps) and the minimum number of neighbors (minPts).
The fixed parameters deteriorate DBSCAN to adapt the
data with heterogeneous density as stated in [6], since the
performance of clustering is sensitive to initial values of
the two parameters. Although an optimized version called
OPTICS [7] was proposed to improve the parameter setting
by ordering data points to identify the clustering structure,
it is still sensitive to the density of data.

Third, the computational efficiency of DBSCAN is low,
making it limited in massive data analysis. The calculation of
Cartesian products is required in DBSCAN to determine the
degrees of relevance between data points, costingO(N 2) time
complexity, which will spend high time cost on massive data
if being applied in practical applications.

To deal with the aforementioned limitations, we propose a
novel Adaptive Density-based Spatial Clustering of Applica-
tions with Noise (Ada-DBSCAN), which consists of a data
block splitter and a data block merger, coordinated by local
clustering and global clustering. The data block splitter first
allocates data points to a set of data blocks hierarchically
based on the core idea of uniform data distribution which is
an essential premise for alleviating previous drawbacks. The

data block splitter guarantees that the data blocks containing
the region of linear connection and the data blocks inside any
cluster have their own independent data density, while the
density of data points in each data block is uniform, making
our model discriminate the structures of linear connection
and objective clusters effectively. Then local clustering with
parameter adaptation is performed to discover a collection of
local clusters inside each data block, where the key param-
eters eps and minPts are dynamically updated according to
the number of data points in each data block, making it
less sensitive to initial values of parameters. To obtain final
clustering results, global clustering is performed to merge
local clusters. Themerging processmay involve different data
blocks, where the data block merger is used to dynamically
merge two blocks step by step. Overwhelmingly, by leverag-
ing the idea of splitting and merging, Ada-DBSCAN reduces
the computation of neighboring points and thus has higher
efficiency. In addition, Ada-DBSCAN is greatly compatible
to be integrated in distributed frameworks such as Hadoop
and Spark.

Our main contributions can be summarized as follows:

• We propose Ada-DBSCAN, a novel adaptive density-
based clustering algorithm which leverages the idea of
data splitting and data merging to dynamically discover
clusters from local to global, making it well-suited for
addressing the issue of linear connection.

• We derive a simple but effective parameter adaptation
mechanism for clustering, making Ada-DBSCAN appli-
cable for data with heterogeneous density and less sen-
sitive to initial values of parameters.

• Extensive experiments on both artificial and real-world
datasets show that Ada-DBSCAN outperforms existing
density-based clustering algorithms significantly. More-
over, Ada-DBSCAN shows significant lower computa-
tional cost compared with DBSCAN.

The remainder of this paper is organized as fol-
lows. Section II will provide a brief review of related
works. Section III will elaborate details of the proposed
Ada-DBSCAN algorithm. Section IVwill describe our exper-
imental setup and Section V will present experimental results
and discussions about Ada-DBSCAN and other baselines.
Section VI will conclude our work.

II. RELATED WORK
In recent years, the development of clustering algorithms
has attracted great attention in both academic and industrial
communities. In particular, density-based clustering algo-
rithms have an advantage of requiring no prior knowledge
about the number of clusters which needs to be set manually.
Furthermore, density-based clustering algorithms are highly
applicable to data with noise. As one of the most typical
density-based clustering algorithms, Density-based Spatial
Clustering of Applications with Noise (DBSCAN) was pro-
posed in 1996 [6], in which the word ‘‘density’’ is defined as
the number of data points within a specified radius (eps) range

VOLUME 8, 2020 23347



Z. Cai et al.: Adaptive Density-Based Spatial Clustering for Massive Data Analysis

FIGURE 2. Overview of the proposed Ada-DBSCAN framework.

in multi-dimensional space. In DBSCAN, all data points are
divided into three categories including core points, reachable
points and outliers. The core points refer to the data points
which contain no less than specific number of neighbors
(minPts) within a radius range of eps. Moreover, the points
within the radius range of eps are defined as the directly
reachable points, while the points that are connected to the
directly reachable points by at least one path are defined as
the reachable points. The data points outside the radius range
of eps centered at any core points are called the outliers.

Briefly, DBSCAN contains several crucial steps. First,
DBSCAN randomly selects an unvisited core point asso-
ciated with its directly reachable points, forming an initial
cluster. Then DBSCAN iteratively selects a core point in
this cluster until all core points are visited, which aims to
aggregate all its directly reachable points that appear for the
first time. DBSCAN repeats the above steps until all clusters
are determined.

However, DBSCAN shows inferior performance when
data points are heterogeneous, which is a drawback that it is
hard for DBSCAN to be widely-used in many data analysis
scenarios. To address the problem, the Enhanced DBSCAN
algorithm [16] was proposed to calculate the density variance
for all core points, with the help of the parameter eps to
keep track of local density variation. Then the algorithm
expands a core point if its density variance is smaller than a
threshold, which is determined by homogeneity test. Authors
of DSets-DBSCAN [17] introduced the concept of ‘‘DSets’’
by applying histogram equalization to the pairwise similarity
matrix of input data, which further improves DBSCAN since
the parameters of DBSCAN can be determined by DSets.
In addition, RNN-DBSCAN [18] proposed to use statistical
results of reverse nearest neighbors to solve the issue of
heterogeneous density. RECORD [19], IS-DBSCAN [20],
and ISB-DBSCAN [21] are other similar studies based on
the reverse nearest neighbors to improve the performance of
DBSCAN.

With DBSCAN employed in practical applications,
the low efficiency has been a bottleneck. Thus, vari-
ous DBSCAN-extended algorithms have been proposed to
enhance the performance of DBSCAN. GF-DBSCAN [22]
was proposed to project data points into a grid, limiting

the search space of neighboring points to its adjacent
cells. To reduce the time cost, G-DBSCAN [23] was pro-
posed to speed up the procedure of searching neighboring
points, which is scalable and applicable for high-dimensional
datasets. Besides, in order to implement fast query of nearest
neighbors, ISB-DBSCAN [21] was proposed to improve the
traditional locality sensitive hashing approach. By utilizing
graphics processing units (GPUs), CudaSCAN [24] is another
method to boost efficiency of clustering from the hardware
perspective [25]. In addition, some extended versions of
DBSCAN with supporting of distributed and parallel com-
puting [26]–[30] were implemented to apply for massive data
analysis.

III. ADA-DBSCAN
In this section, we propose Adaptive Density-based Spa-
tial Clustering of Applications with Noise (Ada-DBSCAN)
which focuses on solving the issue of linear connection
existed in DBSCAN and other density-based clustering algo-
rithms, meanwhile improving the parameter setting and
efficiency of DBSCAN when applied into massive data.
As shown in Fig. 2, Ada-DBSCAN consists of four major
modules, including: (1) data block splitter, which allocates
data points to a set of data blocks hierarchically based on the
core idea of uniform data distribution. (2) local clustering,
which is a local density-based clustering process in each data
block. (3) global clustering, which is a merging process for
local clusters to obtain final clustering results. (4) data block
merger, which is used for merging two data blocks during
global clustering. Ada-DBSCAN first performs a top-down
process, which adopts the data block splitter to split data
points into a set of data blocks, and then local clustering is
performed inside each data block. To obtain final clustering
results, Ada-DBSCAN performs a bottom-up global cluster-
ing process, where the data block merger serves as a key
sub-component. Details of each proposed module in Ada-
DBSCAN are elaborated as below.

A. DATA BLOCK SPLITTER
Different from previous algorithms, we propose a novel data
block splitter by taking different circumstances of linear con-
nection into consideration. As shown in Fig. 3, we divide
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FIGURE 3. Demonstration of the data block splitter for different circumstances of linear connection problem.

linear connection into three circumstances: external connec-
tion, concave connection and internal connection. For exam-
ple, the data points in the 9-th block and the 10-th block
in Fig. 3(a) are easily to be viewed as reachable points in
conventional density-based clustering algorithms since they
seem to be ‘‘connected’’, causing inferior cluster discovery.
Another case of linear connection is shown in Fig. 3 (b), two
sickle-shaped clusters are ‘‘connected’’ in the 11-th block and
the 15-th block, which is even harder to distinguish by both
density-based or distance-based clustering methods. For the
internal connection in Fig. 3 (c), data points in the 5-th block
and the 6-th block also seem to be ‘‘connected’’, where data
points in the 5-th block are completely surrounded by exter-
nal data points. Generally, the difficulty to distinguish these
individual clusters comes from analysis for high-dimensional
datasets.

The data block splitter aims to automatically identify
appropriate data blocks, with each data block under uniform
data distribution. Here, the uniform data distribution refers
that the data blocks containing the region of linear connec-
tion and the data blocks inside any cluster have their own
independent data density, while the density of data points in
each data block is uniform. Thus, the associated data blocks
can be separated by borderlines. When a sub-block is splitted
from a particular block, skew distribution of data could be
avoided. Concretely, we elaborate the mechanism of the data
block splitter as follows.

Inspired by the theory of information entropy [31], the data
block splitter ensures the splitting with uniform distribution
by measuring the average rate of information on each data
block. Formally, the information entropy is defined as:

H (X ) =
∑

P(x)I (x) = −
∑

P(x) logb P(x) (1)

where x is a random variable belonging to dataset X , P(x)
is the occurrence probability of x, and b is the base of
information entropy and we set b = 2 in this paper. Infor-
mation entropy can be considered as a method to measure
the uniformity of data distribution. High information entropy
means that the data points are disordered, while low infor-
mation entropy means that the data points are more concen-
trated or more ordered. For multi-dimensional data, the data

block splitter first determines that data points should be
splitted into blocks in which dimension. Concretely, given a
collection of data {x(1)m , x(2)m , · · · , x(N )

m }, where N is the total
number of data points and m is the dimensionality of given
data. We first divide the data into N sub-ranges equally in
the i-th (i ∈ [1,m]) dimension, where each sub-range covers
a certain number of data points. Empirically, we can obtain
a probability sequence {p(1)i , p

(2)
i , · · · , p

(N )
i } represented by

the frequency of each sub-range, which is the proportion of
data points that each sub-range covers. Thus, the information
entropy of the i-th dimension can be calculated by Equa-
tion (1). Note that the data block splitter selects to split data
points into blocks in a specific number of dimension, with
the criteria that the information entropy in these dimension
are the largest ones. It is because data with lower information
entropy is generally in ordered distribution, which makes it
more effective for clustering.

Suppose the data block splitter splits data in the i-th dimen-
sion, the initial number of data blocks ρ is given by:

ρ =

⌈
λ

√
N
e

⌉
(2)

where e denotes the expected average number of data points
in a data block, λ is a hyper-parameter representing the
number of dimensions to be splitted. Note that λ is restricted
to be fixed as 3 when the dimensionality of the dataset is
larger than 3, since a higher value of λ makes ρ tend to
be 1. Therefore, λ ≤ 3. Furthermore, for the i-th dimension,
the bias of the data block splitter (denoted as ωi) is given by:

ωi =
µi

ρi
=

maxi−mini
ρi

(3)

where maxi, mini denotes the maximum and the minimum
value of data points in the i-th dimension, µi is the difference
between maxi and mini, ρi is the number of data blocks in
the i-th dimension. Note that in Fig. 3, the gray dotted lines
located near the boundaries between two blocks are called
‘‘extended boundary’’, which is because a data point is possi-
ble to be located at the boundary between two or more blocks
and may have directly reachable points within a radium range
of eps. For a specific data block, to satisfy that its left adjacent
block and right adjacent block can simultaneously expand
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their boundary towards the middle with a distance of eps,
the biasωi is required to have aminimum threshold of 2eps. In

particular, if ωi < 2eps, ρi will be formed as
⌈

µi
2eps

⌉
. When

splitting the last block, the biasω′ should beµi−2(ρi−1)eps,
if it is smaller than eps, the splitting should be early stopped

and ρi is formed as
⌊

µi
2eps

⌋
. Therefore, the final number of

data blocks in the i-th dimension ρ′i is defined as:

ρ′i =



⌈
λ

√
N
e

⌉
if ωi ≥ 2eps⌈

µi

2eps

⌉
if ωi < 2eps and ω′i ≥ eps⌊

µi

2eps

⌋
if ωi < 2eps and ω′i < eps

(4)

Similarly, the final expected average number of data points in
a data block is denoted as e′, given by:

e′ =
ωie
µi/ρ

=

 e if ωi ≥ 2eps
ωieρ
µi

if ωi < 2eps
(5)

Therefore, each data block can be determined by the lower
bound and the upper bound in standard coordinate system,
formed as:

gl(ki) = mini + ωiki (6)

gu(ki) = mini + (ωi + 1)ki (7)

where ki is the index of the data block, gl(ki), gu(ki) denotes
the lower bound and the upper bound of the k-th block
respectively. In addition, for data points in the ‘‘extended
boundary’’, the data block splitter performs a ‘‘boundary
expansion’’ operation by keeping a backup of data points
inside their adjacent blocks and recording their previous
block indexes. Then the scope of the k-th data block in the
i-th dimension is represented as δ(ki), which is given by:

δ(ki) =


[gl(ki), gu(ki)+ eps] if ki = 0
[gl(ki)− eps, gu(ki)+ eps] if 0 < ki < ρi − 1
[gl(ki)− eps, gu(ki)] if ki = ρi − 1

(8)

Subsequently, sub-blocks are splitted from their parent
blocks. However, too few data points in a specific block
may cause block splitting unnecessary with higher time cost.
To make our data block splitter more effective and more
efficient, we propose a criterion that block splitting from a
parent block to a certain number of sub-blocks should be
stopped when the number of data points in the parent block
is less than 0.5e, otherwise the block splitting should be
continued. Hence, given the initial index of data block as 0,
the index of the k-th sub-block is given by:

εk = ρ · εfather + k + 1 (9)

where εfather is the index of the parent data block. Finally,
all splitted blocks are recorded by a queue, which is highly

Algorithm 1 Data Block Splitter
Input: a dataset D, a radius hyper-parameter eps
Output: a set of data blocks in a queue Q
1: MAX, MIN← select maximum and minimum values in

each dimension of D
2: data block b← D.toBlock()
3: b.setFirstBolock()
4: Q← initialize an empty queue
5: while b.isNotLastPartitionedDimension() do
6: if b.isFirstBlock() then
7: b.changeNewDimension()
8: calculate ωi, ρi and using Eq. (3) and Eq. (4)
9: end if

10: if b.size > 0.5e then
11: BLOCKS← partitionData(b) using Eq. (8)
12: BLOCKS.calculateIndexs() using Eq. (9)
13: if b.isFirstBlock() then
14: BLOCKS[0].setFirstBlock()
15: end if
16: Q.enqueue(BLOCKS)
17: else
18: Q.enqueue(b)
19: end if
20: b← Q.dequeue()
21: end while
22: return Q

FIGURE 4. Influence of the radius range eps in DBSCAN.

suitable for the block splitting process with an obvious feature
of first-in-first-out (FIFO). In summary, the main procedure
of the data block splitter is described in Algorithm 1.

B. LOCAL CLUSTERING
Local clustering is a density-based clustering process inside
each individual data clock. Compared with DBSCAN, our
local clustering strengthens the ability of parameter adapta-
tion. As shown in Fig. 4, the radius range eps in DBSCAN
may affect the performance of clustering when data points are
heterogeneous. Fig. 4 (a) depicts that DBSCAN with small
eps may only discover dense clusters (left side) while ignore
spare clusters (right side). However, Fig. 4 (b) shows that
DBSCAN with large eps may obtain clusters but with noise
(left side) though both dense and sparse clusters can be identi-
fied. Ada-DBSCAN performs adaptive local clustering first,
since the influence of heterogeneous density can be ignored
when each data block is splitted appropriately enough, mak-
ing clusters with different densities discriminative.
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Concretely, given the query index of the b-th data block,
the dimension index in the i-th dimension is denoted as q(bi),
and the last data block in the i-th dimension is denoted as p(i).
The scope is determined by the lower bound and the upper
bound in standard coordinate system, formed as:

fl(bi) = mini + ωiq(bi) (10)

fu(bi) = mini + ωi(q(bi)+ 1) (11)

where ωi is the bias of the data block splitter, fl(bi) and fu(bi)
denote the lower bound and the upper bound respectively.
Then the scope of the data block h(bi) is given by:

h(bi) =

{
[fl(bi), fu(bi)) if q(bi) < p(i)
[fl(bi), fu(bi)] if q(bi) = p(i)

(12)

Thus, the number of the data points within the block scope is
represented as:

ϕ =

∣∣∣∣{x|∀xi ∈ x, xi ∈ h(bi)}∣∣∣∣ (13)

where x is the vector of a data point in the b-th data block
with different dimensions, xi is the i-th dimension of the x.
In local clustering, given the initial parameters eps and

minPts, where eps denotes the threshold of radius range,
minPts denotes the threshold of minimum number of points
in the neighborhood of radius eps. We dynamically update the
two parameters as:

epsnew =
e
ϕ
× eps (14)

minPtsnew =
⌈
ϕ

e
× minPts

⌉
(15)

where e denotes the average number of data points after
splitting in a data block. The updated parameters guarantee
that small eps along with large minPts are utilized for dense
clusters, and large eps along with small minPts are applied
in opposite situations. In summary, the procedure of local
clustering is described in Algorithm 2.

C. GLOBAL CLUSTERING
Given data blocks splitted by data block splitter, where each
data block contains a set of clusters by local clustering,
Ada-DBSCAN further performs global clustering to obtain
final clustering results. Since all local clusters are contained
in a certain number of data blocks, the global clustering is
actually a merging process for relevant local clusters as well
as relevant data blocks.

Consider that all data blocks are splitted from their
‘‘father’’ blocks with an unique index each. The relation
between the index of a ‘‘father’’ block and its ‘‘child’’ block
is given by:

εfather =

⌊
εchild

ρ

⌋
(16)

where ρ is the number of data blocks, εchild and εfather denote
indexes of the child block and the father block, respectively.
According to Equation (16), a data block should be merged

Algorithm 2 Local Clustering
Input: a data block B, a radius parameter epsnew, a threshold

minPtsnew
Output: a set of local clusters S in the block B
1: B.setUnvisited()
2: S← initialize an empty set
3: Q← initialize an empty queue
4: for each unvisited point p in B do
5: Neighbors← p.getNeighbors(epsnew)
6: if Neighbors.size() > minPtsnew then
7: a new cluster C contains p
8: Q.enqueue(Neighbors)
9: while Q.isNotEmpty() do

10: p′← Q.dequeue()
11: if p′.isNotVisited() then
12: if p′.isNotMemberOfAnyCluster() then
13: C.add(p′)
14: end if
15: Neighbors′← p′.getNeighbors(epsnew)
16: if Neighbors′.size() > minPtsnew then
17: Q.addNewAppearance(Neighbors′)
18: end if
19: p′.setVisited()
20: end if
21: end while
22: S.add(C)
23: end if
24: p.setVisited()
25: end for

to its adjacent data blocks if they have same εfather, and the
merged block should be reindexed as εfather until it has no
correlation with its adjacent data blocks simultaneously.

Briefly, for global clustering, we first put all data blocks
containing local clusters into a queue Q. Then, data blocks
are dequeued from Q one by one. If the current data block
is related to the previous block, a merging operation between
the two blocks will be performed, which is covered by our
data block merger. Otherwise, we may reindex the previous
dequeued block according to Equation (16), and then enqueue
the reindexed block. The dequeue and enqueue operations
above are repeated until all data blocks merged into one data
block, where it covers global clusters. In summary, the pro-
cedure of global clustering is described in Algorithm 3. Note
that the merging operation covered in line 8 and line 9 will be
demonstrated in the following section.

D. DATA BLOCK MERGER
When merging two data blocks, it is not a simple pattern to
collect all clusters scattered in different blocks because some
clusters may cover several data blocks, as shown in Fig. 3.
Thus, the most crucial step for data block merger is to judge
the correlation of local clusters contained in different blocks.
As an example illustrated in Fig. 5 (a), both A3 and A4 are
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Algorithm 3 Global Clustering
Input: data blocks containing local clusters in queue Q
Output: a set of global clusters C
1: data block b1← Q.dequeue()
2: Level← b1.Level
3: while Q.isNotEmpty() do
4: data block b2← Q.dequeue()
5: if b2.isFirstBlock() then
6: Level← b2.Level // Level is the splitted depth
7: end if
8: if b1.isRelated(b2) then
9: b1← DataBlockMerger(b1, b2)

10: else
11: if b1.Level >= Level then
12: b1.Level← b1.Level− 1
13: b1.calcluateNewIndex() using Eq. (16)
14: end if
15: Q.enqueue(b1)
16: b1← b2
17: end if
18: end while
19: C← all clusters in b1
20: return C

correlated to B1, which is measured by the overlapping scope
between dotted lines and boundaries. The data block merger
thenmerges the two related data blocks, forming a new cluster
C3 shown in Fig. 5 (b). In addition, merging local clusters
located on both sides of blocks may compose an U-shape
‘‘parent’’ cluster or its extended types. As shown in Fig. 5,
C3 is an U-shape ‘‘parent’’ cluster, which is because the cor-
relation between local clusters A3 and A4 can be confirmed
by their adjacent data block since the local cluster B1 has the
same pattern in ‘‘extended boundary’’. Thus, the data block
merger should record the connections of all local clusters.

Concretely, the data block merger employs a table T to
record the connections of all local clusters contained in the
two data blocks, where each value entry denotes connection
degree between different local clusters which is counted by
the number of interconnections between core points inside
the local clusters. The number of connections between two
merged local clusters should be larger than a minimum
threshold, denoted as β, which is fixed tominPts. It is because
the data points between these merged local clusters can be
guaranteed with strong correlation based on core points to
avoid occurring linear connection. If a local cluster has larger
than β connections with other local clusters according to
T , then it should be selected as the main cluster, and data
points in other relevant local clusters will be aggregated to
the main cluster. Moreover, the table header corresponding to
the merged clusters in the table T is updated as the identifier
of the main cluster.

For the merging of data blocks shown in Fig. 5, the cor-
responding updating of the table T is depicted in Fig. 6.

FIGURE 5. An example of two data blocks which need merging.

FIGURE 6. An example about the updating of table T .

Suppose β = 3, and connections between different local
clusters is recorded in the original table T shown in Fig. 6,
where each value entry denotes connection degree. For exam-
ple, A3 and B1 is ‘‘connected’’ with a connection degree
of 10. If we take a strategy of horizontal traverse for table
T , data points in B1 are aggregated to A3 and the header of
B1 in corresponding column of T will be updated into A3,
which means A3 is elected as the main cluster. Otherwise,
if we traverse the table T vertically, data points in A3 are
aggregated to B1 and the header of A3 in corresponding row
of T will be updated into B1, which indicates B1 is elected as
the main cluster. In summary, the main procedure of the data
block merger is described in Algorithm 4.

IV. EXPERIMENTAL SETUP
A. DATASETS
We evaluate Ada-DBSCAN and other clustering methods
on two types of datasets: artificial datasets and real-world
datasets. Artificial datasets are generated by the Utility
of Scikit-Learn [32] which is a widely-used sample gen-
erator. We generate artificial datasets by considering the
dimensionality (i.e., the number of features) to be 2 and 3.
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Algorithm 4 Data Block Merger
Input: data block b1, data block b2, a hyper-parameter β
Output: a merged data block b
1: map← toMap(b1.copiedData)
2: list← toList(b2.copiedData)
3: T← initialize an empty table
4: for each point in list do
5: for each neighbor in point.neighborlist do
6: if map.isExist(neighbor) then
7: T.addConnection(point, neighbor)
8: end if
9: end for

10: end for
11: for each connection c in T do
12: if c.connectCount > β then
13: c.cluster1 ← mergeClusters(c.cluster1, c.cluster2)

14: T.modifyHeader(c.cluster1, c.cluster2)
15: end if
16: end for
17: if b2.isNotEmpty() then
18: b1.appendCluster(b2)
19: end if
20: b← b1
21: return b

TABLE 1. Summary of artificial datasets.

Finally, the generated artificial datasets are divided into
four categories: (1) Normal datasets, composed of Normal-1
and Normal-2 datasets, where data points are both sim-
ply distributed but with different number of features. (2)
Heterogeneous dataset, where the density of data points
is heterogeneous with noise. (3) External dataset, where
data points are distributed with external connection which is
shown in Fig. 3 (a). (4) Concave dataset, where data points
are distributed with concave connection which is shown
in Fig. 3 (b). (5) Internal dataset, where data points are dis-
tributed with internal connection which is shown in Fig. 3 (c).
The statistics of artificial datasets are summarized in Table 1.
We also evaluate different clustering algorithms using real-

world datasets with predefined labels from UCI Machine
Learning Repository [33]. We select several released
datasets1 for clustering, including: (1) Iris dataset (denoted
as IR), which contains 3 classes of 50 instances each, where
each class refers to a type of Iris plant. (2) Ecoli dataset
(denoted as EC), which contains a total of 336 instances

1https://archive.ics.uci.edu/ml/index.php

TABLE 2. Summary of real-world datasets.

with 8 attributes. (3) Zoo dataset (denoted as ZO), which is
a simple database containing information about 7 types of
animals, where each type of animal has 16 attributes. (4) Ban-
knote Authentication dataset (denoted asBA), which contains
varieties of wavelet transformed images with 1,372 instances
in total. (5) Wireless Indoor Localization dataset (denoted as
WIL), which contains 2,000 instances about signal strengths
of 7 WiFi signals visible on a smartphone. (6) Teaching
Assistant Evaluation dataset (denoted as TAE), which con-
sists of 3 roughly equal-sized categories about evaluation of
teaching performance of 151 teaching assistant assignments.
(7) Skin Segmentation dataset, which contains over 245K
images with red (R), green (G) and blue (B) values from var-
ious groups of people. For better comparison, we randomly
extract 50,000 instances (denoted as SS-1), 100,000 instances
(denoted as SS-2), 150,000 instances (denoted as SS-3) and
200,000 instances (denoted as SS-4) from Skin Segmentation
dataset, respectively. In summary, the statistics of real-world
datasets are described in Table 2.

B. BASELINE METHODS
We compare our model with several strong baseline algo-
rithms for clustering, which are all implemented using C++
programming language:
• DBSCAN: the most typical density-based spatial cluster-
ing algorithm with fundamental concepts about density
[6].

• OPTICS: an optimized density-based clustering algo-
rithm which improves the parameter setting of
DBSCAN by ordering data points to identify the clus-
tering structure [7].

• HDBSCAN2: a DBSCAN-based algorithm which auto-
matically selects the parameters of DBSCAN in hierar-
chical manner [34].

• AnyDBC3: an efficient density-based clustering algo-
rithm which reduces both the range query and the label
propagation time of DBSCAN [35].

• SDC: a scalable clustering algorithmwhich partly inves-
tigates the linear connection problem in density-based
clustering algorithms [15].

2https://github.com/ojmakhura/hdbscan.
3https://github.com/VigneshN1997/AnyDBC_C_Code.
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FIGURE 7. Qualitative results on artificial datasets, where sub-figures (a) - (f) are results of DBSCAN, (g) - (l) are
results of SDC, and (m) - (r) are results of Ada-DBSCAN. Note that columns 1 - 6 correspond to Normal-1,
Normal-2, Heterogeneous, Internal, Concave and External datasets, respectively.

C. IMPLEMENTATION DETAILS
We implement the proposed Ada-DBSCAN using C++ pro-
gramming language. For fair comparison, we conduct all
experiments in the same machine with 2 Intel Xeon 2.13GHz
L5630 processors (totally 8 cores and 16 threads) and 32 GB
PC3-10600 ECC Reg RAM, where the operating system is
Ubuntu 16.04 LTS. For Ada-DBSCAN and all other base-
lines, the parameters minPts and eps are dynamically tuned
to achieve best performance on artificial datasets. We vary
the parameter minPts with initial values of {3, 4, 5} to eval-
uate Ada-DBSCAN and all other baselines on real-world
datasets, which is a common parameter in density-based clus-
tering algorithms. Besides, other model-specific parameters
of baseline methods are initialized with original default val-
ues and tuned to achieve best performance.

To evaluate the performance of each clustering algorithm
in real-world datasets, we adopt average accuracy as the
evaluation metric, which is given by:

accuracy =

∑|C|
j=1 |αj|

N
(17)

where |C| is the total number of the clusters, j is the index of
a particular cluster, |αj| is the number of correctly matched
data points in cluster Cj, and N is the total number of data
points.

V. EXPERIMENTAL RESULTS
A. ANALYSIS OF LINEAR CONNECTION
As a key issue discussed in this paper, linear connection
problem is widely existed in DBSCAN and other density-
based clustering algorithms. In all baseline methods, SDC is
the particular one that explores the linear connection problem

by taking the advantage of distance-based clustering. Thus,
we compare the performances of SDC and our model from
both qualitative and quantitative perspectives. Fig. 7 depicts
qualitative results of Ada-DBSCAN compared with SDC and
DBSCAN on artificial datasets. We first analyse qualitative
results point by point as follows.

I. The results of the first two columns in Fig. 7 report
the performances of DBSCAN, SDC and Ada-DBSCAN on
Normal-1 and Normal-2 datasets. We can observe that Ada-
DBSCAN and DBSCAN achieve approximate results when
data points are distributed with uniform density. However,
the clusters obtained by SDC are inferior, as some points
belonging to objective clusters are treated as noise. SDC tends
to obtain sparse clusters, which is because SDC first searches
all centers of the objective clusters, causing a certain number
of centers being obtained in a dense cluster sometimes, but
the final cluster is formed by only one center.

II. The performances of different models on Heteroge-
neous dataset are depicted in the third column in Fig. 7.
As shown in Fig. 7 (c), DBSCAN with fixed parameters
eps and minPts is challenging to obtain satisfactory clus-
ters, since it ignores necessary data points which should be
contained in some sparse clusters. However, if the param-
eters eps and minPts are adjusted to satisfy requirements
of sparse clusters, we have conducted experiments and ver-
ified that it causes dense clusters containing noise data
points. For SDC, the results shown in Fig. 7 (i) demon-
strates that SDC still suffers the drawback that a few inter-
nal points belonging to objective clusters are treated as
noise. In contrast, our Ada-DBSCAN ultimately discovers
4 clearly distinguished clusters as shown in Fig. 7 (o),
which is because Ada-DBSCAN discriminates the density of
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different data blocks to adjust the parameters eps and minPts
dynamically.

III. The results of the fourth column in Fig. 7 report the per-
formances of DBSCAN, SDC and Ada-DBSCAN on Internal
dataset. When internal connection occurs, DBSCAN breaks
the structure of one cluster shown in Fig. 7 (d) instead of
getting all clusters correctly. SDC confuses two individual
clusters as illustrated in Fig. 7 (j), indicating that SDC cannot
discover such clusters with internal connection. It is because
that SDC runs clustering by searching a center first and car-
rying out a concentric expansion. Different from DBSCAN
and SDC, the result of Fig. 7 (p) shows that Ada-DBSCAN
performs well when suffering the situation of linear connec-
tion and obtains two objective clusters, indicating that our
proposed data block splitter and merger along with two-level
clustering is effective.

IV. As shown in the fifth column in Fig. 7, the performances
of DBSCAN and SDC are inferior to Ada-DBSCAN on Con-
cave dataset. When concave connection occurs, DBSCAN
discovers a noisy cluster with noise data points contained
at the left-side tail, which can be observed from Fig. 7 (e).
We have further verified that applying stricter restriction of
parameters accelerates the breakdown of objective clusters.
Fig. 7 (k) depicts that SDC still cannot handle this vari-
ety of linear connection due to its limitation of concentric
expansion. However, Ada-DBSCAN is able to distinguish
the difference between two objective clusters and thus obtain
much better clustering results, as illustrated in Fig. 7 (q).

V. The last column in Fig. 7 shows the performances
of DBSCAN, SDC and Ada-DBSCAN on External dataset.
As can be seen from Fig. 7 (f), DBSCAN cannot distinguish
two different clusters located at left-side, whose drawback
is greatly conquered by SDC as illustrated in Fig. 7 (l).
However, Fig. 7 (r) demonstrates Ada-DBSCAN further
improves the clustering performance due to the fact that it
eliminates noise compared with SDC.

To further verify the superiority of Ada-DBSCAN com-
pared with SDC, we conduct extensive experiments on three
real-world datasets (BA, ZO, IR). As shown in Fig. 8,
Ada-DBSCAN outperforms SDC significantly on BA
dataset, with an increase of about 29% accuracy. On behalf of
ZO and IR datasets, Ada-DBSCAN achieves higher accuracy
results than SDC with an improvement from 7% to 10%.
In conclusion, both qualitative results and quantitative results
demonstrate Ada-DBSCAN has better superiority over SDC.

B. QUANTITATIVE RESULTS
We further compare Ada-DBSCAN and other density-based
clustering algorithms on several real-world datasets. The
quantitative results of Ada-DBSCAN and other baselines are
illustrated in Table 3, where the best results are highlighted
in boldface.

As shown in Table 3, Ada-DBSCAN achieves significant
improvement over baseline methods on IR dataset. Mean-
while, the performance of Ada-DBSCAN rises with the initial
value of the parameter minPts increasing, which may be

FIGURE 8. Performance comparison between Ada-DBSCAN and SDC.

TABLE 3. Quantitative results on real-world datasets.

because higher threshold of minimum number of points in
the neighborhood of radius eps benefits themodel with higher
adaptivity for local clustering. In comparison, the clustering
accuracy results of HDBSCAN and OPTICS are much lower
when minPts is 3. For the results on EC and WIL datasets,
HDBSCAN performs pretty inferior to other models, indicat-
ing that the hierarchical manner of clustering in HDBSCAN
is limited in such scenarios. As a strong baseline, OPTICS
achieves the highest clustering accuracy of 58.33% when
minPts = 3 on EC dataset and 59.55% when minPts =
4 on WIL dataset. However, Ada-DBSCAN still achieves
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TABLE 4. T -test between Ada-DBSCAN and other baseline algorithms.

FIGURE 9. Data distribution of Skin Segmentation dataset.

an improvement of about 2% when minPts is selected in
a larger value. Besides, compared with HDBSCAN and
AnyDBC, Ada-DBSCAN shows significant superiority with
an increase of about 10% on EC dataset and 20% on WIL
dataset, respectively. Regarding to ZO, BA and TAE datasets,
the performance of OPTICS extremely deteriorates while
Ada-DBSCAN still retains good performance. As presented
in Table 3, ZO, BA and TAE are three typical examples
showing that several extended versions of DBSCAN may
not be able to perform better than DBSCAN. However,
Ada-DBSCAN achieves equal or higher clustering accuracy
compared with DBSCAN, which also shows better stability
and robustness on all the datasets with minPts varying.
We also conduct T -test between Ada-DBSCAN and other

baseline algorithms to evaluate the significance of our quanti-
tative results. According to T -test results presented in Table 4,
Ada-DBSCAN significantly improves the performance com-
pared to DBSCAN with corresponding p < 0.1, and signif-
icantly improves the performance compared to OPTICS and
HDBSCAN with corresponding p < 0.05. Moreover, Ada-
DBSCAN outperforms AnyDBC with corresponding p <

0.01. Overall, other advanced density-based algorithms may
focus on certain aspects but is not applicable to general sce-
narios. Ada-DBSCAN retains the advantages of DBSCAN,
making it well-suited for all scenarios that DBSCAN can
handle. Therefore, Ada-DBSCAN has significant superiority
over DBSCAN and its extended algorithms with high perfor-
mance and good stability.

C. EFFICIENCY ANALYSIS
To evaluate the efficiency of our Ada-DBSCAN, we compare
the time complexity between Ada-DBSCAN and DBSCAN
on large-scale datasets. We conduct extensive experiments on
four large-scale datasets SS-1, SS-2, SS-3 and SS-4, which
are subsets sampled independently from Skin Segmentation

FIGURE 10. Performance comparison between Ada-DBSCAN and DBSCAN
on large-scale datasets.

dataset. The data distribution of original Skin Segmentation
dataset is shown in Fig. 9, which is a typical instance that a
cluster surrounded by another one. Note that other baselines
including OPTICS, HDBSCAN and AnyDBC are not well-
suited in such variety of dataset since their clustering perfor-
mances are inferior as discussed above. It is the reason that
we exclude them into efficiency comparison.

Preliminarily, we verify the effectiveness of
Ada-DBSCAN on large-scale datasets. The quantitative
results of Ada-DBSCAN and DBSCAN are illustrated
in Fig. 10. Both Ada-DBSCAN and DBSCAN achieve over
89% clustering accuracy on the four datasets with different
size. By comparing the optimal result with different minPts
on a particular dataset and the optimal result on differ-
ent datasets, it is verified that Ada-DBSCAN outperforms
DBSCANwith a slight improvement of about 0.5% accuracy.

However, the time cost of Ada-DBSCAN is significantly
lower than that of DBSCAN. Theoretically, the time com-
plexity of DBSCAN is O(N 2), while the time complex-
ity of Ada-DBSCAN is O(Ne · e

2) = O(eN ), where
N denotes the size of the dataset, and e denotes the
expected average number of data points in a data block.
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FIGURE 11. Comparison of time cost between Ada-DBSCAN and DBSCAN.

Note that e is specified according to the specific dataset
and can not be omitted due to the calculation in ‘‘extended
boundary", but usually e � N when N is large. For fair
comparison, we calculate the average running time for both
algorithms using one CPU only. Fig. 11 depicts the results
of time cost between Ada-DBSCAN and DBSCAN with the
size of datasets increasing. The time cost of Ada-DBSCAN
is close to DBSCAN when running on a small dataset SS-1,
but obviously Ada-DBSCAN needs less time when enlarging
the dataset. It is because that our data block splitter fol-
lowing with local clustering and global clustering is bene-
ficial to speed up the clustering process, and the adaptive
parameters also accelerate the convergence of our algorithm.
In particular, DBSCAN needs over 1000s on SS-4 dataset
while Ada-DBSCAN only needs about 200s to finish cluster-
ing, reducing about 80% time cost. Overall, Ada-DBSCAN
shows significant superiority in efficiency compared with
DBSCAN. In addition, by leveraging data block splitting and
merging, Ada-DBSCAN can be well-adapted to distributed
frameworks like MapReduce [36] for massive data analysis.

VI. CONCLUSION
In this paper, we propose a novel adaptive density-based
spatial clustering algorithm called Ada-DBSCAN, with the
aim to address a key issue called linear connection that exist-
ing density-based clustering algorithms struggle to tackle.
Ada-DBSCAN consists of a data block splitter and a data
block merger, which are coordinated by local clustering
and global clustering. In contrast to baseline algorithms,
Ada-DBSCAN is able to conquer the linear connec-
tion effectively and set parameters adaptively. Meanwhile,
Ada-DBSCAN achieves better clustering performance with

lower computational cost. The extensive experiments on arti-
ficial datasets and real-world datasets demonstrate the effec-
tiveness of our algorithm.

For future work, we plan to extend our algorithm to support
distributed computing to fully explore the idea of data split-
ting and merging based on uniform data distribution, mak-
ing it better-adapted to massive distributional data analysis.
Another research direction is to exploit the ensemble cluster-
ing strategy to further improve our Ada-DBSCAN. Finally,
we intend to apply our algorithm into more data mining tasks,
such as event detection and trajectory prediction.
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