IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON GREEN INTERNET OF THINGS

Received December 18, 2019, accepted January 9, 2020, date of publication January 24, 2020, date of current version January 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2969188

EPC-Based Efficient Tag Selection in RFID Systems

LIYUE ZHU"'1, XIUJUN WANG“2, YANGZHAO YANG 3, SHUBIN XU"“3, XUANGOU WU "2,

WEI ZHAO 2, (Member, IEEE), AND HUIBIN FENG 4

! Academy of Broadcasting Science, Beijing 100866, China

2School of Computer Science and Technology, Anhui University of Technology, Ma’anshan 243032, China

3Research Institute of Cyberspace Security of CETC, Beijing 100041, China

“#Electronic Information and Control of Fujian University Engineering Research Center, Minjiang University, Fuzhou 350121, China

Corresponding author: Xiujun Wang (wxj@mail.ustc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61402008, Grant 61672038, and
Grant 61702006, in part by the Electronic Information and Control of Fujian University Engineering Research Center, Minjiang University,
under Grant MJXY-KF-EIC1803, and in part by the Provincial Key Research and Development Program of Anhui Province under

Grant 201904a05020071.

ABSTRACT Tag-selection problem, which selects a set of wanted tags from a tag population, is vital for
boosting efficiencies of the real-time applications in RFID systems. However, prior arts for the problem
can not be applied to RFID systems directly, given that they either require additional computing functions
implemented in tag’s chips or require a time-consuming pre-process with a large communication cost. This
paper studies the tag-selection problem and propose an efficient Electronic Product Code (EPC)-based
tag selection method with theoretical analysis. In particular, firstly, we prove a nontrivial lower bound of
communication overhead for a protocol which is capable of solving the tag-selection problem. Secondly,
we propose an efficient protocol, denoted by TagSP, which only uses the “select” command (a mandatory
command that all RFID tags shall support) and EPC. The proposed TagSP can be applied directly into off-
the-shelf RFID systems with a communication overhead close to the lower bound. Extensive simulations are
conducted and the simulation results show TagSP’s superiority compared with existing protocols.

INDEX TERMS RFID systems, tag selection, lower bound of communication overhead, EPC.

I. INTRODUCTION

Radio frequency identification (RFID) is now widely used
in many applications, such as warehouse controlling [1]-[8],
library inventory [9]-[11] and object tracking [8], [12]-[18].
In comparison to the traditional bar-codes, RFID enables
non-line-of-sight and contactless identification and supports
a much larger set of different tag users [19], which leads to
its wide applications.

This paper focuses on the tag-selection problem in RFID
system, where the task is to pick a subset P of tags from a
tag population S by using as little communication time as
possible. This is a basic problem that has a wide range of
applications in RFID systems. For example, when a batch
of tagged goods is going to be shipped out in a warehouse,
the manager may need to write a piece of information (e.g.,
shipping destination, expiry date, mode of transportation,
shipper code) into the tag’s memory for tracking purposes.
Such writing task can be rapidly finished by first picking out

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenyu Zhou

20546

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

the tags that share the same information (e.g., have the same
shipping destination) from the tag population, and then writ-
ing the shared information into the memory of these picked
tags simultaneously in one transmission. Another example is
in privacy-sensitive RFID systems, where the access pass-
words in tags need to be updated periodically for enhancing
the security level. In this case, instead of assigning each
tag a new password which is time-consuming, the manager
can partition all tags into different groups and then generate
a new password for each group periodically. Other examp-
les [20]-[26] include over-the-air tag programming, live
query of tag information, etc.

A. PRIOR ARTS AND LIMITATIONS

There are mainly two problems in regard to the tag-selection
problem. The first is the group writing problem recently
raised in [20]. This problem aims at quickly picking a tag
subset P from a tag population S, and then writing group-
specific information into the tags in P. The authors in [20]
propose a scheme to solve this problem, where each tag
needs to be written with a specially designed bit-vector in

VOLUME 8, 2020

https://orcid.org/0000-0001-6304-8085
https://orcid.org/0000-0002-8758-5763
https://orcid.org/0000-0002-6367-4622
https://orcid.org/0000-0002-7995-3474
https://orcid.org/0000-0002-7912-8757
https://orcid.org/0000-0001-9799-4635
https://orcid.org/0000-0002-7414-1370
https://orcid.org/0000-0002-3344-4463

L. Zhu et al.: EPC-Based Efficient Tag Selection in RFID Systems

IEEE Access

its user memory such that a single “select” command is
capable of picking multiple tags by exploiting the features in
these bit-vectors. Experimental results show that the number
of “select” commands used by this proposed protocol is
much less than that of the intuitive method which issues a
single “select” command to pick each tag in P. Another
related research is the tag grouping problem as studied
in [27]-[30]. For example, the state-of-the-art grouping pro-
tocol CCG [30], can rapidly inform each tag about which
group it belongs to, such that the tags in the same group end
up having the same group-ID. In each communication round,
CCG randomly hashes the tags who do not have their group-
IDs to a number of slots, and then use homogenous slots (If
the tags that are hash-mapped to a slot s belong to the same
group, then s is a homogenous slot) to transmit the group-IDs
for the tags that are hash-mapped to these slots. CCG uses
multiple rounds to ensure that all tags are informed of their
group-IDs. In [27], the authors reduce the communication
time of CCG based on multiple hash functions, and propose
a grouping protocol ComLab. Experimental results show that
ComLab reduces the communication time by about 10% ~
25%. In [28], the authors study the tag grouping problem in
a dynamic scenario, where the aim is to rapidly inform each
tag about its new group-ID based on its previous group-ID.
The basic grouping idea is to find the difference between the
previous group-ID and the new one of a tag. Then the protocol
can notify the tag to flip its bits according to the difference to
join the new group.

There are two main drawbacks with the existing works as
follows.

« No nontrivial lower bound is given for communication
overhead: Obtaining a nontrivial lower bound is critical
for real-time applications in RFID systems, due to the
requirement of pre-allocating sufficient time to every
task for guaranteeing efficiency and avoiding failure in
these systems. A nontrivial lower bound is also critical
to determine how much reduction can be expected in
theory when we try to improve a protocol.

o They can not be applied to all off-the-shelf RFID sys-
tems directly: The above protocols for the group writing
problem and the tag grouping problem can solve the tag-
selection problem. However, they can not be applied to
every RFID system directly without additional require-
ments. More specially, the protocols for the tag group
problem require that some additional computing func-
tions (For example, see the ROB function in [28] and
the simple function that counts the number of ‘1’s in a
bit array in [27], [30]) should be implemented in the chip
of each tag, which are not specified in the EPC C1G2
standard [31] and will be supported by commercial-
off-the-shelf (COTS) tags.! The protocols for the group
writing problem require a time-consuming preprocess

! The EPC C1G2 standard [31] defines the operating procedures, com-
mands and physical interactions between RFID readers and Tags. Any
command or computing function not specified in this standard will not be
supported by COTS tags.

VOLUME 8, 2020

that writes an additional bit-vector into the user memory
of each tag.” Therefore, they can not be applied to an
RFID system that contains read-only tags (read-only
tags do not have any user memory into which the user-
specific data can be stored).

B. CHALLENGES AND TECHNICAL CONTRIBUTIONS

This paper is targeted for designing an efficient protocol for
the tag-selection that can both applied to every off-the-shelf
RFID system directly, and has a communication cost close
to the nontrivial lower bound. Towards this goal, we need to
answer two challenging problems.

What is the nontrivial lower bound of communication
overhead for a protocol which is capable of solving the
tag-selection problem: The lower bound indicates the min-
imal amount of communication time for a protocol to solve
the tag-selection problem. Deriving a nontrivial lower bound
is challenging because we must thoroughly understand the
nature of the tag-selection problem, and then carefully formu-
late a communication process to capture the underlying hard-
ness. More specifically, to obtain a nontrivial lower bound, we
must transform a protocol for the tag-selection problem into a
process that can represent any tag subset and population (see
Theorem 2).

How to design an efficient protocol which can be
applied to all off-the-shelf RFID system directly: The
inherent difficulty is how to guarantee the universal appli-
cability and a small communication time. Here we propose
to use only the tag data and commands that are universally
supported in off-the-shelf RFID systems to solve the prob-
lem with a small communication time. More specifically,
to achieve this, we design a protocol that uses the EPC and
“select” command, both of which are supported in every
RFID system.? To guarantee its efficiency, this protocol first
analyzes the tags’ EPCs carefully to build a set of filter
substrings, and then smartly chooses some substrings from
this built set of filter substrings, such that the tag-selection
problem can be solved by issuing a few “select” commands
(see Algorithm 1).

To this end, we study the efficient tag-selection problem
in RFID systems with universal applicability and a small
communication time. In particular, firstly, we prove a non-
trivial lower bound of communication overhead for a protocol
which is capable of solving the tag-selection problem. Then
we propose an efficient protocol, denoted by TagSP, which
uses only the ““select” command and EPC. Lastly, we testify
the universal applicability and efficiency of TagSP through
rigorous theoretical analysis and comprehensive simulation
results. The main contributions of this paper are summarized
as follows:

21tis time-consuming because N ““write”” commands are needed when the
tag population S contains N tags. A “write”” command is used for writing a
specially designed bit-vector into the user memory of a tag of S, please see
page 4 of [20] for details.

3EPC is a tag data written in all tags, and the “select” command is a
mandatory command that is universally supported in every RFID systems.

20547

IEEE Access

L. Zhu et al.: EPC-Based Efficient Tag Selection in RFID Systems

Algorithm 1 TagSP: An Efficient Method for the Tag-
Selection Problem Based on Multiple Filter-Strings

Input: A tag population S of N tags chosen from U, and a
tag subset P of n tags (P C S).
||* First stage: Preprocess all the substrings in the n EPCs of
P to build a set A of candidate filter-strings. ™|
1: Initialize a set A = (;
: Set Linax = [log(NH)1;
:Foreacht e P
For each substrings #[i, jl of t (i <j € {1,2,...,96})
Ifj— i+ 1 < Lpax
IfVu € S — P, u[i, j] # t[i,j] Then
A =AU{t[i/j1}; EndIf EndIf
8: End For End For
||* Second stage: Use candidate filter-strings in A to pick
subset P from S in a greedy way.*||
9: Initialize a counter C = 0;
10: While P # ¢
11: Find a substring #[i, j] from A such that the number of
tags in P which share #[i, j] in their EPCs is maximized;
|I* a tag u € P shares t[i,)] in its EPC, if the substring that
starts at the i-th bit and ends at the j-bit of tag u’s EPC equals
tli, j1#
12: Issue acommand: Select MemBank = 1, Pointer =i,
Length =j — i+ 1, Mask = t[i, j];
13: Delete the tags that can be picked by the above command
from P;
14: C=C+1,;
15: End While

AR O i

1) We have proven a nontrivial lower bound of commu-
nication overhead for a protocol which is capable of
solving the tag-selection problem.

2) We have designed a protocol, denoted by TagSP,
to solve the studied problem. Comparing to the existing
protocols, the proposed TagSP can be applied directly
into off-the-shelf RFID systems with a communication
overhead close to the lower bound.

3) We have conducted extensive simulations to verify the
performance of the proposed TagSP, and the results
show that the communication time of TagSP is within
a constant factor of the lower bound.

The remainder of this paper is organized as follows.
Section II presents a nontrivial lower bound of the com-
munication time for the tag-selection problem. Section III
describes the proposed TagSP protocol. Section IV evaluates
the proposed protocol through simulation results. Finally,
concluding remarks are presented in Section V.

Il. A NONTRIVIAL LOWER BOUND OF

COMMUNICATION OVERHEAD

In this section, we obtain a nontrivial lower bound of commu-
nication overhead for any protocol to solve the tag-selection
problem.

20548

N Backend Server

- -

FIGURE 1. An example for the tag-selection problem (picking P from S).
Note: Tag population S = {t;, t,, .., tg) and subset P = {t,, t5, tg, tg, to}.

TABLE 1. Symbol definitions.

Symbol Definition
U U=1400---00,00---01,00---10,- -+ - 711~~~11}
|+=96-bit—| [«—96-bit— | |+—96-bit— | | <—96-bit— |

is the set of all the possible EPCs (tag-IDs)

S A tag population of N EPCs (tags) chosen from U.
P A tag subset of n EPCs chosen from S, P C S.
N

n

The number of EPCs in S, i.e., [S| = N.
The number of EPCs in P, i.e., |[P] = n.
t is denoted as both tag ¢ and t’s EPC, t € U.

[2,7] The substring that starts at the ¢-th bit and ends at j-th bit of ¢.
Ts The time unit for sending a 96-bit string to tags.
A A protocol that solves the tag-selection problem.
Tsp The lower bound of time for a protocol which is capable of

solving the tag-selection problem, see Theorem. 2.2.

A. SYSTEM MODEL AND PROBLEM DEFINITION

We consider an RFID system where a reader R is deployed to
monitor a set S of N tags, i.e., S = {t1,t, -+, ty} (we call
S as a tag population). Fig. 1 shows such an example with
a reader R and a set S of 9 tags. The reader R is connected
to a powerful backend server for computation and storage.
Each tag ¢ has a unique EPC (a 96-bit ID) which exclusively
represents tag ¢ as well the object to which ¢ is attached. The
reader R communicates with the server through a high speed
connection link, over which the communication time delay
can be ignored. All the tags in S stay within the interrogating
range of R and can communicate with R via a low-speed
connection link, over which the communication overhead
mainly determines the communication time of a protocol in
RFID systems.

Before we present the definition of the tag-selection prob-
lem, we define a few notations. Let U denote the set of all 26
possible EPCs. Let § denote a tag population which is a set
of unique EPCs (tags) chosen from U, and let |S| = N. Let P
be a proper subset of S, and |P| = n. We use ¢ to denote both
tag ¢t and ¢’s EPC. Some common symbols used in this paper
are also summarized in Table 1.

Initially, all the tags in S have no idea about whether they
belong to subset P or not, and reader R knows the tags” EPCs

VOLUME 8, 2020

L. Zhu et al.: EPC-Based Efficient Tag Selection in RFID Systems

IEEE Access

in P and S — P, respectively. Then, the tag-selection problem
is defined as follows.

Definition 1: Suppose we have an RFID system which is
described in the above, for any S C U and P C S, the tag-
selection problem requires to devise a protocol to guarantee
that reader R can pick all the tags in P from S, i.e., to inform
all tags in S whether they belong to P or not.

Please note that, in Definition 1, § can be any subset
of N different EPCs chosen from U because we make no
restriction on the tags’ EPCs in an RFID system; P is allowed
to be any proper subset of S because we do not assume any
distribution of P. In practice, this is quite possible to happen,
especially in a large scale RFID system where users or appli-
cations partition a large number of tags into different subsets
according to various selection criteria or local attributes of
tags at a time point, and want to pick different subsets from S
later at different time points.

B. LOWER BOUND ANALYSIS

In the following theorem, we obtain a nontrivial lower bound
of the number of bits that reader R sends to tags, and
then accordingly a nontrivial lower bound of time, denoted
by Tep. The basic idea is to transform a protocol A for the tag-
selection problem and a specially designed message, denoted
by B, into a process that can represent a subset P and a popula-
tion S. Then the lower bound of A can be derived by calculat-
ing the difference between {P, S} and B. Please note that in the
following analysis, we assume that the communication time
of a protocol in RFID systems is mainly determined by the
time used for sending bits from reader R to tags. We ignore the
cost of communications between R and the server. Because
R can communicate with the server quickly via a high speed
connection link, in which the data speed is usually larger than
10Mbits/s.* In contrast, the data speed from reader R to all
tags is only about 26Kbits/s~128Kbits/s [31].

Let T represent the time length for sending a 96-bit string
from reader R to all tags. Then R needs a time of % to
transmit an m-bit message to tags, because R can spilt this
message into 96-bit segments and transmit each of them in
a time slot of length T. Therefore, if a protocol A needs to
transmit M bits in total to tags, the time of A equals M9><6T5 .

Theorem 2: LetA be a protocol which is capable of solving
the tag-selection problem, and |A| be the total number of bits
sent to all tags when A runs. Then A must satisfy the inequality
(1) and equation (2):

Al = ¢ =nlogy (¥) + (N = mlogy (#5). ()

Tp = 5, @)

where n and N are the numbers of tags in P and S, respec-
tively, and Tpp represents the lower bound of time.

Proof: We use Msg to represent all of the bits that reader
R sends to all tags when protocol A runs. We can view Msg

4 As a typical example, ZEBRA FX7500 RFID READER and IMPINJ
SPEEDWAY REVOLUTION R220 UHF RFID READER use Ethernet cable
to join a network and connect to the backend server.

VOLUME 8, 2020

as a single bit-string in which the number of bits equals |A].

During the execution of protocol A, it is easy to see that all

tags within the interrogating range of reader R use a common

decision procedure to decide whether they belong to subset

P or not. Because, initially, each tag t € S knows only its

EPC and stays in the same state (non-selected state), and

then makes decisions during the execution of protocol A.

This common decision procedure can be represented by a

function F(). Without loss of generality, we can assume that,

after reader R broadcasts Msg, each tag t € S computes

F(t, Msg), and makes decisions as follows:

(a) If F(t, Msg) = 1, tag t decides that it is in P;

(b) If F(t, Msg) = 0, tag t decides that it is not in P.

Because, protocol A is assumed to be capable of solving
the tag-selection problem, then by the Definition 1, we have
the followings three statements:

(1) Ifx e P,Pr[F(x,Msg) =1]=1;

2) IfxeS—P,Pr[F(x,Msg) =0] =1,

3) IfxeU—-S,Pr[F(x,Msg) =1] € [0, 1].

Please note that Pr[] stands for probability. The first two

statements are easy to be obtained from Definition 1. The

third statement is because Definition 1 does not make any

restriction on the result of F (¢, Msg), ift € U — S.

We show how each tag ¢ can know which n EPCs are in
subset P and which N —n EPCs are in § — P in the following
steps:

S1: Since U is known to all tags, each tag ¢ € S is capable
of computing F(x, Msg) over each EPC x € U. Then ¢
can get two sets: Uyp = {x,|x € U and F(x, Msg) =
1} and Uy = f{x,|x € Uand F(x,Msg) = 1}.
By statement (1)-(3), we know P C Uj and S — P C Uy
(the value of F() over an EPC in U — S can be either
1 or 0). Therefore, tag t can know which n EPCs from
U truly belong to P, if reader R tells t which EPCs in U
are not in P; t can know which N —n EPCs from U truly
belong to S — P, if R tells t which EPCs in Uy are not in
S—P.

S2: Reader R can get Up and U; the same way as each tag
t does. Then, since reader R knows P and S — P, it can
get Up — (§ — P) and U; — P. Hence reader R can tell
each tag ¢ about the EPCs in Uy — (S — P) and U} — P
by broadcasting a message B to all tags.

S3: Each tag ¢t € § can perfectly know which n EPCs are
in P as well as which N — n EPCs are in § — P, after
receiving B.

We need to use log, (ﬁ:g) + log, (/) bits to accurately
represent a subset P and a population S (JP| = n and
IS| = N), where ¥ = 2%, This is because an arbitrary
set containing N different EPCs from U can become S, and
an arbitrary set containing n EPCs from § can become P.
Let |Up| = z (the number of EPCs in Uy is z). We have
|Ui| =¥ —z,and N —n < z < ¥ —n, because statement (3)
allows an arbitrary number of EPCs in U — S, over each of
which the value of F() equals 1, and statement (2) requires:
Vx € § — P, F(x, Msg) = 0. Then, there are (Nin) different

20549

IEEE Access

L. Zhu et al.: EPC-Based Efficient Tag Selection in RFID Systems

TABLE 2. The 8 actions of a Select command.

Action Tag Matching Tag Not-Matching

“000” assert SL or inventoried — A deassert SL or inventoried — B
“001” assert SL or inventoried — A do nothing

“010” do nothing deassert SL or inventoried — B
“011” negate SL or (A — B, B — A) do nothing

“100” deassert SL or inventoried — B assert SL or inventoried — A

“101” deassert SL or inventoried — B do nothing

“110” do nothing assert SL or inventoried — A

“111” do nothing negate SL or (A — B, B — A)

ways of choosing N — n EPCs from Uy, and (q'; Z) different
ways of choosing n EPCs from Uj. As a result, we know |B|
(the number of bits used in B) equals log, (=) +1og, (¥, %)
bits.

Since Step(1)-(3) can help a tag ¢ to accurately find out P
and § — P, we have the following inequality:

Al = [log, (V77) +log, (¥)] = logs (y7,) + logy (%))

(W — V=" W
> logz(T) + log,(

-)

Letz = oW, where @ € [0, 1]. By substituting z with ¢ ¥ into
(3), and we have:

IA] > lo (\Ij—ﬂ)+lo (M)
= OB T w) TR T gy
~ W (WN="
~ logz(—((l — oc)lIJ)ﬁ) + logz(—(a\p)]v_n) “
1 n 1 (N—n)
> logy(7——)" +1logy ()™ ®)

Please note that the approximation (W — n =~ W) used in (4)
comes from the fact that W is far larger than n. It is easy to
see the function of @ shown in (5) is minimized when o =
(N — n)/n. Therefore, we get (1).

Finally, since T is the time length of a slot for sending
a 96-bit string from R to all tags, and protocol A needs to
transmit at least ¢ bits, we know that the time of A is no less
than ¢ x Ts/96.]

Ill. TAGSP: AN EFFICIENT PROTOCOL FOR THE
TAG-SELECTION PROBLEM

In this section, we study how to efficiently solve the tag-
selection problem based on the EPC and “select” com-
mand. We first explain the basic working principle of
using the EPC and “select” command to pick tags from
a population. Then, we analyze the possibility of solving
the tag-selection problem by using a single “select” com-
mand. At the end of this section, we provide the designed
protocol TagSP with a detailed analysis of its theoretical
performance.

A. ILLUSTRATION FOR seLecT COMMAND

EPC C1G2 standard defines a mandatory command “‘select”,
represented by Select in the following. This command
provides the RFID reader with the ability to pick up multiple

20550

tags based on user-defined criteria (see pages 74-76 in [31]).
A Select command contains 6 parameters as shown in the
following:

o Target and Action: The parameter Target specifies the
object thata Select command will change. This object
can either be the selected flag, denoted by SL, or the
inventoried flag of a tag. Action specifies how to change
the object. According to the EPC C1G2 standard [31],
there are 8 different actions for a tag to response to
an Action parameter, which are shown in Tab. 2. In
summary, these two parameters together specify: if a tag
¢t matches the selection criterion, ¢ sets its flag (inven-
toried or SL) to a value, otherwise, ¢ sets its flag to
another value. For example, when Target = SL and
Action = “000”, tag ¢ asserts its SL if matches the
selection criterion; tag ¢ desserts its SL flag, otherwise.
The selection criterion used in a Select command is
defined by the other four parameters shown below.

« MemBank, Pointer, Length, and Mask: These four
parameters jointly specify a contiguous sequence of bits
that starts at Pointer and ends Length bits later in the
memory of MemBank. Then the selection criterion used
ina Select command is defined as: if the substring that
starts at Pointer and ends Length bits later in the memory
of MemBank is the same as MASK, the correspond-
ing tags are matched. There are 4 different memory
banks in a tag r: MemBank-0 stores #’s access password;
MemBank-1 stores t’s EPC; MemBank-2 stores #’s
manufacturing information; MemBank-3 stores ¢’s cus-
tomized information. For example, when MemBank =
MemBank-0, tag ¢ uses Pointer, Length and MASK
to locate a substring in its EPC, and then compare
this substring with MASK to determine whether it
matches or not. In other words, MASK is compared with
the substring that starts at the Pointer-th bit and ends
at the (Pointer+Length-1)-th bit of tag #’s EPC. When
MemBank takes other values, tag ¢ finds the substring
in the corresponding memory bank and compares this
substring with MASK in the same way as we have
explained for MemBank = MemBank-0.

In this paper, we only consider the case that MemBank =
MemBank-0, because we focus on using tags’ EPCs to solve
the tag-selection problem. For ease of illustration, we call the
substring specified by the three parameters: Pointer, Length,
and Mask, as the filter-string in a Se Lect command, because
it actually determines the selection criterion for this Select
command. Please note that, in the following analysis, we omit
Target and Action in a Select command, because they only
specify the action of a tag when it matches (or does not match)
the filter-string.

In the following, we provide examples for showing how
Select commands work for picking tags from a tag popu-
lation S. We assume that an EPC is a 4-bit string, and consider
a specific tag population S = {#;|i = 1,2, ..., 8} with their
EPCs as shown in Tab. 3. If reader R wants to pick a tag subset

VOLUME 8, 2020

L. Zhu et al.: EPC-Based Efficient Tag Selection in RFID Systems

IEEE Access

TABLE 3. The 4-bit EPCs (tag-1Ds) of 8 tags.

Tag 4-bit EPC Tag 4-bit EPC Tag 4-bit EPC

t1 00 0 0 tq 0110 tr 1100
to 0 010 ts 1000 tg 1110
t3 01 00 te 1 010

P ={t1, n, t3, t4}, it can issue four Select commands (one
for each tag), which are shown as follows:

(1) Select MemBank = 1, Pointer = 1, Length = 4,

Mask = “0000”’; (for picking #; from S);

(2) Select MemBank = 1, Pointer = 1, Length =
4, Mask = “0010”’; (for picking t; from §);

(3) Select MemBank = 1, Pointer = 1, Length = 4,
Mask = “0100”’; (for picking 73 from S);

(4) Select MemBank = 1, Pointer = 1, Length = 4,
Mask = “0110” (for picking t4 from S).

According to EPC C1G2 standard, reader R needs to trans-
mit at least 4 x (3 4 [log,(96)] + 8 + 4) = 88 bits for
executing these four commands.”> Please note that each of
these 4 commands uses a different filter-string. However,
since reader R knows the EPCs in S, it can analyze the 4 EPCs
in P carefully and find out that #1, 2, #3 and #4 share a common
substring “0” in the first bit of their EPCs, which is not shared
by the tags in S — P. Hence, reader R can find out that a single
command: Select MemBank = 1, Pointer = 1, Length =
1, Mask = ““0” is capable of picking P from S, and it needs
only 1 x (34 [log,(96)1 + 8+ 1) = 19 bits for executing this
command.®

Ifreader R wants to pick P = {t1, 2, 13, t7}, instead of using
four Select commands (one for each tag in P), R can issue
two Select commands, after it finds out:

(1) 1, and tp share a common substring ““00” in the first two
bits in their EPCs, which is not shared by other tags in
S —P;

(2) t3 and t7 share a common substring “10” in the second
and third bits in their EPCs, which is not shared by other
tagsin S — P.

Furthermore, we can see that when P = {t1, 17, 13, t7},
reader R needs at least two Select commands to pick P
from S. This is because these four tags do not share a common
substring in their EPCs, which is not shared by the tags in
S—P.

Based on the above examples, we can see that the key point
for solving the tag-selection problem is to find A filter-strings
from the EPCs in subset P, such that P can be picked by
using A Select commands. In the following section, firstly,
we show that the probability that a single filter-string (or
equivalently, a single Select command) can pick P from §

5 According to Table 6-29, we know that parameter MemBank, Pointer,
and Length need 3, [log,(96)1, and 8 bits, respectively. The number of bits
needed in Mask is equal to the value of Length, which is the number of bits
in the filter-string.

6 The filter-string in this command is defined by three parameters:
Pointer = 1, Length = 1, Mask="0", and this filter-string can separate t{,
1, t3 and 14 from ts, tg, t7, tg (11, t2, 3 and t4 match this filter string, but 5,
te, 17, tg do not)

VOLUME 8, 2020

10¢%
? _-average number of
1-filter-strings
theoretical expected

102H
é -+ number of 1-filter-strings|

10t

e

o

N
e,
oy
10 *’K+ 108} +’i's.)!*

o 10

10
1234567 891011121314151617181920 1234567 891011121314151617181920
number of tags in group P number of tags in group P

(a) (b)

number of 1-filter-strings
3
8
,ff@ .
number of 1-filter-strings
3
3

=)
&

FIGURE 2. Expected numbers of 1-filter-strings for randomly generated S
and P: (a) vary |P| from 1 to 20 and set |S| = 2|P|; (b) vary |P| from 1 to
20 and set |S| = |P| + 20.

is extremely small; secondly, we propose an efficient protocol
that picks P from S by using multiple filter-strings.

B. ANALYSIS FOR SOLVING THE TAG-SELECTION
PROBLEM BY USING A SINGLE

SELECT COMMAND

A single ““select”” command can pick P from S, if there exists
a substring [, j] of tag t’s EPC (1 < i < j < 96), such that
the following two statements are true:

(S1) Yu € P, uli,j] = t[i,] (¢[i, j] is shared by every tag in

P);
(S2) Yu € S — P, uli, j] # t[i,j] (¢[i, j] is not shared by the
tags in § — P).

If such a substring exists, then we can use t[i,j] to pick
P from S by using a single ““select” command: “Select
MemBank = 1, Pointer = i, Length = j — i + 1, Mask =
t[i, j1”’. We call the substring ¢[i, j] a 1-filter-string.

We first conduct simulations to find the average numbers
of 1-filter-string solutions for given n and N through 10° inde-
pendent trails, where n = |P| and N = |S|. The simulations
are done with two settings. One is to set N = 2n, and let n
go from 1 to 20. The other is set N = n + 20, and let n go
from 1 to 20. Specifically, we takes the following steps for
each setting:

(1) Pick the number #;

(2) Randomly choose N different EPCs from U to form set S
and then randomly choose n EPCs from § to form set P;

(3) Do exhaustive enumeration to find all the 1-filter-strings
for the sets: S and P which are determined in step (2), and
record this number;

(4) Repeat step (2) and (3) for 10° times to compute the
average number of 1-filter-strings for the number 7.

Please note that the average number we get in the above
procedure provides a simulated upper bound of the prob-
ability of existence of 1-filter-string solution for a given
parameter n. Fig. 2 shows the average number of 1-filter-
string solutions for the two settings. From the results, we can
observe that the average number of 1-filter-string solutions
decreases close to 0 rapidly, with the increase of n, which also

20551

IEEE Access

L. Zhu et al.: EPC-Based Efficient Tag Selection in RFID Systems

indicates the probability of 1-filter-string solution decreases
close to 0 quickly with the increase of n. In particular, when
n = 6and N = 12 (both P and S — P contain 6 tags),
the average number of 1-filter-string solutions in a trial is
only 0.4, which means that in there are at least 105 x 1 -
0.4) =6 x 10* trials, in each of which there does not exist a
1-filter-string solution; whenn = 10 and N = 20, the average
number of 1-filter-string solutions is only 0.0016, which
means that there are at least 10° x (1—0.0016) = 99984 trials,
in each of which no 1-filter-string solutions can be found.

Secondly, we calculate the theoretical expected number of
1-filter-string solutions, denoted by Nj, and derive an upper
bound of the probability that there exists at least a 1-filter
string for a trial, as stated in Theorem 3.

Theorem 3: Let S denote a tag population of N unique
EPCs randomly chosen from U (the set of all possible EPCs),
and P a subset of n EPCs randomly chosen from S. Then the
expected number of 1-filter-strings can be calculated as:

96 n—1 N—n
Ny=n) (96—i+1) (1/2") (1 - 1/2") . (6)
i=1

Note that formula (6) provides an upper bound of the proba-
bility that there exists at least one 1-filter-string for picking P
from S.
Proof: The proof is shown in the Appendix.]
We plot the curves of formula (6) in Fig. 2 (see crosses)
which highly match the simulation results (see cycles).

C. SOLVING THE TAG-SELECTION PROBLEM BY USING
MULTIPLE seLEcT COMMANDS

Based on the previous analysis, we can see that 1-filter-string
solution rarely exists for a tag-selection problem. Therefore,
we deal with the tag-selection problem based on multiple
filter-strings, or equivalently, multiple Select commands.

The basic idea of the designed protocol TagSP is to build
a set A of candidate filter-strings such that the number of
Select commands used for picking P can be reduced.
More specifically, TagSP includes two stages: the first stage
analyzes all the EPCs in subset P to build A, and the second
stage uses A to pick P from § in a greedy way, which always
uses the substring in A that is shared by the largest number of
tags in P as the filter-string in each issued Se lect command.
The detailed steps of TagSP are shown in Algorithm 1.

In TagSP, the first stage is shown in Step 1-8, and the sec-
ond stage is shown in Step 9-15. The variable Lpy,x set in
step 2 is used for reducing the number of substrings that we
need to check when constructing A. The reason for using
[log, (N 2)] as the maximal length is shown in Theorem 4.
Step 4-7 check each substring ¢[i, j], and then put ¢[i, j] into
A if there does not exist a tag u € S — P that shares #[i, j] in
its EPC. Step 11 finds the substring #[i, j] in A that is shared
by the largest number of tags in P; Step 12 issues a Select
command by using the substring ¢[i, j] found in Step 11 as the
filter-string to pick some tags in P from S. From these two
steps, we can see that TagSP tries to minimize the number

20552

of Select commands by adopting a greedy strategy. Please
note that we do not try to find an optimal subset of filter-
strings that can pick P from S by issuing a minimal number
of Selects. The reason is that there are exponentially many
different subsets of A needed to be considered when finding
the optimal subset.

Theorem 4: Let S denote a tag population of N unique
EPCs randomly chosen from U, and P a subset of n EPCs
randomly chosen from S. Furthermore, let A be the set of
candidate filter-strings generated by step 1-8 in Algorithm 1.
Then we have the following two statements:

(A) YVt € P, the probability that there exists a filter-string
t*[i,j1 € A such that ¢[i, j] = t*[i, j] is nearly 1;

(B) The number of filter-strings in A is no more than 192 x
nlog,(N).

Proof: Let t[i, i+ Lmax — 1] represent the substring of #’s
EPC that starts at the i-th bit and ends at the (i + Lyax — 1)-th
bit, where 1 < i < 97 — Lax. In other words, t[i, j] is a
substring of length Lyy,x. By Step 6 in Algorithm 1, we know
that ¢[i, j] will be put into A if and only if there does not exist
atagu € S—Psuchthatuli, i+ Lpax — 1] = t[i, i+ Lmax — 1]
Because the tags in S are randomly chosen from U (the set of
all possible EPCs), we have the following:

1

Pr (uli, i+ Lmax — 1] = #[i, i + Lipax — 1]) = mar =< m

Thus, the probability that ¢[7,j] is put into A is (I —
l/NZ)N_” > 1—1/N. Since there are at least |96/L,;,4x | non-
overlapped substrings of length L,,,, in #’s EPC, we know the
probability that at least one of these [96/L,y] substrings is
put into A is larger than 1 — (1/N)%/lmax) ~ 1. Because N
is usually large in RFID systems, we can have statement (A).
Please note that this explains why we set Lyax = [log,(N 2)],
i.e., we do not consider the substrings of length larger than
Lmax- The reason is that the substrings of length no more than
Lax already can help us to pick each tag in P.

Statement (B) follows from the fact that there are 96 — [+
1 < 96 different substrings of length / in a tag’s EPCs, and
the first stage of TagSP only considers the substrings of length
less than or equal to Ly . []

Theorem 5: Let S denote a tag population that contains N
unique EPCs randomly chosen from U, and P denote a subset
of n EPCs randomly chosen from S. Then the computational
cost of TagSP is O(nN log,(N)).

Proof: Given an integer [€ {l, 2, .., 96}, there are at
most 96 different substrings of length / in a tag #’s EPC. Then
we can see: at most 96 x (N — n) substring comparisons are
needed for a substring ¢4, j]. This is because, a substring {7, j]
is compared with the substring u[i, j] of eachtagu € S — P,
in the worst case (when ¢[, j] is put into A). Furthermore,
since we need to check the substrings of length no more
than Ly, < Hogz(Nzﬂ, we know at most n x 96 x (N —
n) X Lygxy = O(n(N — n)log,(N)) substring comparisons are
needed for the first stage.

Next, we look at the second stage of TagSP. By Theorem 4,
we know that there are at most 192 x nlog, (V) filter-strings

VOLUME 8, 2020

L. Zhu et al.: EPC-Based Efficient Tag Selection in RFID Systems

IEEE Access

TABLE 4. Number of bits used in the 6 parameters of a select
command. Note: This table is set according to 6-29 in page 76 of EPC
C1G2 standard [31].

Target | Action | MemBank

Pointer | Length |
of 3 3 2 8 8
bits

Mask |
Variable

in A. Then, it is easy to see that at most 192 x nlog,(N)
comparisons are needed for finding the filter-string that is
shared by the largest number of tags of P in Step-11.” Obvi-
ously, at most n filter-strings are needed for picking P from
S. Therefore, the second stage of TagSP needs at most 192 x
nlog,(N) x n = o(n? log,(N)) comparisons.

Finally, since O(n(N — n)log,(N)) + on? log,(N)) =
O(nN log,(N)), we have the conclusion. [|

IV. SIMULATION RESULTS
In this section, we compare the simulation performance of
TagSP with the state-of-the-art protocol WB [20].

A. SIMULATION SETTING

We compare the performance of the two protocols: TagSP
and WB. The timing scheme stated in the EPC C1G2 stan-
dard [31] is used as the basic unit to compute the commu-
nication time of the two protocols. The transmission rate
from reader R to tags is set to 26.7Kbits/s. Any two consec-
utive transmissions are separated by a time slot of 302us.
Therefore, it takes reader R 3897.2us to transmit a 96-bit
string to tags (0.096Kbits/26.7Kbits/s+302us = 3897.2us).
Please note that other transmission rates can only change
the absolute communication time of protocols, and do not
affect the trend. The communication time of a Select
command is determined by the time for transmitting its 6
parameters Target, Action MemBank, Pointer, Length, and
Mask, according to Table 4. Because WB needs a preprocess
in which each tag of S is written with a log,(2 N)-bit string,
the communication time of WB equals the sum of the time
for transmitting the n (log,(2 N))-bit strings during the pre-
process, and the time for transmitting Select commands.
The computational cost of TagSP and WB is measured by
implementing these two protocols in Matlab R2014b on a lap-
top PC with Intel I7-7700HQ CPU and 8GB RAM, running
Windows 7 (64-bit).

B. PROTOCOL PERFORMANCE

The performance of the two protocols is evaluated under
various settings of N and n, which are the numbers of tags
in § and P, respectively. We compare communication time
and computational cost of TagSP and WB in 3 scenarios.
In scenario 1, we set N = 102 and vary n from 10 to
50. In scenario 2, we set n = 100 and vary N from 200
to 103, In scenario 3, we vary n from 100 to 500 and set
N = 2 x n. For each scenario, the simulation results of these

TFor two filter-string #1[i,j1], ©2i2,j2] € A, we need to compare the
number of the tags in P that share #1[i], j] with the number of the tags in P
that share 7, [ip, jo].

VOLUME 8, 2020

0.05

_*
T, e
0.045 o ot 23
— 0.04 - a 8
3 RY ,g E 21
£.0.0354" B o g
210 19
2 0 -©-wB o ~k-WB | E —7-WB
= 003 -B-TagSP| g -%-TagSP| © 17} —&—TagSP
< T = ©
2 0.025 ® g S 5
S 0.02 '(‘%10 s
9 -
é : H S 13
0.015 2
E _.B--8 5 B £ 1
S 001l g-- 10 2 o
o .
0.0050" SRR
7
0 10
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

number of tags in set P number of tags in set P number of tags in set P
(a) (b) (©)
FIGURE 3. Scenario 1: vary |P| from 10 to 50 and set |S| = 100.
(a) Communication time. (b) Computational cost. (c) Number of select
commands.

two protocol are the average of 100 independent trails. More
specifically, for fixed values of n and N, we take the following
steps:

(1) Generate a tag population S by randomly choosing N
EPCs from U, and then a subset P by randomly choosing n
EPCs from S;

(2) Use TagSP and WB to pick P from S, and record their
simulation results (communication time, computational cost,
and the number of used Select commands);

(3) Repeat (1) and (2) for 100 times, and use the averaged
values of 100 independent trails as the performance of these
two protocols. We also compute Tpp with various values of
n and N according to (2) in Theorem 2.

In Fig. 3, we display the simulation results for scenario 1.
We can see that both the communication time and the number
of Select commands of TagSP are much less than that of
WB. In particular, when n = 50 and N = 100, the communi-
cation time of TagSP and WB are 0.0135s and 0.047s, respec-
tively; the number of Select commands used by TagSP and
WB are 14 and 25, respectively. Hence, we can see that the
communication time of TagSP is about 28% of that of WB.
This is because TagSP uses much less Select commands
as compared with WB, and WB needs a time-consuming
preprocess while TagSP does not. In Fig. 3, we also see that
the communication time of TagSP is at most 3.5 times of Tgp.

The simulation results for scenario 2 and 3 are shown
in Fig. 4 and Fig. 5, respectively, where we can observe
similar results as in Fig. 3. In particular, in Fig. 4, when
n = 100 and N = 1000, the communication time of TagSP
and WB are 0.059s and 0.48s, respectively; the number of
Select commands used by TagSP and WB are 62 and
90, respectively. Hence, we can see that the communication
time of TagSP is about 13% of that of WB. In Fig, 5, when
n = 500 and N = 800, the communication time of TagSP
and WB are 0.12s and 0.475s, respectively; the number of
Select commands used by TagSP and WB are 116 and
200, respectively. Hence, we can see that the communication
time of TagSP is about 25% of that of WB. In Fig. 4 and 5,
the communication time of TagSP is at most 3.8 times of the
lower bound. The communication time of TagSP can get close

20553

IEEE Access

L. Zhu et al.: EPC-Based Efficient Tag Selection in RFID Systems

0.5 102 20
-©-wB o
0.45 t|-B-TagSP /
TBD zd 101} % =) 80
—~ 04 4 * kel
5 —
) £ 3 8 70 -7-WB
£0.35 o’ K2 1S —&—TagSP
e y g 1° g
[=}
.i 0.3 /@ 8 Se0
o Q
2025 o] 210" o
@ (=] Q
3] / = @ 50
2 02f @ IS 5
g / 2 102 5
£ 0.15 0] £ 8 40
8 oxtf 8 5
0.1 g - p-BENE
geaCao 107 A 850 304
0 05[3 oo
4

0 20
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
number of tags in set S number of tags inset S number of tags in set S

(a) (b) (c)

FIGURE 4. Scenario 2: vary |S| from 200 to 1000 and set |P| = 100.
(a) Communication time. (b) Computational cost. (c) Number of select
commands.

0.7 10 260
-6-wB -#-WB -7-WB
0.651|-@- Tagsp - - TagSP 240(| —&—Tagsp
0.6 T o o 220
— S o
5055 T ym % E 200
2 05 S8 -
Z o 2 . £ 180
045 . g L. £ 180
= ’ Q o
c 04 ’ = B 140
c — |5
5] [0 fo)
= 0.35 jol 510 T 120
3 03 K = ht
Soasf [/ El S 100
E 0.2 /Q gmg é g
do1sf 27 2
-8- ——
0.1% age |
0055 . -5 20
i .

0 0 0
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
number of tags in set P number of tags in set P number of tags in set P

(@) (b) (©)

FIGURE 5. Scenario 3: vary |P| from 100 to 500 and set |S| =2 x |P|.
(a) Communication time. (b) Computational cost. (c) Number of select
commands.

to the lower bound, because A (the set of candidate filter-
strings) contains the best substrings that can be used to pick
tags in P in Select commands. However, due to redundant
information transmitted in Select commands, the ratio
between the communication time of TagSP and the lower
bound can not equal to 1 approximately. Please note that the
transmitted parameters: Target, Action and MemBank remain
unchanged during the execution in TagSP (see Algorithm 1),
and there are some redundancy in the 3 parameters: Pointer,
Length and MASK (MASK already contains the information
about the length of the filter-string).

The computation burden of both schemes is not very heavy
despite of using the normal desktop computer and can be
satisfied when a powerful computing server is available in
RFID systems, although the computational cost of TagSP is
higher than that of WB in Fig. 3-5.

V. CONCLUSION

In this paper, we study the tag-selection problem, which is
a basic and under-investigated problem in RFID systems.
We prove a nontrivial lower bound of communication over-
head for a protocol which is capable of solving the studied
problem. Then we design an efficient protocol TagSP for this
problem only based on the EPC and the Select command

20554

from EPC C1G2 standard. Compared with the existing pro-
tocols, the proposed TagSP has a much less communication
time and can be directly applied into off-the-shelf RFID
systems. Extensive simulation are conducted and the results
verify the superiority of TagSP.

APPENDIX
PROOF OF THEOREM 3.1
Firstly, we can calculate the expected number of filter-strings
in a trial, where P and S are randomly generated. Without
loss of generality, we assume that P = {t, t2, .., t,} and § =
PU{t 41, tht2, ..., tv}. We use ¢ to represent tag ¢ as well as
t’s EPC, and [, j] to represent the substring of ¢’s EPC that
starts at the i-th bit and ends at the j-th bit, | < i <j < 96.
For each EPC #; in the tag population S, and each integers
iL,je{l,2,...,96} (i <)), let Xlk] be a random variable such
that
ItV € P, tpli, j1 = i, jl

’ and If Vi € S — P, tyr[i, j] # [, jl,

0, Otherwise.

k _
Xij=

Then, ij = 1 represents the event that the substring #[i, j]
is a 1-filter-string for selecting tags in P from S, and

96 96
Z:=1 Zi:] Zj:i Xlkj @)

represents the total number of 1-filter-strings in a trail. Note
that, in a trial, we generate a tag population S by randomly
choosing N different EPCs from U the set of all 2°¢ possible
EPCs. This is equivalently to the process of N random selec-
tions, in each of which an EPC is chosen independently and
uniformly from U.® Then we get:

Pr (1[i, j1 = t[i, j1) = 1/271,

Since P and S — P contain n and N — n EPCs, respectively,
the probability that thj = 1 can be obtained as follows:

.. -1 .o N—
Pr (x{jj - 1) — (1/21—’“)" x (1 . 1/2f—l+1) "

Based on the above probabilities, now we can compute the
mathematical expectation of) ;_, 21'921 Z]?ii Xl.kj shown in
(7) as follows.

E| YL 0]
=3 T o]
S e X (1)
x (1- 1/2f—i+1>N7n
nzgil (96 —i+1)
x (1/2")"_1 x (1 - 1/2")N_". ®)

8 § can be generated by N selections, in each of which an EPC is chosen
independently and uniformly from U. Because 290279 x10%8 and N <
29 the probability that any two of the N EPCs are identical can be omitted.

Vi #ke{l,2, .., N}

VOLUME 8, 2020

L. Zhu et al.: EPC-Based Efficient Tag Selection in RFID Systems

IEEE Access

The first equality above is based on the linearity of mathe-
matical expectation.
Secondly, the event that there exists at least one filter-string

in a trial is equivalent to) j_, Z?jl ngjl. Xl.kj >

1. Then,

by Markov inequality and (8), we have the conclusion.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

L. Zhang, W. Xiang, X. Tang, Q. Li, and Q. Yan, “A time- and energy-
aware collision tree protocol for efficient large-scale RFID tag identifica-
tion,” IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2406-2417, Jun. 2018.
X. Liu, X. Xie, S. Wang, J. Liu, D. Yao, J. Cao, and K. Li, “Efficient range
queries for large-scale sensor-augmented RFID systems,” IEEE/ACM
Trans. Netw., vol. 27, no. 5, pp. 1873-1886, Oct. 2019.

L. Zhang, W. Xiang, and X. Tang, ““An efficient bit-detecting protocol for
continuous tag recognition in mobile RFID Systems,” IEEE Trans. Mobile
Comput., vol. 17, no. 3, pp. 503-516, Mar. 2018.

J. Yu, W. Gong, J. Liu, L. Chen, K. Wang, and R. Zhang, “Missing tag
identification in COTS RFID systems: Bridging the gap between theory
and practice,” IEEE Trans. Mobile Comput., vol. 19, no. 1, pp. 130-141,
Jan. 2020.

L. Zhang, W. Xiang, I. Atkinson, and X. Tang, ‘A time-efficient pair-wise
collision-resolving protocol for missing tag identification,” IEEE Trans.
Commun., vol. 65, no. 12, pp. 5348-5361, Dec. 2017.

X. Wang, Z. Liu, Y. Gao, X. Zheng, X. Chen, and C. Wu, “Near-optimal
data structure for approximate range emptiness problem in information-
centric Internet of Things,” IEEE Access, vol. 7, pp. 21857-21869, 2019.
X. Wang, Z. Liu, Y. Yang, X. Shao, Y. Gu, and S. Ishihara, “Approxi-
mate range emptiness in constant time for IoT data streams over sliding
windows,” in Proc. 28th Int. Conf. Comput. Commun. Netw. (ICCCN),
Jul. 2019, pp. 1-10.

X. Wang, Z. Liu, Y. Gao, X. Zheng, Z. Dang, and X. Shen, “A Near-
Optimal Protocol for the Grouping Problem in RFID systems,” IEEE
Trans. Mobile Comput., to be published.

J. Luo and K. G. Shin, “Detecting misplaced RFID tags on static shelved
items,” in Proc. 17th Annu. Int. Conf. Mobile Syst., Appl., Services, 2019,
pp- 378-390.

J.Liu, F. Zhu, Y. Wang, X. Wang, Q. Pan, and L. Chen, “RF-scanner: Shelf
scanning with robot-assisted RFID systems,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), May 2017, pp. 1-9.

J. Liu, S. Chen, Q. Xiao, M. Chen, B. Xiao, and L. Chen, “Efficient
information sampling in multi-category RFID systems,” IEEE/ACM Trans.
Netw., vol. 27, no. 1, pp. 159-172, Feb. 2019.

J. Han, C. Qian, X. Wang, D. Ma, J. Zhao, W. Xi, Z. Jiang, and Z. Wang,
“Twins: Device-free object tracking using passive tags,” IEEE/ACM
Trans. Netw., vol. 24, no. 3, pp. 1605-1617, Jun. 2016.

G. Wang, C. Qian, L. Shangguan, H. Ding, J. Han, N. Yang, W. Xi, and
J. Zhao, “HMRL.: Relative localization of RFID tags with static devices,”
in Proc. 14th Annu. IEEE Int. Conf. Sens., Commun., Netw. (SECON),
Jun. 2017, pp. 1-9.

L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram: Real-
time tracking of mobile RFID tags to high precision using COTS devices,”
in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw., 2014, pp. 237-248.
X. Liu, J. Yin, S. Zhang, B. Ding, S. Guo, and K. Wang, “Range-based
localization for sparse 3-D sensor networks,” IEEE Internet Things J.,
vol. 6, no. 1, pp. 753-764, Feb. 2019.

Y. Bu, L. Xie, Y. Gong, C. Wang, L. Yang, J. Liu, and S. Lu, “RF-Dial: An
RFID-based 2D human-computer interaction via tag array,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 837-845.

H. Hu, Z. Liu, and J. An, “Mining mobile intelligence for wireless systems:
A deep neural network approach,” IEEE Comput. Intell. Mag., vol. 15,
no. 1, pp. 24-31, Feb. 2020.

Y. Luo, H. Hu, Y. Wen, and D. Tao, “Transforming device fingerprinting
for wireless security via online multitask metric learning,” IEEE Internet
Things J., vol. 7, no. 1, pp. 208-219, Jan. 2020.

D. K. Klair, K.-W. Chin, and R. Raad, ““A survey and tutorial of RFID
anti-collision protocols,” IEEE Commun. Surveys Tutr., vol. 12, no. 3,
pp. 400421, 3rd Quart., 2010.

J. Liu, X. Chen, X. Liu, X. Zhang, X. Wang, and L. Chen, “On improving
write throughput in commodity RFID systems,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2019, pp. 1522-1530.

VOLUME 8, 2020

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

Q. Xiao, S. Chen, J. Liu, G. Cheng, and J. Luo, “A protocol for simul-
taneously estimating moments and popular groups in a multigroup RFID
system,” IEEE/ACM Trans. Netw., vol. 27, no. 1, pp. 143-158, Feb. 2019.
Q. Xiao, Y. Zhang, S. Chen, M. Chen, J. Liu, G. Cheng, and J. Luo,
“Estimating cardinality of arbitrary expression of multiple tag sets in
a distributed RFID system,” IEEE/ACM Trans. Netw., vol. 27, no. 2,
pp. 748-762, Apr. 2019.

J. Huang, Z. Wen, L. Kong, L. Ge, M.-Y. Wu, and G. Chen, “Accelerate the
classification statistics in RFID systems,” Theor. Comput. Sci., vol. 788,
pp. 39-52, Oct. 2019.

Z. Zhou, H. Liao, B. Gu, K. M. S. Huq, S. Mumtaz, and J. Rodriguez,
“Robust mobile crowd sensing: When deep learning meets edge comput-
ing,” IEEE Netw., vol. 32, no. 4, pp. 54-60, Jul. 2018.

7. Zhou, Y. Guo, Y. He, X. Zhao, and W. M. Bazzi, “Access control and
resource allocation for M2M communications in industrial automation,”
IEEE Trans. Ind. Informat., vol. 15, no. 5, pp. 3093-3103, May 2019.

Z. Liu, T. Tsuda, H. Watanabe, S. Ryuo, and N. Iwasawa, ‘“Data
driven cyber-physical system for landslide detection,” Mobile Netw. Appl.,
vol. 24, no. 3, pp. 991-1002, Jun. 2019.

J. Yu, J. Liu, L. Chen, and Y. Zhu, “Efficient group labeling for multi-
group RFID systems,” in Proc. IEEE/ACM 25th Int. Symp. Quality Service
(IWQoS), Jun. 2017, pp. 1-2.

F. Zhu, B. Xiao, J. Liu, Y. Wang, and L.-J. Chen, “Dynamic grouping
in RFID systems,” in Proc. 14th Annu. IEEE Int. Conf. Sens., Commun.,
Netw. (SECON), Jun. 2017, pp. 1-9.

J. Liu, B. Xiao, S. Chen, F. Zhu, and L. Chen, “Fast RFID grouping pro-
tocols,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015,
pp. 1948-1956.

J. Liu, M. Chen, B. Xiao, F. Zhu, S. Chen, and L. Chen, “Efficient
RFID grouping protocols,” IEEE/ACM Trans. Netw., vol. 24, no. 5,
pp. 3177-3190, Oct. 2016.

EPCglobal. (2018). EPC Radio-Frequency Identity Protocols Generation-
2 UHF RFID Standard, Specification for RFID Air Interface Protocol for
Communication at 860 MHz—960 MHz, Version 2.1. [Online]. Available:
https://www.gs1.org/sites/default/files/docs/epc/gs1-epc-gen2v2-uhf-
airinterface_i21_r_2018-09-04.pdf

LIYUE ZHU received the Ph.D. degree from
the University of Science and Technology of
China, in 2010. He is currently a Senior Engi-
neer and the Deputy Director of the Academy of
Broadcasting Science, NRTA, China. His research
interests include coaxial transmission, network
security, and collaborative optimization.

XIUJUN WANG received the Ph.D. degree in

computer software and theory from the University

of Science and Technology of China, in 2011.
i He is currently a Lecturer with the School of Com-
puter Science and Technology, Anhui University
of Technology. His research interests include data
stream processing, randomized algorithm, and the
Internet of Things.

YANGZHAO YANG received the Ph.D. degree
from the University of Science and Technology
of China, Hefei, China, in 2014. He is currently
a Senior Researcher with the Research Institute
of Cyberspace Security of CETC. His current
research interests include artificial intelligence and
social networks.

20555

IEEE Access

L. Zhu et al.: EPC-Based Efficient Tag Selection in RFID Systems

20556

SHUBIN XU received the Ph.D. degree from the
University of Science and Technology of China,
in 2009. He is currently a Research Professor
with the Research Institute of Cyberspace Security
of CETC, China. His research interests include
network security, deep-learning-enabled network
flow control, and the Internet of Things (IoT)
security.

XUANGOU WU received the Ph.D. degree from
the School of Computer Science and Technology,
University of Science and Technology of China,
Hefei, China, in 2013. He is currently an Associate
Professor with the School of Computer Science
and Technology, Anhui University of Technology,
Ma’anshan, China. His research interests include
computer networks, the Internet of Things, and
privacy and security.

WEI ZHAO (Member, IEEE) received the Ph.D.
degree in applied information science from
Tohoku University, in 2015. He was an overseas
Researcher under the Postdoctoral Fellowship of
the Japan Society for the Promotion of Science”
(JSPS) with Prof. T. Hara at Osaka University.
He is currently an Associate Professor with the
Anhui University of Technology, China. His major
research interests include wireless mesh networks
and mobile ad hoc networks. His articles received

best paper awards at GLOBECOM 2014 and WCSP 2014.

HUIBIN FENG received the Ph.D. degree in infor-
mation and communication engineering from the
Nanjing University of Posts and Telecommunica-
tions. He is currently an Associate Professor with
Minjiang University. His research interests include
mobile edge computing and deep reinforcement
learning for wireless networks. He is also a mem-
ber of CCF.

VOLUME 8, 2020

	INTRODUCTION
	PRIOR ARTS AND LIMITATIONS
	CHALLENGES AND TECHNICAL CONTRIBUTIONS

	A NONTRIVIAL LOWER BOUND OF COMMUNICATION OVERHEAD
	SYSTEM MODEL AND PROBLEM DEFINITION
	LOWER BOUND ANALYSIS

	TAGSP: AN EFFICIENT PROTOCOL FOR THE TAG-SELECTION PROBLEM
	ILLUSTRATION FOR SELECT COMMAND
	ANALYSIS FOR SOLVING THE TAG-SELECTION PROBLEM BY USING A SINGLE SELECT COMMAND
	SOLVING THE TAG-SELECTION PROBLEM BY USING MULTIPLE SELECT COMMANDS

	SIMULATION RESULTS
	SIMULATION SETTING
	PROTOCOL PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	LIYUE ZHU
	XIUJUN WANG
	YANGZHAO YANG
	SHUBIN XU
	XUANGOU WU
	WEI ZHAO
	HUIBIN FENG

