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ABSTRACT Motivated by the synergistic integration of soft computing paradigms this paper introduces a
fully adaptive multiple-input-multiple-output NeuroFuzzy control for multi-type Flexible AC Transmission
Systems (FACTS) to damp low frequency oscillations. The novel control strategy integrates the complemen-
tary features of locally controllable fuzzy Bspline membership functions and robust wavelet neural networks
inNeuroFuzzy structure. The gradient decent based back-propagationmechanism used for parameters update
has been optimized using online Adaptive Learning Rates (ALRs). The stability of the proposed algorithm
has been ensured by deriving an upper bound on ALRs using Lyapunov stability criteria. The application
of this controller to provide damping signals to various FACTS controllers like Static Synchronous Series
Compensator (SSSC) and Static Synchronous Compensator (STATCOM) can effectively enhance the
dynamic stability of the system. A benchmark multi-machine power system has been used for performance
validation of the controller by applying various faults under different loading scenarios. Conventional Lead-
Lag and NeuroFuzzy controls have been considered for comparative evaluation using nonlinear time and
frequency domain techniques to reveal that the proposed control performs better in different operating
regions. Furthermore, the graphical results obtained from time and frequency domain simulations have been
quantified numerically using different performance indices and Energy Spectral Density (ESD), respectively.
The temporal, spectral and numerical analysis confirms the superior performance of the proposed control
scheme.

INDEX TERMS Bspline, FACTS, MIMO adaptive control, multi-machine power system, NeuroFuzzy,
wavelets.

I. INTRODUCTION
Electric power systems and their controls can be regarded
as collection of many subsystems which makes them highly
complex, nonlinear and multivariable dynamical systems.
One of the most challenging tasks for widespread geo-
graphical structure of power systems, spanning over coun-
tries or even continents, is huge power transmission to
the entire network. Bulk power transmission causes over-
loading of certain transmission lines, thus deteriorating the
power quality and overall stability. The underlying controls,
installed in early days of power system installations, were too
simple to cope with rapidly changing dynamics of the system.
Therefore, power systems were operated with large stability

The associate editor coordinating the review of this manuscript and
approving it for publication was Canbing Li.

margins with respect to their thermal limits to ensure the
stability, however, this resulted in deployment of additional
infrastructure. On contrary, the environmental, economic and
geographic constraints have restricted the physical growth of
existing power systems. Moreover, the security and perma-
nency of the whole system has further been jeopardized due
to deregulation of electricity market forcing the reduction in
operating margins of physical limits of transmission system.
Another important factor consistently threatening the stabil-
ity is Low Frequency Oscillations (LFOs) anticipated from
discrete fault events like symmetrical or unsymmetrical faults
and equipment failures etc.

This background has introduced the effective utilization of
installed power network without further expansion of exist-
ing transmission system as one of the challenging research
dimensions. LFOs may range from 0.2 to 2 Hz and can be
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characterized as Local or Interarea Modes of Oscillations
(LIMOs) based on the number of affected areas and gener-
ating units. A single generator oscillating with respect to the
rest of the network or a group of generators oscillating in the
same area of a large network cause Local Mode of Oscilla-
tions (LMOs) with typical frequency spectrum of 0.8 to 2 Hz.
The frequency of Interarea Mode of Oscillations (IMOs)
ranges from 0.2 to 0.8 Hz involving a group of generators
in one area oscillating against the generating units of another
area.

In pursuant of efficient curative actions, researchers found
that line power flow is governed by three factors; the send-
ing and receiving end voltage magnitudes, angle between
them or impedance of the line. The control of one or more
of these parameters can control the active as well as reactive
power flow. This caused the advent of Flexible AC Trans-
mission Systems (FACTS) which can control the line power
flow to improve the voltage profile. However, the additional
goal of damping LFOs is achieved by exploiting an auxiliary
damping control (ADC) for FACTS [1].

In literature, many Multiple Input Single Output (MISO)
and MIMO controls using conventional and NeuroFuzy tech-
niques have been presented for FACTS [2]–[8]. However,
they use either single FACTS device or multiple FACTS
controllers of same type which limits their application to
single machine or small-scale power systems. In [9], intelli-
gent coordinated control for wide area FACTS installation has
been proposed considering only the shunt FACTS controllers.
An evolutionary control technique to tune the parameters
of conventional LFOs damping control has been proposed
in [10]. The control design involves system linearization and
thus validated only for small signal stability. In addition to
this, most of the existing NeuroFuzzy controls are either
linear in nature or not fully adaptive, involving computation-
ally complex parameters initialization and tuning techniques.
Furthermore, they use globally tuned membership functions
which affects the robustness of the controller for nonlinear
dynamic systems [11].

In this research, MIMO Bspline based wavelet Neuro-
Fuzzy control has been proposed with Adaptive Learning
Rates (ALRs) for power system installed with multi-type
FACTS. The utilization of multi-type FACTS not only pro-
vides better control for large power systems but also helps
to improve the dynamic performance of overall system. The
proposed control utilizes Gaussian Bsplinemembership func-
tions with adaptive characteristics. Bsplinemembership func-
tions are locally controllable functions which can efficiently
translate the modelling uncertainties to the rule base of fuzzy
inference system. Furthermore, they help to improve the
smoothness of the control effort which in turn minimizes
the switching losses in power electronics based devices like
FACTS. The parameters of the proposed control scheme are
tuned online based on the current estimate of the plant model.
MIMO identifier block is used to provide system Jacobean to
control block. No offline training of either control or identi-
fier is required.

As per author’s prime survey the novel contribution of this
research is
• the presentation of a systematic procedure for design-
ing a multivariable supplementary damping control for
FACTS using Bspline based wavelet Neural Network
(NN).

• the performance validation and comparative evaluation
of proposed Hybrid Bspline Wavelet Control (HBsWC),
Adaptive NeuroFuzzy TSK Control (ANFTSC) and the
conventional Lead-Lag Control (LLC) against different
disturbances and operating conditions.

• the damping performance investigation using frequency
domain analysis.

• the stability analysis of ALRs based MIMO control.
The primary goal of this article is not to focus the oper-

ational and modeling details of the system as it has already
widely been discussed in literature. The detailed systemmod-
eling can be found in our earlier work [12].

The rest of the paper is arranged as follows; section II
presents the control system design and formulation. The
control algorithm and adaptation mechanism are given in
section III. Section IV deals with the stability analysis of
identifier and controller. Section V presents the detailed dis-
cussion of the simulation results. Section VI concludes the
findings of this research with description of some interesting
future dimensions of this work.

II. CONTROL SYSTEM DESIGN
The dynamic model of different power system components
like generators, FACTS and their accompanying controls
comprising many differential and algebraic equations can be
combined in the following generalized form [13]; v

0
w

 =
 l (v, z,u)
m (v, z,u)
n (v, z)

 = 8(v,w,u) (1)

where, v ∈ <p, w ∈ <m, z ∈ <n and u ∈ <q is the
vector representation of dynamic sates of loads, generators
and controllers, output variables, the steady-state algebraic
parameters and inputs, respectively. The nonlinear function
l : <p

×<n
×<q

→ <p represents the nonlinear differential
equations, m : <p

× <n
× <q

→ <n defines algebraic
constraints; n : <p

× <n
→ <m describes the output

variables and 8 : <L
×<q

→ <L is the nonlinear function
with L = p + n. In the event of discrete faults, the system
dynamics given in (1) may vary. Depending upon the nature
of fault the post-fault system equilibrium can be restored
either at pre-fault or some new equilibrium point.

The objective is to design a novel ADC to generate u such
that v∗ − v→ ε, where, v∗ is the reference equilibrium state
and ε > 0 is very small value, to ensure that the closed-loop
system is globally stable.

Fig. 1 describes the complete system structure with its
control and adaptation mechanisms. The structure comprises
three main blocks i.e., a plant ‘P’ comprising power system
installed with FACTS, Hybrid NeuroFuzzy Bspline based
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FIGURE 1. Closed-loop structure of direct/indirect control strategies.

wavelet control ‘C’ and adaptive NeuroFuzzy TSK based
identification block ‘I’. The two adaptation blocks are used
for online adaptation of identifier and control block parame-
ters.

The identifier provides online model of the plant thus
making the overall scheme as indirect adaptive control. How-
ever, the proposed control scheme can also be modified for
direct adaptive control by approximating the Jacobean used
in adaptation mechanism as identity matrix.

The adaptation of control block parameters is done using
relative rotor speed and power deviations and their derivatives
such that

[
wd w

]
=

[
yd y

]
=

[
1ωd 1Pd 1ω 1P

]
,

where yd and y are the desired and actual output vectors
of plant, respectively. The voltage injected by FACTS is
regulated based on PWM parameters based on the difference
of control block output and measured injected voltage.

The online plant sensitivity measure is provided by Adap-
tive NeuroFuzzy TSK based identifier in the form of plant
Jacobean. Identification block inputs are the control output
and delayed plant output.

A. CONTROL PROBLEM FORMULATION
Consider a NeuroFuzzy control, formulated by an unknown
MIMO nonlinear function q, of the form:

u = q ($, θ) (2)

where, $ =
[
e ė

]
is the error input vector such that ei =

ydi − yi and ėi (k) = ei (k)− ei (k − 1). u =
[
u1 u2 · · · uk

]
is the controller output vector.

The control objective is to adapt the controller parameters
such that the derived controller output is upper bounded and
the deviation of output plant variables from nominal equi-
librium point vanishes asymptotically. The present instant
value of plant estimate, used to update controller parameters,
is provided by identifier, given as:

yI = p
(
$̂ , θ̂

)
(3)

where, p and yI =
[
yI1 yI2 · · · yIk

]
represent MIMO identi-

fier function and identifier output vector, respectively. $̂ is
vector of input vectors formed by the controller outputs and
delayed outputs of plant.

In (2) and (3), θ̂ i, θ i represent the adaptation parameters
vectors for identification and control block, respectively, with
index i = 1 for antecedent part and ‘2’ for consequent part.
Assumption: The proposed NeuroFuzzy based identi-

fier or controller follows the assumption that the network
structure is predefined in terms of number of inputs, mem-
bership and consequent functions and rules as per designer’s
choice.

The detail of each NeuroFuzzy structure contained in iden-
tification or control block, shown in Fig. 2, is given in the
following sections.

III. PROPOSED MIMO ONLINE HBSWC
The proposed hybrid architecture, shown in Fig. 2, is gov-
erned by NeuroFuzzy rules generalized as:

=j : IF x1isµ1j AND x2 is µ2j · · ·AND xm is µmj
THEN ψ1

j = ζ
1
j AND ψ2

j = ζ
2
j · · ·AND ψ

k
j = ζ

k
j

where, =j is the jth fuzzy rule such that x ∈

{x1, x2, · · · , xm} ∈ U ⊂ <m and ζj ∈ V ⊂ < represent
the crisp input and jth nonlinear consequent function.
NeuroFuzzy rules are structured in following layered fash-

ion:
Layer 1: is responsible for input data acquisition from the

environment for NeuroFuzzy architecture.
Layer 2: processes the input space and transforms the crisp

data to fuzzy values using membership functions, given as:

µij = χ (xi, θ1) (4)

where, χ is the fuzzy membership function. θ1 represents the
adaptation parameters vector for antecedent part and becomes
θ̂1 for identification block. i and j are the indices for input and
membership function, respectively.
Layer 3: is used to calculate the rule firing strength:

℘j =

m∏
i=1

µij (5)

Layer 4: starts to imply the consequent part such that each
node processes the adaptive nonlinear function ζ pj

(
x, θp2

)
of j th rule and p th output. Where, θ2 is the consequent
parameters adaptation vector.
Layer 5: produces the product term, using outputs of

layers 3 and 4, to be processed by the following layer.
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FIGURE 2. Generalized NeuroFuzzy network with adaptive parameters.

Layer 6: utilizes Center of Gravity (COG) method for
defuzzification to finally calculate the network output,
given as:

up =

n∑
j=1
℘jζ

p
j

n∑
j=1
℘j

where, 1 ≤ p ≤ k (6)

The identification block contains simple TSK NeuroFuzzy
structure with input Gaussian membership functions and
polynomial output functions to avoid the computational com-
plexity of controller.

A. ADAPTATION ALGORITHM
The identification block contains simple TSK based
NeuroFuzzy structure whose details and online parameters
adaptation can be found in [12].

Online adaptation of control block parameters is carried
out by minimizing the following cost function using gradient
descent optimization with back-propagation algorithm:

JC =
1
2

(
eT e+ eTv ev

)
(7)

Here, e =
[
e1 e2 · · · ek

]
defines the error vector such that

ei = ydi − yi and ev =
[
ev1 ev2 · · · evk

]
, where evi =

√
h̄iui.

The antecedent part of control block contains Bspline
membership functions to fuzzify the linguistic variable, given
as;

µij (xi) =
n∑
i=0

νiξi,` (xi) (8)

Equation (8) describes the locally controllable Bspline
membership function with ‘n+1’ control points. νi denotes
the control points and ξi,` (xi) = ξ (x|τ0, τ1, · · · , τn+k) are
the basis functions used to construct Bspline membership
function. The following recursive formula is used to define
these basis functions;

ξi,` (τ ) =

(
τ − τi

τi+`−1 − τi

)
ξi,`−1 (τ )

+

(
τi+`−τ

τi+`−τi+1

)
ξi+1,`−1 (τ ) , τi ≤ τ < τi+` (9)

ξi,1 (τ ) =

{
1, if τi ≤ τ < τi+1

0 otherwise
(10)

where, T = {τ0, τ1, · · · τn} represents a monotonically
increasing sequence of real numbers, called knot vector, used
to construct Bspline curves. Bspline membership function of
order 2 with fixed number of control points and knot vector
is used in this work.
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The consequent nodes contain Morlet wavelet functions
NNs with jth wavelet output calculated as:

ψj = wj
n∑

r=1

φr (11)

where,

φr (xi) = cos(5ρr )e−
ρ2r
2 (12)

where, ρr =
xi−τr
υr

. Here, τr represents the translation and υr
denotes the dilation factor of the wavelet functions.

The generalized form of update law used in adaptation
mechanism is given as:

θp(k + 1) = θp(k)− η
∂JC
∂θp

(13)

where, p and θ represents the output index and the vector con-
taining adaptation parameters, respectively. The Lyapunov
stability criteria based ALRs are contained in η.
The gradient of the cost function is calculated as;

∂JC
∂θp
= −eJU ′ + evJ h̄U′ (14)

where, U ′ =
[
∂u1
∂θp

∂u2
∂θp
· · ·

∂uk
∂θp

]T
.

Also, J h̄ = diag
[√

h̄ii
]
k×k and J =

[
∂yi
∂uj

]
k×k

denotes
the penalty matrices and system Jacobean, respectively, with
i = 1, 2, · · · , k and j = 1, 2, · · · , k .
Differentials in U ′ can be simplified by using chain rules

of calculus.
Following relations can be obtained after simplification.

∂up
∂µ

p
ij
= ℘j

 ζ
p
j − up

µ
p
ij
∑
j
℘j

 (15)

∂up
∂τ

p
ij
= ℘jw

p
`



cos
(
5ρpij

)
e−0.5ρ

(p)2

ij ρ
p
ij

+5 sin
(
5ρpij

)
e−0.5ρ

(p)2

ij

υ
p
ij
∑
j
℘j


(16)

∂up
∂υ

p
ij
= ℘jw

p
`ρ

p
ij



cos
(
5ρpij

)
e−0.5q

(p)2
ij ρ

p
ij

+5 sin
(
5ρpij

)
e−0.5ρ

(p)2

ij

υ
p
ij
∑
j
℘j


(17)

∂up
∂wpij
=
℘jψ

p
ij∑

j
℘j

(18)

The plant Jacobean term is calculated online using identi-
fication block as follows:

∂yp
∂uk
=

∑
j

℘j

−2
(
ζ
p
j − yIi

)
∑
j
℘j

.

(
uk − hij

)
ς2ij

+ wpij

 (19)

Here, ℘j, ‘ζ
p
j , ‘hij, ‘ςij are the identification block parame-

ters.
Update laws for parameters of control block can be found

using (15)-(18) in (13) and (14).

IV. STABILITY ANALYSIS OF THE PROPOSED CONTROL
SCHEME
A. STABILITY ANALYSIS OF HBSWC
The convergence speed of gradient descent learning algo-
rithm depends upon the optimal choice of learning rate.
Lyapunov based ALRs can effectively be used to guarantee
the convergence. Control block parameters adaptation has
been done through backpropagation learning algorithm using
gradient descent technique to minimize the following cost
function:

JC =
1
2

(
eT e+ eTv ev

)
(20)

Here, the error vectors are defined as, e =
[
e1 e2 · · · ek

]
such that ei = ydi − yi and ev =

[
ev1 ev2 · · · evk

]
such that

evi =
√
h̄iui. The generalized parameters update law is given

as;

θp(k + 1) = θp(k)− η
∂JC
∂θp

(21)

where, θp is the adaptation parameters vector.
η is the ALRs vector based on Lyapunov stability criteria.

The ALRs given in (13) are governed by the following theo-
rem using Lyapunov stability criteria.
Theorem 1: Let η be the learning rate for pth output

affected by the antecedent parameters vector θof NeuroFuzzy
control. 3p and 3

p
max are defined as 3p =

∂up
∂θ

and 3p
max =

max
∥∥3p

∥∥, where, ‖.‖ is the Euclidean norm in <p.
Then the convergence is guaranteed if the learning rates

are chosen as follows;

0 < η <
2{(

∂y1
∂uc

)2
+

(
∂y2
∂uc

)2
+ h̄p

}∥∥∥ ∂up∂θ ∥∥∥2max

(22)

Where, ∂yi
∂up
=

[
∂yi
∂u1

∂yi
∂u2

]
,
√
h̄p =

[√
h̄1
√
h̄2
]
, ∂up
∂θ
=[

∂u1
∂θ

∂u2
∂θ

]T
and i = 1, 2

Proof: Consider the following discrete type Lyapunov
function,

VC (k) =
1
2

2∑
i=1

(
e2i (k)+ e

2
vi (k)

)
(23)

Then, change in Lyapunov function is given as;

1VC (k) = VC (k + 1)− VC (k) (24)
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and

ei (k + 1) = ei (k)+1ei (k) (25)

1VC (k) =
2∑
i=1

 1e2i (k)

2
+1ei (k) ei (k)+

1e2vi (k)

2
+1evi(k) evi (k)


(26)

where, 1ei =
[
∂ei
∂�

]T
1�, 1θ = −η ∂JC

∂θ

JC =
1
2

2∑
i=1

(
ydi − yi

)2
+

1
2

2∑
i=1

h̄iu2i (27)

⇒
∂JC
∂θ
= A+ B (28)

where,

A =
(
−e1

∂y1
∂u1
− e2

∂y2
∂u1
+

√
h̄1eu1

)
,

B =
(
−e1

∂y1
∂u2
− e2

∂y2
∂u2
+

√
h̄2eu2

)
⇒ 1e1 = η

[
y′11.u

′

1 + y
′

12.u
′

2
]T (Au′1 + Bu′2) (29)

where, y′11 =
∂y1
∂u1

, y′12 =
∂y1
∂u2

, u′1 =
∂u1
∂θ

, u′2 =
∂u2
∂θ

1e1 = η
{
y′11

∥∥u′1∥∥2 A+ y′11 [u′1]T [u′2]B
+y′12

∥∥u′2∥∥2 B+ Ay′12 [u′2]T [u′1]
}

(30)

Similarly,

1e2 = η
{
y′21

∥∥u′1∥∥2 A+ y′22 [u′2]T [u′1]A
+y′22

∥∥u′2∥∥2 B+ By′21 [u′1]T [u′2]
}

(31)

where, y′21 =
∂y2
∂u1

, y′22 =
∂y2
∂u2

1eu1 = −η
[√

h̄1 u′1
] ∂JC
∂�

= −η
√
h̄1
(∥∥u′1∥∥2 A+ B [u′1]T [u′2]) (32)

1eu2 = −η
[√

h̄2 u′2
] ∂JC
∂�

= −η
√
h̄1
(∥∥u′2∥∥2 B+ A [u′2]T [u′1]) (33)

Using
[
u′2
]T [u′1] = [

u′1
]T [u′2] = C and

∥∥u′1∥∥2 ∥∥u′2∥∥2 =
C2

1VC (k)

= η

{
e1

(
y′11

∥∥u′1∥∥2 A+ y′11BC
+y′12

∥∥u′2∥∥2 B+ y′12AC
)

+e2
(
y′21

∥∥u′1∥∥2 A+ y′22AC + y′22 ∥∥u′2∥∥2 B+ y′21BC)
−eu1

√
h̄1
(∥∥u′1∥∥2 A+ BC) −eu2√h̄2 (AC + ∥∥u′2∥∥2 B)}

+
η2

2

{(
y′11

∥∥u′1∥∥2 A+ y′11BC + y′12 ∥∥u′2∥∥2 B+ y′12AC) 2

+

(
y′21

∥∥u′1∥∥2 A+ y′22AC + y′22 ∥∥u′2∥∥2 B+ y′21BC)2
+h̄1

(
A
∥∥u′1∥∥2 + BC)2 + h̄2 (AC + B ∥∥u′2∥∥2)2


(34)

1VC

= η
{
A
∥∥u′1∥∥ 2

−A︷ ︸︸ ︷(
e1y′11 + e2y

′

21 − eu1
√
h̄1
)

+B
∥∥u′2∥∥2

−B︷ ︸︸ ︷(
e1y′12 + e2y

′

22 − eu2
√
h̄2
)

+BC

−A︷ ︸︸ ︷(
e1y′11+e2y

′

21−eu1
√
h̄1
)

+AC

−B︷ ︸︸ ︷(
e1y′12+e2y

′

22−eu2
√
h̄2
)
+

η2

2

{
A2y′11

2 ∥∥u′1∥∥4

+y′11
2B2C2

+ y′12
2 ∥∥u′2∥∥4 B2 + y′122A2C2

+2ABCy′11
2 ∥∥u′1∥∥2 + 2y′11y

′

12AB
∥∥u′1∥∥2 ∥∥u′2∥∥2

+2y′11y
′

12A
2C
∥∥u′1∥∥2 + 2y′11y

′

12B
2C
∥∥u′2∥∥2

+2y′11y
′

12ABC
2
+ y′12

2ABC
∥∥u′2∥∥2 + y′212A2 ∥∥u′1∥∥4

+A2C2y′22
2
+ B2C2y′21 + B

2y′22
2 ∥∥u′2∥∥4

+2y′21y
′

22A
2C
∥∥u′1∥∥2 + 2y′21

2ABC
∥∥u′1∥∥2

+2ABy′21y
′

22

∥∥u′1∥∥2 ∥∥u′2∥∥2 + 2ABC2y′21y
′

22

+2ABCy′22
2 ∥∥u′2∥∥2 + 2B2Cy′21y

′

22

∥∥u′2∥∥2
+h̄1

∥∥u′1∥∥4 A2 + h̄1B2C2
+ 2ABCh̄1

∥∥u′1∥∥2
+h̄2

∥∥u′2∥∥2 B2 + A2C2h̄2 + 2ABCh̄2
∥∥u′2∥∥2

}
(35)

= η
{
−A2

∥∥u′1∥∥2 − B2 ∥∥u′2∥∥2 − 2ABC
}

+
η2

2

[
2ABC

{∥∥u′1∥∥2 (y′112 + y′212 + h̄1) + ∥∥u′2∥∥2
×

(
y′12

2
+ y′22

2
+ h̄2

)
+
[
y′11y

′

12 + y
′

21y
′

22
]
C
}

+A2C
{
2
∥∥u′1∥∥2 [y′11y′12 + y′21y′22]

+

[
y′12

2
+ y′22

2
+ h̄2

]
C
}
+ 2ABC2 [y′11y′12 + y′21y′22]

+B2C
{
2
∥∥u′2∥∥2 [y′11y′12 + y′21y′22]

+

[
y′11

2
+ y′21

2
+ h̄1

]
C
}
+ 2A2

∥∥u′1∥∥2
×

{∥∥u′1∥∥2 [y′112 + y′212 + h̄1]}+ B2 ∥∥u′2∥∥2
×

{∥∥u′2∥∥2 [y′122 + y′222 + h̄2]}] (36)

1VC

= η
{
−
(
A
∥∥u′1∥∥+ B ∥∥u′2∥∥)2}+ η22

×

[∥∥u′1∥∥2 (y′112 + y′212 + h̄1)(
A2
∥∥u′1∥∥2 + 2ABC + B2

∥∥u′2∥∥2)
+
∥∥u′2∥∥2 (y′222 + y′122 + h̄2)

(
A2
∥∥u′1∥∥2 + 2ABC

+B2
∥∥u′2∥∥2

)
+2

(
y′11y

′

12 + y
′

21y
′

22
)

×C
(
A2
∥∥u′1∥∥2 + 2ABC + B2

∥∥u′2∥∥2)]
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= −η
(
A
∥∥u′1∥∥+ B ∥∥u′2∥∥)2[

1− η
2

{∥∥u′1∥∥2 [y′112 + y′212 + h̄1]
+
∥∥u′2∥∥2 [y′122 + y′222 + h̄2]

+2
(
y′11y

′

12 + y
′

21y
′

22
)
C
}]

(37)

To guarantee the convergence, 1VC < 0

⇒ η

1− η
2


∥∥u′1∥∥2 [y′112 + y′212 + h̄1]
+
∥∥u′2∥∥2 [y′122 + y′222 + h̄2]
+2

(
y′11y

′

12 + y
′

21y
′

22

)
C


 > 0 (38)

Consider,∥∥u′1∥∥2 [y′112 + y′212 + h̄1]+ ∥∥u′2∥∥2
×

[
y′12

2
+ y′22

2
+ h̄2

]
+ 2

(
y′11y

′

12 + y
′

21y
′

22
)

×

([
u′1
]T [u′2]+ [u′2]T [u′1])

= y′11
[
u′1
]T (y′11 [u′1]+ y′12 [u′2])+ y′12 [u′2]T

×

(
y′22

[
u′1
]

+y′22
[
u′2
] )+ y′21 [u′1]T ( y′21 [u′1]+y′22

[
u′2
] )

+y′12
[
u′2
]T ( y′12 [u′2]
+y′11

[
u′1
] )

+
[
u′1
]T [u′1] h̄1 + [u′2]T [u′2] h̄2

=

{
y′11

[
u′1
]T [ y′11 y′12 ]+ y′22 [u′2]T [ y′21 y′22 ]

+y′21
[
u′1
]T [ y′21 y′22 ]+ y′12 [u′2]T

×
[
y′11 y

′

12

]
+

[
h̄1
[
u′1
]T h̄2

[
u′2
]T ]} [ [u′1][

u′2
] ]

=


[
y′11 y

′

12

] [ [u′1]T[
u′2
]T
] [

y′11 y
′

12

]
+
[
y′21 y

′

22

]
×

[ [
u′1
]T[

u′2
]T
] [

y′21 y
′

22

]
+
[√

h̄1
√
h̄2
]

×

[ [
u′1
]T[

u′2
]T
] [√

h̄1
√
h̄2
]} [ [u′1][

u′2
] ]

=

{
y′1c

2
+ y′2c

2
+

(√
h̄c
)2}[ [

u′1
][

u′2
]T T][ [

u′1
][

u′2
] ]

=

{
y′1c

2
+ y′2c

2
+ h̄c

} [ [
u′1
] [
u′2
] ]T [ [u′1][

u′2
] ]

=

{
y′1c

2
+ y′2c

2
+ h̄c

} [
u′c
]T [u′c]

=

{
y′1c

2
+ y′2c

2
+ h̄c

} ∥∥u′c∥∥2
where, y′1c =

[
y′11 y

′

12

]
, y′2c =

[
y′21 y

′

22

]
,
√
h̄c =[√

h̄1
√
h̄2
]
and

[
u′c
]
=

[ [
u′1
][

u′2
] ]

Using (38),

η
[
1−

η

2

{
y′1c

2
+ y′2c

2
+ h̄c

} ∥∥u′c∥∥2] > 0

⇒ 0 < η <
2{

y′1c
2 + y′2c

2 + h̄c
} ∥∥u′c∥∥2max

(39)

Remark 1: Since, convergence is guaranteed if the follow-
ing condition is satisfied;

η
[
1−

η

2

{
y′1c

2
+ y′2c

2
+ h̄c

} ∥∥u′c∥∥2] > 0

Fast convergence with maximum learning rate is given as
[13], [15];

η =
1{

y′1c
2 + y′2c

2 + h̄c
} ∥∥u′c∥∥2max

(40)

Theorem 2: Similarly, for consequent part the ALR for
parameters of each output will separately be given as;

0 < ηi <
2{(

∂y1
∂ui

)2
+

(
∂y2
∂ui

)2
+ h̄i

}∥∥∥ ∂ui∂θ i

∥∥∥2
max

, i = 1, 2

(41)

Proof:
For consequent part of output ‘1’,[
u′2
]
= 0, 1eu2 (k) = 0

1e1 (k)

= −y′11
[
u′1
]T
1θ = ηy′11

[
u′1
]T ∂JC

∂θ
∂JC
∂θ
=
(
−e1y′11 − e2y21 + h̄1u1

) [
u′1
]

⇒ 1e1 (k) = ηy′11
∥∥u′1∥∥2 A,1e2 (k) = ηy′21 ∥∥u′1∥∥2 A,

1eu1 = −η
√
h̄1A

∥∥u′1∥∥2 ,1eu2 = −η√h̄2B ∥∥u′2∥∥2 (42)

⇒ 1VC (k) = ηA
∥∥u′1∥∥2 (y′11e1 + y′21e2 +√h̄1eu1)

+
1e21
2
+
1e22
2
+
1e2u1
2

< 0 (43)

= −ηA2
∥∥u′1∥∥2 + η22 (∥∥u′1∥∥2)2[

y′11
2
+ y′21

2
+ h̄1

]
A2 < 0

= −ηA2
∥∥u′1∥∥2[1− η2 (y′112 + y′212+h̄1)∥∥u′1∥∥2] < 0

⇒ η1 ≤
2(

y′11
2 + y′21

2 + h̄1
) ∥∥u′1∥∥2

<
2((

∂y1
∂u1

)2
+

(
∂y2
∂u1

)2
+ h̄1

)∥∥∥ ∂u1∂θ ∥∥∥2max

(44)

Similarly, for the second output,

η2 <
2((

∂y1
∂u2

)2
+

(
∂y2
∂u2

)2
+ h̄2

)∥∥∥ ∂u2∂θ ∥∥∥2max

(45)
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B. STABILITY ANALYSIS OF IDENTIFIER
The identifier parameters are updated using the cost function
defined as;

JI =
1
2

(
eTI eI

)
(46)

Here, eIi = yIi − yi is the ith entry of error vector
eI =

[
eI1 eI2 · · · eIk

]
. The generalized law for parameters

adaptation is given as;

θ̂p(k + 1) = θ̂p(k)− η̂
∂JI

∂ θ̂p
(47)

where, θ̂p and p represent the adaptation parameters vector
and the corresponding output index, respectively. η̂ is the
ALRs vector for identification block.
Theorem 3: Let η̂be the learning rate forp th output

affected by the parameter vector θ̂p of NeuroFuzzy identifier

3̂p and 3̂
p
max are defined as 3̂p =

∂yIp
∂ θ̂p

and 3̂
p
max =

max
∥∥∥3̂p

∥∥∥, where, ‖.‖ is the Euclidean norm in <p.

Then the convergence is guaranteed if the learning rates
are chosen as follows;

0 < η̂ <
2∥∥∥∥ ∂yIp∂ θ̂p

∥∥∥∥
max

(48)

Proof:

VI =
1
2

2∑
i=1

(
ydIi − yIi

)2
=

1
2

2∑
i=1

e2Ii (49)

1VI (k) = VI (k + 1)− VI (k) (50)

⇒ 1VI (k) =
2∑
i=1

(
1e2Ii (k)

2
+1eIi (k) eIi (k)

)
(51)

Using,

1eIi =
[
∂eIi
∂ θ̂

]T
1θ̂ , 1θ̂ = −η̂

∂JI

∂ θ̂

∂JI

∂ θ̂
=

2∑
i=1

eIi
∂yIi
∂ θ̂

⇒ 1eI1 = −η̂
{
eI1
∥∥y′I1∥∥2 + eI2 [y′I1]T [y′I2]} ,

1eI2 = −η̂
{
eI2
∥∥y′I2∥∥2 + eI1 [y′I2]T [y′I1]} (52)

where, y′I1 =
∂yI1
∂ θ̂

, y′I2 =
∂yI2
∂ θ̂

1VI (k)

= −η̂

 e2I1

∥∥∥y′I1∥∥∥2 + eI1eI2 [y′I1]T [y′I2]
+eI1eI2

[
y′I2

]T [
y′I1

]
+ e2I1

∥∥∥y′I2∥∥∥2


= −η̂
{(
eI1
∥∥y′I1∥∥+ eI2 ∥∥y′I2∥∥)2}

−
η̂

2

{
e2I1
∥∥y′I1∥∥4 + 2eI1eI2

∥∥y′I1∥∥2 [y′I1]T [y′I2]}

+e2I2
∥∥y′I1∥∥2 ∥∥y′I2∥∥2 + e2I2 ∥∥y′I2∥∥4

+2eI1eI2
∥∥y′I2∥∥2 [y′I2]T [y′I1]+ e2I1 ∥∥y′I1∥∥2 ∥∥y′I2∥∥2

= −η̂
{(
eI1
∥∥y′I1∥∥+ eI2 ∥∥y′I2∥∥)2

−
η̂

2

∥∥y′I1∥∥2
 e2I1

∥∥∥y′I1∥∥∥2 + 2eI1eI2
[
y′I1

]T [
y′I2

]
+e2I2

∥∥∥y′I2∥∥∥2


+
∥∥y′I2∥∥2

 e2I2

∥∥∥y′I2∥∥∥2 + 2eI1eI2
[
y′I2

]T[
y′I1

]
+ e2I1

∥∥∥y′I1∥∥∥2


= −η̂
(
eI1
∥∥y′I1∥∥+eI2 ∥∥y′I2∥∥)2

1− η̂
2

∥∥∥y′I1∥∥∥2
+

∥∥∥y′I2∥∥∥2
 (53)

In order to guarantee the convergence,[
1−

η̂

2

(∥∥y′I1∥∥2 + ∥∥y′I2∥∥2)] > 0

⇒ η̂ <
2∥∥∥y′I1∥∥∥2 + ∥∥∥y′I2∥∥∥2 =

2∥∥∥y′Ip∥∥∥2max

(54)

where, y′Ip =
[
y′I1 y

′
I2

]
.

Similarly, the learning rate for parameters of consequent
part corresponding to each output is given as;

η̂p <
2∥∥∥y′Ip∥∥∥2max

(55)

V. SIMULATION RESULTS: TEMPORAL, SPECTRAL AND
NUMERICAL
Fig. 3 shows two area, four machines benchmark test sys-
tem for the performance validation of suggested control
paradigms. MATLAB/SIMULINK software has been used
for system and control implementation. The complete details
of system parameters and load flow settings can be found
in [12]. PSSs installed in the whole system are disabled to
elude the chances of destabilizing interaction and the whole
damping is provided using FACTS only. The simulations
have been carried out for open-loop environment, with no
damping control installed in the system and for closed-loop
system equipped with ANFTSC and HBsWC based FACTS.
In ANFTSC scheme both the identification and control block
are simple NeuroFuzzy TSK structure, whereas, in case of
HBsWC the control block utilizes the HBsW architecture

FIGURE 3. Benchmark test system.
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FIGURE 4. Scenario-I (a) Local modes, (b) Inter-area modes, (c) LLC local mode spectrum, (d) LLC inter-area mode spectrum,
(e) ANFTSC local mode spectrum, (f) ANFTSC inter-area mode spectrum, (g) HBsWC local mode spectrum, (h) HBsWC inter-area
mode spectrum.

shown previously in Fig. 2 and identification block utilizes
NeuroFuzzy TSK structure.

Furthermore, the comparative study has also been
made using frequency domain analysis based on
Smoothed-Pseudo Wigner Ville Distribution (SPWVD) and
different performance indices. The performance indices and
frequency domain analysis give insight regarding the per-
formance of a control algorithm in transient and steady-
state region and energy content for different frequencies,
respectively.

The general formula for performance index is given as;

PI =

ts∫
0

tu
∣∣∣∣∣
n∑
i=1

(1ωLi +1ωIi )

∣∣∣∣∣
v

dt (56)

where, ‘n’ shows total number of modes.

LIMOs are denoted by L and I with ts being the com-
plete simulation time. Also, u and v are constants, such that
(u, v) = (0, 1) corresponds to Integral Absolute Error (IAE),
(u, v) = (0, 2) corresponds to Integral Time Absolute Error
(ITAE), (u, v) = (1, 1) corresponds to Integral Square Error
(ISE) and (u, v) = (1, 2) corresponds to Integral Time Square
Error (ITSE).

SPWVD is calculated as;

SPWVDx(k, ω) =

∞∫
−∞

h (τ )
∫ g(u−k)x(u+τ/2)x

∗(u−τ/2)due−jωτ
dτ (57)

Here, g (k) and h (τ ) is the time domain smoothing func-
tion and frequency smoothing window, respectively. h (τ )
reduces the cross-terms effect and removes the integration
over ]−∞∞[ for WVD [14].

In what follows is the detail of different fault scenarios:
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FIGURE 5. Scenario-II (a) Local modes, (b) Inter-area modes, (c) LLC local mode spectrum, (d) LLC inter-area mode spectrum, (e) ANFTSC
local mode spectrum, (f) ANFTSC inter-area mode spectrum, (g) HBsWC local mode spectrum, (h) HBsWC inter-area mode spectrum.

A. SCENARIO-I
The performance against small disturbance was checked
using load reduction in L2, at t = 1 sec.
Fig. 4 shows the simulation results for this fault scenario.

Figures 4(a) and 4(b) show the simulation results for LIMOs.
The results reveal that in case of no damping control the
system loses its synchronismwhen subjected to this fault. The
application of conventional LLC makes the system to regain
its equilibrium with poorly damped oscillations. ANFTSC
and HBsWC efficiently restore the system, however, their
damping improvement is comparable for this small fault,
especially, for LMOs.

Figures 4 (b)-(h) show the frequency domain results
of LLC, ANFTSC and HBsWC along with the energy

content of frequency spectra. The results reveal that all con-
trol paradigms have almost same energy content of frequency
spectra for LMOs, however, in case of IMOs HBsWC has
lowest energy for low frequencies.

B. SCENARIO-II
A 3-ϕ fault for duration of 8-cycles with self-clearing feature
has been applied on line 4 to analyze the controller perfor-
mance against large disturbance, at t = 1 sec. Fig. 5 shows the
performance results for this scenario. The results for LIMOs
are shown in Figs. 5(a) and 5(b). The results reveal that system
loses its synchronism when no damping control is installed in
the system.
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FIGURE 6. Scenario-III (a) Local modes, (b) Inter-area modes, (c) LLC local mode spectrum, (d) LLC inter-area mode spectrum, (e) ANFTSC
local mode spectrum, (f) ANFTSC inter-area mode spectrum, (g) HBsWC local mode spectrum, (h) HBsWC inter-area mode spectrum.

The damping performance of LLC and ANFTSC is
almost the same, however, HBsWC gives significant per-
formance improvement. The frequency domain results given
in Figs. 5(c)-5(h) reveal that in case of LLC and ANFTSC the
low frequencies have very high energy content for LIMOs,
whereas, the energy content of low frequency spectra is small
for HBsWC.

C. SCENARIO-III
In order to validate the online stability and robustness of the
proposed control strategies, multiple faults have been applied
to the system. Initially, line 2 has been temporarily removed

from the system at t= 1 sec. for a duration of 5 secs. and then
reconnected at t= 6 secs. to restore the system. Another fault
of 10% step increase in mechanical input of generator G1 in
area 1, has been applied as third fault event, at t = 11 secs.

Fig. 6 presents the simulation results for this scenario. The
time domain results presented in Figs. 6(a) and 6(b) show that
in case of no control the system becomes unstable before the
occurrence of third fault.

LLC and ANFTSC give poorly damped oscillatory
behavior, whereas, HBsWC effectively restores the system
equilibrium to maintain the performance at different oper-
ating conditions. The frequency domain results, for LMOs,
presented in Figs. 6(c), 6(e) and 6(f) show that the energy
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FIGURE 7. Plant Jacobean for ANFTSC (a) Scenario-I, (b) Scenario-II,
(c) Scenario-III.

content for all the three faults is significant in case of LLC.
ANFTSC suppresses the energy content for first fault but it
fails to fully eliminate the energy content of last two faults.

On the other hand, HBsWC has almost zero energy con-
tent for first two faults and very small energy content of
short duration for third fault. The results for IMOs, shown
in Figs. 6(d), 6(f) and 6(h), reveal that energy content for
proposed HBsWC has lowest magnitude for all the three
faults as depicted clearly in the given linear scale ESD.

FIGURE 8. Plant Jacobean for HBsWC (a) Scenario-I, (b) Scenario-II,
(c) Scenario-III.

The plant model is estimated online using Jacobean for
which the results are shown in Figs. 7 and 8, for all the three
scenarios.
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TABLE 1. Time and frequency domain performance improvement w.r.t. Lead-Lag Control [%].

The statistical results for performance improvement are
presented in Table 1. The results show that ANFTSC shows
competitive results w.r.t. LLC for small faults and the perfor-
mance margin between ANFTSC and HBsWC is small.

However, for large faults and more complex scenarios
like series of faults the performance difference is significant
highlighting the superior performance of proposed HBsWC.
Furthermore, large values of ITSE and ISE as compared to
ITAE and IAE show more pronounced effect of proposed
control strategy in transient region as compared to that in
steady-state region.

Table 1 also summarizes the frequency domain analysis
quantified on the basis of ESD. The results show the percent-
age improvement in terms of the energy content of low fre-
quencies. The statistics reveal that HBsWC has significantly
improved performance as compared to LLC and ANFTSC
for both LIMOs in all the three scenarios. However, it has
been observed that performance improvement for ANFTSC
is small in case of large fault as considered in scenario-II.
ANFTSC suffers performance degradation as compared to
LLC for LMOs in scenario-II.

It is due to the fact that although the maximum value
of ESD is high for LLC as compared to that of ANFTSC,
as shown in Fig. 5(e), but the spectrum of ANFTSC has more
values of higher magnitude as compared to LLC.

This also signifies the importance of quantitative results
for ESD by revealing the aspects not observable in graphical
results, shown in Figs. 4-6. However, the proposed HBsWC
maintains its superior performance in all scenarios.

VI. CONCLUSION
This article presents MIMO online indirect adaptive Neuro-
Fuzzy control techniques and the comparative evaluation of
different variants of conventional and advanced antecedent
and consequent parts based on nonlinear time and frequency
domain analysis. The proposed control scheme suffers no
offline training overhead and updates the parameters using
current value of the plant Jacobean.

The performance of the proposed control schemes is vali-
dated based on comparison with conventional Lead-Lag con-
trol using different fault scenarios and evaluation criterion.

It has been found that the proposed HBsWC gives supreme
performance improvement for both LIMOs in a power sys-
tem installed with multi-type FACTS. The results reveal that
although the generic TSK structure with ALRs may give
competitive performance improvement for small faults. How-
ever, for large faults, there is significantly large performance
improvement margin between HBsWC and ANFTSC.

Furthermore, the quantitative analysis of frequency domain
results reveals that conventional NeuroFuzzy controls may
suffer performance degradation for large faults. However,
the proposed HBsWC is robust and retains its performance
excellence for all cases as revealed by temporal, spectral and
numerical analysis.

The control scheme investigated in this work has many
interesting future research directions to be investigated for
further performance improvement. Mainly the control perfor-
mance can be investigated for optimization by using some
advanced optimization technique like Levenberg-Marquardt
and recurrent network structure. Use of sliding mode control
by introducing a sliding surface in consequent part can also be
investigated for control effort smoothness. Also, the advance-
ment in hardware in-loop simulation tools have opened a new
research dimension for investigation of these complex control
techniques from theory to practice.
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