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ABSTRACT We develop a newmethod for defending deep neural networks against attacks using adversarial
dual network learning with randomized nonlinear image transform. We introduce a randomized nonlinear
transform to disturb and partially destroy the sophisticated pattern of attack noise. We then design a
generative cleaning network to recover the original image content damaged by this nonlinear transform
and remove residual attack noise. We also construct a detector network which serves as the dual network
for the target classifier to be defended, being able to detect patterns of attack noise. The generative cleaning
network and detector network are jointly trained using adversarial learning, fighting against each other to
minimize both perceptual loss and adversarial loss. Our extensive experimental results demonstrate that our
approach improves the state-of-art by large margins in both white-box and black-box attacks. It significantly
improves the classification accuracy for white-box attacks upon the second best method by more than 30%
on the SVHN dataset and more than 14% on the challenging CIFAR-10 dataset.

INDEX TERMS Adversarial attack, adversarial defense, deep neural network.

I. INTRODUCTION
Deep Deep neural networks are sensitive to adversarial
attacks [1]. Very small changes of the input image can
fool the state-of-art classifier with very high success prob-
abilities. During the past few years, a number of meth-
ods have been developed to construct adversarial samples
to attack the deep neural networks, including fast gradi-
ent sign (FGS) method [2], Jacobian-based saliency map
attack (J-BSMA) [3], and projected gradient descent (PGD)
attack [4], [5]. Adversarial attackmethods are able tomanipu-
late the perturbations so that the target classifier can be forced
to produce a specific output [6]. It has also been demonstrated
that different classifiers can be attacked by the same adversar-
ial perturbations [1]. The fragility of deep neural networks
and the availability of these powerful attacking methods
present an urgent need for effective defense methods.

Efficient defense algorithms aim to improve the robust-
ness of different networks. During the past few year,
a number of deep neural network defense methods have
been developed, including adversarial training [1], [4],
defensive distillation [7]–[9], Magnet [10] and featuring
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squeezing [11], [12]. It has been recognized that these meth-
ods are not capable of defending the network against different
attacking algorithms [13]. Recent studies explore new frame-
works for network defense. For example, defense-GAN [13]
attempted to approximate the attacked image using a
clean image produced by generative adversarial networks
(GANs) [14]. Reference [15] trained a generative network
to produce adversarial noises that can fool the discriminative
network based on a min-max game.

In this paper, we explore a new approach to defending deep
neural networks using adversarial dual network learning with
randomized nonlinear image transform. We recognize that
the attack noise is not random. It has sophisticated patterns.
The attack methods often generate attack noise patterns by
exploring the specific structure or classification behavior of
the target deep neural network so that the small noise at
the input layer can accumulate along the network inference
layers, finally exceed the decision threshold at the output
layer, and result in false decision. On the other hand, we know
a well-trained deep neural networks are robust to random
noise [16], such as small white noise. So, the key issue in
network defense is to randomize or destroy the sophisticated
pattern of the attack noise while recovering the original image
content.
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Motivated by this observation, we first introduce a ran-
domized nonlinear transform to disturb and partially destroy
the sophisticated pattern of attack noise. We then design a
generative cleaning network to recover the original image
content damaged by this nonlinear transform and remove
residual attack noise. We also construct a detector network
which serves as the dual network for the target classifier to
be defended. The generative cleaning network and detector
network are jointly trained using adversarial learning so that
the detector network cannot detect the existence of attack
noise pattern in the images recovered by the generative clean-
ing network. Our extensive experimental results demonstrate
that our approach improves the state-of-art by large margins
in both white-box and black-box attacks. It significantly
improves the classification accuracy for white-box attacks
upon the second best method bymore than 30% on the SVHN
dataset from 46.90% to 76.67%, and more than 14% on
the challenging CIFAR-10 dataset from 60.15% to 74.64%.
The proposed dual network structure also provides unique
capabilities in practice to defend extreme high-iteration PGD
white-box attacks without the need to modify the target
classifier.

The major contributions of this work can be summa-
rized as follows. (1) We have proposed a new and unique
approach for deep neural network defense using adversarial
dual network learning with randomized nonlinear transform
of the attacked images. (2) We have formulated and solved
the problem by exploring a unique generative adversarial
network (GAN) method which couples the detector (dis-
criminative) network with the original classifier network and
considers both perceptual loss and adversarial loss. (3) Our
new method has significantly improved the performance of
the state-of-the-art methods in the literature.

The rest of this paper is organized as follows.
Section 2 reviews related work. The proposed method is
presented in Section 3. Experimental results and performance
comparisons with existing methods are provided in Section 4.
Section 5 concludes the paper.

II. RELATED WORK
Adversarial attack and defense algorithms for deep neu-
ral networks are often tightly coupled. In this section, we
review related work on attack algorithms that aim to generate
adversarial examples to fool neural networks and defense
algorithms that improve the robustness of networks under
different attacks.

A. ATTACK METHODS
Attack methods can be divided into two threat models:
white-box attacks and black-box attacks. The white-box
attacker has full access to the classifier network parameters,
network architecture, and weights. The black-box attacker
has no knowledge of or access to the target network.

For white-box attack, a simple and fast approach called
Fast Gradient Sign (FGS) method has been developed by
Goodfellow et al. [2]. Given an image x and its corresponding

true label y, the attack sets the perturbation threshold ε:

x̂adv = x + ε sign(∇xJ (θ, x, y)), (1)

This approach uses the sign of the gradient at each pixel
to determine the direction of changing pixel value. Basic
Iterative Method (BIM) is an improved version of the
FGS attack method. Carlini and Wagner [8] designed an
optimization-based attack method, called Carlini-Wagner
(C&W) attack, which is able to fool the target network with
the smallest perturbation. Moosavi-Dezfooli et al. [17] pro-
posed an approach to generate universal adversarial perturba-
tions that can attack all natural images. Baluja et al. [18], [19]
trained a generative adversarial network (GAN) [14] to gener-
ate perturbations. It has been recognized in [20], [21] that the
Projected Gradient Descent (PGD) is the strongest attacker
among all attacks, which can be viewed as amulti-step variant
of FGSk [5].

x̂0adv = x + ε sign(∇xJ (θ, x, y)), (2)

x̂k+1adv = x̂kadv + δ sign(∇xJ (θ, x̂kadv, y)), (3)

where δ is the step size, and k is the number of
PGD steps. Athalye et al. [22] introduced a method,
called Backward Pass Differentiable Approximation (BPDA),
to attack networks where gradients are not available.

∇x f (g(x))|x=x̂ ≈ ∇x f (x)|x=g(x̂) (4)

where g(x) is the preprocessor, f (x) is the pretrained classi-
fier. This approach approximate the preprocessor’s derivative
as the derivative of the pretrained classifier to compute gra-
dients. It is able to successfully attack most state-of-the-arts
defense methods.

For black-box attacks, the attacker has no knowledge
about target classifier. Papernot et al. [23] introduced the
first framework of black-box attack using substitute mod-
els. Adversarial examples generated by different network
architectures are often being mis-classified by the targeted
classifier [1]. Dong et al. [24] proposed a momentum-based
iterative algorithms to improve the transferability of adver-
sarial examples. Xie et al. [25] boosted the transferability
of adversarial examples by creating diverse input patterns.
Recently, manymethods have been proposed for attack object
detection and semantic segmentation networks [26]. For
example, Thys et al. [27] developed a method to learn a patch
that can be applied to an object to fool the YOLO [28] object
detector and classifier.

B. DEFENSE METHODS
Several approaches have recently been proposed for defend-
ing bothwhite-box attacks and black-box attacks. Adversarial
training defends various attacks by training the target model
with adversarial examples [1], [2]. [5] suggested that train-
ing with adversarial examples generated by PGD improves
the robustness. Reference [10] proposed a method, called
MagNet, which detects the perturbations and then reshape
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FIGURE 1. Overview of our DualDefense method for deep neural network defense.

them according to the difference between clean and adver-
sarial examples.

Recently, there are some defense methods based on GANs
have been developed. Samangouei et al. [13] projected the
adversarial examples into a trained generative adversarial
network (GAN) to approximate the input using generated
clean image with multiple iterations:

min
z
||G(z)− x||22 (5)

where G(·) is the generator of GAN, z is the adversarial
inputs. Wang et al. [15], [18] generated adversarial pertur-
bations using GANs, jointly trained a classifier to adjust the
output of generative networks based on a min-max game.
This method can be considered as an extension of adversarial
training. There are several defense methods based on input
transformations. Guo et al. [29] proposed a set of image
transformations to defend the adversarial examples, includ-
ing image cropping and re-scaling, bit-depth reduction, and
JPEG compression. Xie et al. [30] proposed to defend against
adversarial examples by adding a randomization layer, which
randomly re-scales the image and then randomly zero-pads
the image. Jia et al. [31] proposed an image compression
method, called ComDefend, to defend adversarial examples.
Xie et al. [21] suggested perturbations on images lead to
noise in the feature map. They introduced a feature denoising
method for defending PGDwhite-box attacks. Reference [32]
proposed an efficient approach that bring adversarial sam-
ples onto the natural image manifold, restoring classification
towards correct classes. Reference [33] maximally separated
the polytopes of classes by force to learn distinct and distant
decision regions for each classes.

Our proposed defense method is also related to GANs and
image transformations. But, compared to existing methods,
our method is unique in the following aspects: (1) We intro-
duce a special layer called quantized nonlinear transform,
into the generative cleaning network to destroy the sophis-
ticated noise pattern of adversarial attacks. (2) Unlike the
GAN-based methods in [15], [18] which aim to approximate
input noise image using images generated by the GAN over
multiple iterations, our generative cleaning network aims to

reconstruct the image content damaged by quantized nonlin-
ear transform. (3) Our method does not need to modify the
target network to be protected.

Algorithm1DualNetwork LearningMethod for Defense
Input: Training cleaning data {xo}, training adversarial

data {x∗}, ground truth labels y, target classifier
Cα , trainable parameters θ, φ, epoch T

Output: Updated parameters θ, φ
1 Initialize parameters θ, φ
2 for t = 0 to T do
3 Disturb and destroy the noise pattern by randomized

nonlinear image transform
RQ(x̂ij) = Round

(
x̂ij
q·rij

)
× q · rij

4 Feed the image x̂ into Generative Cleaning Network
Gθ

5 Compute L2 loss LP = ||Fβ (xo)− Fβ (Gθ (x̂))||2
6 Compute the adversarial loss

LA = Ex∗∈�∗8[Dφ(Gθ (0r (x∗))), Iclean]
7 Update the parameters θ, φ with a GAN-like

min-max procedure.

8 Return parameters θ, φ

III. METHOD OVERVIEW
Figure 1 provides an overview of the proposed method. The
attacked image x∗ is first processed by a randomized non-
linear transform, aiming to disturb and partially destroy the
attack noise. In this work, we construct this transform with
a linear transform T , followed by a random quantization
and an inverse transform T−1. The transformed image is
denoted by x̂. The generative cleaning network Gθ takes
the transformed image x̂ as input and produces a recovered
image x̄, aiming to remove the residual attack noise left by the
nonlinear transform and recover the original image content
damaged by the attack noise and nonlinear transform. During
network inference, this recovered image x̄ will be passed to
the target classifierCα for image classification or recognition.
To successfully learn the generative cleaning network Gθ ,
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we construct a detector network Dφ , which serves as the dual
network for the target classifier network Cα . The task of Dφ
is to determine if the input image is clean or being attacked.
In our proposed method, the generative cleaning network
Gθ and the detector network Dφ are jointly trained through
adversarial learning: the Gθ network is trying to recover the
image x̂ so that Dφ cannot detect any attack noise in it. In the
following sections, we will explain the proposed method in
more detail.

A. RANDOMIZED NONLINEAR IMAGE TRANSFORM
The randomized nonlinear image transform aims to disturb
and partially destroy the sophisticated pattern of the attack
noise. It is designed to be random so that the attack method
cannot predict and learn its behavior during white-box
attacks. In this work, we propose to construct such a transform
using a linear transform T , followed by a random quantizer
RQ and an inverse transform T−1. For the linear transform,
we use the discrete cosine transform (DCT) [34] which has
been in JPEG image compression [35]. Specifically, we par-
tition the input image into blocks of M × M . The original
image block is denoted by X∗B = [x∗nk ]1≤n,k≤M . The output
block X̂B = [x̂ij]1≤i,j≤M after DCT transform is given by

x̂ij=
1
4
CiCj

M−1∑
n=0

M−1∑
k=0

xnk cos(iπ
2n+1
2M

) cos(jπ
2k+1
2M

), (6)

with Ci = 1/
√
2 for i = 0, and Ci = 1 for i 6= 0. After

transform, we will quantize the transform coefficient x̂ij as
follows

RQ(x̂ij) = Round
(

x̂ij
q · rij

)
× q · rij, (7)

where q is the quantization parameter and rij is a random
number within the scaling range of [RL ,RU ]. For example,
in our experiments, we set RL = 0.5 and RU = 2.0 to achieve
a dynamic scaling range of 4 for the quantization parameter.
Certainly, this DCT transform can be replaced with other
invertible transform, such as discrete wavelet transform [36].

B. ADVERSARIAL DUAL NETWORK LEARNING
In our DualDefense design, the generative cleaning net-
work Dφ and the detector network Dφ are trained against
each other, just like the existing generative adversarial net-
works (GAN). Dφ is a binary classifier to detect if the input
image is clean or not. During the initial phase of training,
Dφ is trained with the clean images and their attacked ver-
sions generated by existing attack methods. The goal of the
generative cleaning networkGθ is two-fold: (1) first, it needs
to successfully remove the residual attack noise in the trans-
formed image x̂ so that the noise cannot be detected by the
detector network Dφ . (2) Second, it needs to make sure that
the original image content is largely recovered. To achieve the
above two goals, we formulate the following generative loss
function for training the generative cleaning network Gθ

LG = λ1LP + λ2LA. (8)

where LP is perceptual loss and LA is the adversarial loss.
To define the perceptual loss LP, the L2-norm between
the recovered image x̄ and the original image xo is often
used [37]. The adversarial loss LA aims to recover images
that detected as clean by the detector network Dφ . In this
work, we observe that the small adversarial perturbation often
leads to very substantial noise in the feature map of the net-
work [21]. Motivated by this, we use a pre-trained VGG-19
network, denoted by Fβ to generate visual features for the
recovered image x̄ and the original image xo, and use their
feature difference as the perceptual loss LP. Specifically,

LP = ||Fβ (xo)− Fβ (Gθ (x̂))||2, (9)

The adversarial loss LA aims to train the Gθ so that its
recovered images are to be detected as clean by the detector
network Dφ . It is formulated as

LA = Ex∗∈�∗8[Dφ(Gθ (0r (x∗))), Iclean]. (10)

Here, 8[·, ·] represents the cross-entropy between the output
generated by the generative network and the target label Iclean
for clean images. 0r (x∗) represents the randomized nonlinear
transform discussed in the previous section. E represents
the statistical expectation. Following the GAN method [14],
we train our discriminative network Dφ , along with the
generative cleaning network Gθ , to optimize the following
min-max loss function:

min
Gθ

max
Dφ
{Exo∈�o [logDφ(xo)]

+Ex∗∈�∗ [log(1− Dφ(Gθ (x∗)))]}. (11)

Here, �o and �∗ represent the clean and attacked images of
the training dataset. The goal of generative model Gθ is to
fool the discriminator Dφ that is trained to distinguish adver-
sarial images from clean images. With this framework, our
generator learns to recover images that are highly similar to
clean images and difficult to be detected by Dφ . The detector
network Dφ acts as a dual network for the original classi-
fier Cα . Cascaded with the generative cleaning network Gφ ,
it will guide the training of Gφ using back propagation of
gradients from its own network, aiming tominimize the above
loss function.

In our DualDefense design, during the adversarial learning
process, the target classifier Cα is called to determine if the
recovered image x̄ is clean or not, as illustrated in Figure 1.
If it is clean, it is added back into the clean training sample
set�o on the fly to enhance the learning process. A summary
of the proposed algorithm is provided in Algorithm 1.

IV. EXPERIMENTAL RESULTS
We implement and evaluate our DualDefense method based
on existing procedures and protocols with generally used
attack methods, including the FGS method [2] and PGD
method [5]. Madry et al. [5] suggests that the PGD attack
is one of the most powerful attack methods due to its
multiple-order attack process and the capability to defend
against PGD attacks implies the successful survival from
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TABLE 1. Performance of our method against white-box attacks on
CIFAR-10 (ε = 8/256).

many other first order attacks. We implement our method
using Pytorch and build on open-source attack framework
AdverTorch [38]. The target classifier and detector network
are based on ResNet-18 [39]. We attempt to reconstruct the
adversarial samples using a convolutional auto-encoder.

A. DEFENSE AGAINST WHITE-BOX ATTACKS
In this section, we present defense results against FGS and
PGD white-box attacks, where the attacker has access to full
information of the defense system. In white-box experiments,
the attackers can back-propagate through the full end-to-end
system to create adversarial perturbations.

1) RESULTS ON THE CIFAR-10 DATASET
Following [20] and [15], the FGS and PGD white-box
attackers generate adversarial perturbations within a range
of ε = 8/255. In addition, we set the step size of PGD to
be ε = 1/255 with 10 attack iterations. Table 1 shows the
defense results. We compare our method with four state-of-
the-art methods under FGS and PGD attacks. It should be
noted that ComDefend [31] and PixelDefend [40] did not
provide results for the PGD attack. The PGD attack is very
powerful. It can totally fail the classifier with a resulting
accuracy of 0% if no defense is applied. From the table,
we can see that our method outperforms the existing method
by a large margin. For the FGS attack, we improve upon the
state-of-the-art method ComDefend by 5.97%. For the PGD
attack, we improve the performance by more than 14%.

2) RESULTS ON THE SVHN DATASET
The Street View House Numbers (SVHN) dataset [42] is a
dataset of about 200K street numbers, along with bounding
boxes for individual digits. In total, it has about 600K digits.
For the SVHN dataset, we set the FGS attack with a range
of ε = 12/255. We compare the defense performance of
FGS attack with two state-of-art M-PGD [5] and ALP [20]
methods. We did not include the comparison on the other two
methods since they did not provide results with FGS attacks
but PGD attacks. From Table 2, we can see that our algorithm
outperforms the second best adversarial network [15] algo-
rithm by more than 4.25%. Following the procedure in [20],
we set the magnitude of the PGD attack to be ε = 12/255
with a step size of ε = 3/255 and 10 iterations. We set the
quantization parameter q to be 8. Performance comparison
results are summarized in Table 2. We can see that our

TABLE 2. Performance of our method against white-box attacks on SVHN
(ε = 12/256).

TABLE 3. Performance of our method against black-box attacks on
CIFAR-10 (ε = 8/256).

method dramatically improves the performance, outperform-
ing the second best ALP method [20] by about 30%.

B. DEFENSE AGAINST BLACK-BOX ATTACKS
The previous section showed the results of defending
white-box attacks where the attacker has full access to the
whole end-to-end system. For black-box attack, the attacker
has no knowledge about the target classifier or network,
including the network structure and parameters of classifier.
We generate the black-box adversarial examples using FGS
and PGD attacks on a substitute model [23]. The substitute
model is trained in the same way as the target classifier with
a different network structure.

1) RESULTS ON THE CIFAR-10 DATASET
Table 3 shows the performance of our defense mechanism
under back-box attacks on the CIFAR-10 dataset. The sub-
stitute model is trained with Resnet-34 [39] and adversar-
ial examples are constructed with ε = 8/256. We observe
that the target classifier is much less sensitive to adversar-
ial examples generated by FGS and PGD black-box attacks
than the white-box ones. But the powerful PGD attack is
still able to decrease the overall classification accuracy to a
very low level, 38.71%. We compare our method with the
Adersarial-PGD [5] and Adversarial Network [15] methods.
We include these two because they are the only ones that pro-
vide performance results on CIFAR-10 with FGS black-box
attacks. From the table, we can see our algorithm improves
the accuracy by 5.4% over the state-of-the-art Adversarial
Network method for the FGS attack. For the PGD attack, our
method improves the accuracy by 6.9%.

2) RESULTS ON THE SVHN DATASET
We also perform experiments of defending black-box attacks
on the SVHN dataset. Table 4 summarizes our experimental
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TABLE 4. Performance of our method against black-box attacks on SVHN
(ε = 12/256).

results with FGS and PGD attacks and provides the compar-
isons with existing methods. Our approach outperforms the
state-of-art methods by 2.55% for the FGS attacks and 5.37%
for the PGD attacks.

C. ABLATION STUDIES AND ALGORITHM ANALYSIS
In this section, we provide in-depth ablation study results of
our algorithm to further understand its capability. We also
demonstrate that our network is able to defend strong
adversarial attacks.

1) DEFENSE AGAINST LARGE-ITERATION PGD ATTACKS
The impact of the white-box PGD attacks increases with
its number of iterations since it accesses the network and
performs gradient back-propagation more times to force the
network towards wrong classification output. Following the
protocol of ALP [20], we evaluate the capacity of our defense
method against different numbers of PGD white-box attack
iterations. We also test our method with the different quan-
tization parameter, q. The curve with q = 8 in the left
plot of Figure 2 is our baseline result on the SVHN dataset
reported in the above section. For reference, we also include
the performance of the ALP method in the bottom-left corner
of the figure, which is the previous state-of-art method for
network defense. Similar to [21], we consider the PGD attack
with large numbers of iterations ranging from 10 to 100.
We set its total range of perturbation as ε = 16/255 and
per-step epsilon as 1/255, which is a more challenging setting
for defense methods. We can see that our method is able
to successfully defend white-box PGD attacks with large
number of iterations and largely maintain the performance.
The impact of attack becomes relatively stable after 50 iter-
ations. We can also see that if we increase the quantization
parameter q from 8 to 12, the performance improves more,
to nearly 80%.

2) ANALYZE THE IMPACT OF THE
QUANTIZATION PARAMETER
Our method has two major components, the randomized non-
linear transform (RNT) and the generative cleaning network.
We notice that the quantization parameter plays an important
role in the defense. Figure 2(right) shows the defense perfor-
mance (classification accuray after defense) of our method
on the SVHN dataset with white-box PGD attacks. We can

FIGURE 2. Defense against white-box attacks on SVHN. The left plot
shows results against a white-box PGD attack with 10 to 100 attack
iterations. The total epsilon perturbations is ε = 16/255. The right plot
shows defense results with different quantization number.

see that the quantization step size within the range of 8 to
12 yields the best performance. Small quantization param-
eters do not provide efficient defense since the randomized
nonlinear transform is not able to disturb and destroy the
attack noise pattern. However, when the quantization param-
eter becomes too large, it will damage the original image con-
tent too much which cannot be recovered by the subsequent
generative cleaning network.

D. MORE DETAILS ON THE ALGORITHM
TRAINING AND DEFENSE PROCESS
In Figure 3(left), we plot the loss function of the generative
cleaning network (generative loss) and the loss function of the
detector network (discriminative loss). We can see that they
converge quickly to steady states. In Figure 3(right), we plot
the classification accuracy of our defensemethod and the total
loss of our network at different epochs of the training process
of the SVHN dataset. In Figure 4, we show sample images
from the CIFAR-10when ourmethod is applied. The first row
is the clean image without attacks. The second row is attacked
image. The third row is the image after randomized nonlinear
transform (RNT). The last row is after the generative clean
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FIGURE 3. Loss value and accuracy of our method. The left of plot shows
generative loss and discriminative loss. The right of plot notes the total
loss and classification accuracy.

FIGURE 4. Image examples by our defense algorithm.

network (labeled as RNT+GAN), which is the final output
of our defense method. We can see that our algorithm is able
to remove the attack noise and largely recover the original
image content.

Furthermore, [43]–[45] shows the values of these new
networks for improving our performance.Wewill incorporate
these network structures in our defense framework to increase
the robustness.

V. CONCLUSION
We have developed a new method for defending deep neu-
ral networks against attacks using adversarial dual net-
work learning with randomized nonlinear image transform.

We first introduced a randomized nonlinear image transform
to disturb and partially destroy the attack noise. This trans-
form is randomized so that it cannot be directly learned by
the attack method during white-box attacks. We designed a
generative cleaning network to recover the original image
while cleaning up the residual attack noise. We developed
a detector network, which serves as the dual network of the
target classifier network to be defended, to detect if the image
is clean or being attacked. This detector network and the gen-
erative cleaning network are jointly trained with adversarial
learning so that the detector network cannot find any attack
noise in the output image of generative cleaning network.
Our extensive experimental results demonstrated that our
approach improves the state-of-art by large margins in both
white-box and black-box attacks. It dramatically improves
the classification accuracy upon the second best methodmore
than 30% on the SVHN dataset and more than 14% on the
challenging CIFAR-10 dataset.
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