
Received December 26, 2019, accepted January 12, 2020, date of publication January 24, 2020, date of current version January 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2969229

Research on Real-Time Embedded Software
Scheduling Model Based on EDF
YINGJIE WANG 1,2,3, KUANJIU ZHOU1,3, ZUMIN WANG2, MINGCHU LI 1,3,
NAN CHEN2, BIN LI2,4, AND HONGXUAN TIAN 2
1Software School, Dalian University of Technology, Dalian 116620, China
2College of Information Engineering, Dalian University, Dalian 116622, China
3Liaoning Provincial Key Laboratory of Ubiquitous Network and Service Software, Dalian University of Technology, Dalian 116620, China
4School of Software Engineering, University of Science and Technology of China, Suzhou 215000, China

Corresponding author: Kuanjiu Zhou (zhoukj@dlut.edu.cn)

This work was supported in part by the Special Fund for Basic Scientific Research Business Expenses of Central Universities under Grant
DUT19ZD104, and in part by the National Nature Science Foundation of China under Grant 71531002 and Grant 71421001.

ABSTRACT Schedulability analysis is a very important part in real-time system research. Because the
scenarios faced by real-time systems are very complicated, the functional characteristics must be combined
with the predictability of response time. It is necessary to ensure the correctness of the calculation results and
meet the real-time requirements. To solve this problem, we propose the IEDF (Improved Earliest Deadline
First) algorithm, which is combined with the queuing theory model. The IEDF algorithm is based on the
EDF (Earliest Deadline First) algorithm, which is more suitable for the scheduling of real-time embedded
system. Scheduling of non-periodic tasks that arrive randomly. There are two types of tasks in the task set,
tasks with a high static priority are executed first. In the ready queue of the same priority task, the deadline
and execution time are considered. The comparison of simulation experiments shows that: the sum of waiting
time in the execution of IEDF with enough deadline is much less than that of ordinary queuing algorithm;
the number of errors in the execution of IEDF algorithm with deadline is much less than that of ordinary
queuing algorithm. These results demonstrate the feasibility of the IEDF algorithm.

INDEX TERMS Deadline, real-time scheduling, EDF (earliest deadline first) algorithm.

I. INTRODUCTION
The correctness of a real-time system depends not only on
the logical results of the system’s execution, but also on the
response time for the results. When designing a real-time
embedded system, we must not only ensure the correctness
of the calculation results, but also meet the real-time require-
ments. The results must be produced within a specified time
limit. In order to satisfy the strong timeliness of data pro-
cessing and control, the system divides the real-time task into
several groups and schedules them according to the urgency
of the task in the real-time system. In real-time embedded
software, the execution of tasks has a deadline, and time
constraints limit the execution time of specific tasks, such as
the start, end or duration of tasks. When the execution time
satisfies the time constraint, the software will exhibit timing
characteristics that meet the design expectations [1].

A real-time task is required to be completed before the
deadline. Depending on types of systems, missing deadlines

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

will cause performance losses or even complete failures of the
real-time systems. Another important concept is the release
time, which is the time when a real-time job becomes avail-
able for execution. The release time and the deadline together
can specify a timing constraint of a real-time job.

The timing constraints are generally divided into two types:
hard and soft. There are several different definitions of hard
and soft timing constraints.
• A real-time constraint is hard, if violating this constraint

is considered as a fatal fault and may cause serious conse-
quences.
• A real-time constraint is soft, if meeting this constraint

is desirable, but missing this constraint does not seriously
damage the system behavior [2].

Taking the access control system as an example, the access
control software is a typical embedded software. When a
specific event is triggered, the access control is opened or
closed according to a certain timing. The state machinemodel
is shown in Figure 1.

A series of time constraints are set in the access con-
trol software, including: the access control software will be

20058 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6569-0802
https://orcid.org/0000-0001-7969-6415
https://orcid.org/0000-0002-1723-0692
https://orcid.org/0000-0002-0026-2284


Y. Wang et al.: Research on Real-Time Embedded Software Scheduling Model Based on EDF

FIGURE 1. Timed automata for access control software with time
constraints.

initialized 5s after the system is powered on; The automatic
door will be opened within the time interval [3s, 7s] after
a personnel approach is detected; the automatic door will
be closed within the time interval [3s, 5s], after a personnel
leave is detected; When a personnel approach is detected,
the person should be detected to leave within the time interval
[3s, 30s]; After the automatic door is opened, the automatic
door should be closed within 30s, that is, the automatic door
should not be opened for more than 30s; When the automatic
door is opened (state 3), the access control software shall
report the opening state of the automatic door to the moni-
toring center every 15s [3].

Although there are some scheduling methods for real-time
system, they lack full consideration of the effects of time
constraint or they consider too pessimistic and cause a lot
of tasks to be abandoned. In order to ensure the real-time
performance of the real-time system, in this paper, we present
an IEDF (Improved Earliest Deadline First) scheduling algo-
rithm. In particular, we make the following contributions:
(1) EDF (Earliest Deadline First) algorithm is a classical

dynamic priority scheduling algorithm. We propose
the IEDF (Improved Earliest Deadline First) algorithm.
The IEDF algorithm can be applied to non-periodic
and randomness tasks, it is more universal than the
universality of EDF algorithm.

(2) We present the IEDF algorithm, which is combined
with the queuing theory model. We can clearly analyze
the relationship among the arrival time, execution time,
waiting time, waiting queue length and execution end
time of tasks through the queuing model.

(3) We compare the execution results of three algorithms,
which are the ordinary queuing algorithm, EDF algo-
rithm and IEDF algorithm. It provides a basis for the
selection of scheduling algorithms for real-time embed-
ded systems in the future.

The rest of the paper is organized as follows. We intro-
duce related works in Section II. The related description
of the IEDF algorithm model and the modeling method

are presented in Section III. Section IV presents the model
implementation. Section V presents an experimental com-
parison among the execution results of the ordinary queuing
algorithm, EDF algorithm and IEDF algorithm. We conclude
this paper in Section VI.

II. RELATED WORK
Real-time scheduling of embedded software is a hot issue
in the current research, Chang et al. [4] explored the
joint considerations of memory management and real-time
task scheduling over island-based multi-core architecture,
it minimized the number of needed islands to successfully
schedule real-time tasks. But its flexibility wasn’t good,
and its scheduling capacity needs to be improved. The
Xian-Fu and Xiao-Yan [5] considered execution time, com-
munication time among nodes and task scheduling costs,
a parallel task scheduling algorithm with multi-objective
constraints was presented. Experimental results demonstrated
that the task scheduling algorithm with multi-objective
constraints had better performances than the traditional
methods. Qingbing et al. [6] proposed a real-time automatic
online evaluation method for CPS reliability, in order to
effectively analyze and quantify the reliability of CPS system.
The method uses machine learning to construct an evalu-
ation framework, and designs an online queuing algorithm
to realize real-time online analysis and evaluation of CPS
reliability. Using a logic based approach to schedulability
analysis in the design of hard real-time systems eases the syn-
thesis of correct-by-construction procedures for both static
and dynamic verification processes. Pedro et al. [7] proposed
a novel approach to schedulability analysis based on a timed
temporal logic with time durations. The approach subsumes
classical methods for uniprocessor scheduling analysis over
compositional resource models by providing the developer
with counter-examples, and by ruling out schedules that cause
unsafe violations on the system.

The use of hardware-based data structures for accelerat-
ing real-time and embedded system applications is limited
by the scarceness of hardware resources. Kumar et al. [8]
present a hybrid priority queue architecture and a scalable
task scheduler for real-time systems that reduces scheduler
processing overhead and improves timing determinism of
the scheduler. Fajardo and Drekic [9] proposed the concept
of cumulative priority, the main purpose is to describe the
latency distribution of each queue. The system is preemptive,
so as to serve customers with higher cumulative priority.
However, the data-missing will be caused by the overtime
duration of processing because there is no consideration of
the deadline issue for this method. Muliukha et al. [10]
described a preemptive dual-stream queuing system method
with random rollout probability, and proposed an efficient
algorithm for controlling the data flow of the system. And put
that probability is the main parameter of the queuing system.

Scheduling in mixed criticality system is a hot topic.
With Vestal’s research on scheduling in mixed criticality sys-
tem, many researchers have subsequently proposed various

VOLUME 8, 2020 20059



Y. Wang et al.: Research on Real-Time Embedded Software Scheduling Model Based on EDF

scheduling algorithms, such as EDF-VD algorithm, which
sets virtual deadlines for tasks with a higher criticality. These
algorithms have become typical algorithms on mixed critical-
ity system. In this system, tasks have their criticality levels
and worst-case execution time (WCET). WCET represents
the longest time it takes for a task to run on a specific
platform. When a high-critical task is actually executed,
if it has not finished when running time reaches a certain
critical point, usually the low-critical tasks are immediately
discarded, ensuring that the high-critical tasks can be success-
fully finished executing before the deadline.

For the ‘ordinary’ non-MC (mixed criticality) scheduling,
the fixed priority policy is sufficient and the EDF (earliest-
deadline first) priority assignment algorithm is optimal for
any schedulable instance [11], but it does not apply to random
aperiodic tasks. Park and Kim [12] introduced a slack-based
mixed criticality scheme for EDF scheduled jobs which
they called CB-EDF (Criticality Based EDF). In essence
they use a combination of off- and on-line analysis to run
HI-criticality jobs as late as possible, and LO-criticality jobs
in the generated slack. Alternative analysis for EDF sched-
uled MCS is presented by Mahdiani and Masrur [13] and
Santinelli et al. [14]. The former derives a separate demand
bound function for transition to HI mode. Working around
carry-over-jobs, reducing pessimism and relaxing schedula-
bility condition HI mode under MC EDF, resulting in simpler
schedulability test and tighter bound on execution demand.
The latter make use ofmultiple demand bound curves to allow
sensitivity analysis to be derived that can be applied to the
trade-off between resource usage and schedulability [15].

III. MODEL DESCRIPTION
The IEDF algorithm model stores the incoming tasks
sequence in the message queue and uses the message queue
to drive the state machine to execute. The task set includes
two types of tasks: low-priority tasks and high-priority tasks.
Tasks with high static priority will be executed first, so high-
priority tasks will preempt low-priority tasks. In the ready
queue of the same priority tasks, the deadlines are prioritized.
When the waiting time of the task is close to the deadline of
the task, the task will be executed first, and will be discarded
if the waiting time of the task exceeds the deadline. EDF
(Earliest Deadline First) algorithm is a classic dynamic pri-
ority scheduling algorithm [16]. The priority of tasks in this
algorithm is determined according to their Deadline, and the
taskswith the latest Deadline are assigned the highest priority,
so that they can be scheduled first. In this paper, the improved
EDF algorithm is combined with the queuing theory to estab-
lish the model, which is called IEDF (Improved EDF) algo-
rithm. The model is described as follows:

In general, tasks τi in an embedded soft real-time system
are described formally as a 6 tuple:

τi = (Si,Wi,Ti,Di,L i,Pi)

Si is the arrival time of task τi, and assume that the arrival
time of the task is its ready time; Wi is the wait time of the

task; Ti is the Actual Execution Time of the task, and due to
being in an uncertain environment, this time length is usually
time-varying; Di is the relative deadline for the task; Li is the
waiting queue length of the task; Pi is the priority of the task.
(1) An instance of each task in the algorithm has different

runtimes, and it’s not a fixed value but a random value ran-
domly assigned within a range.

(2) Static Pi priority is divided into two categories: Class I
priority and Class II priority, and Class I priority is higher
than Class II priority.

(3) Class I priority tasks and Class II priority tasks enter
the queuing system with ‘‘Poisson’’ form, obeying the Pois-
son process of λ1 and λ2 respectively. Class I priority tasks
and Class II priority tasks receive services with a negative
exponential distribution of u1 and u2, respectively.

(4) Class I priority tasks have preemptive priority for
Class II priority tasks. In a priority queuing system, when
a Class I priority task arrives at the system, if there is no
execution task in the queue, the system will immediately
respond to the task; If the system is processing a Class II
priority task service, the Class I priority task will preempts
receiving the service, and the Class II priority task returns to
the queue to continue to wait for receiving the service.

(5) In this algorithm, the final priority of task scheduling
is not only determined by static priority (Class I and II),
but also determined by scheduling priority (like deadline and
execution time). The following provisions are made in this
algorithm:
• Tasks with a high static priority are executed first.
• In the ready queue of the same priority task, the deadline
and execution time are considered.

(6) Set two queues, each queue is set according to the flag
bit, and the high priority preempts the low priority task. The
IEDF algorithm is used to deal the same level tasks (the same
flag). When the task waiting time Wi is close to the task
relative deadlineDi, the task τi is preferentially executed, and
if the task waiting time Wi exceeds the relative deadline Di,
the task will discarded.

The difference between IEDF algorithm and EDF algo-
rithm:

(1) The typical EDF algorithm assumes that all tasks are
ready at the same time, without considering the randomness
of the tasks arrival time. The IEDF algorithm assumes that
the tasks enters the queuing system with Poisson distribution,
obeying the Poisson process of λ1 and λ2 respectively, which
is more consistent with the actual situation when the task
arrives.

(2) The typical EDF algorithm assumes that all tasks are
periodic tasks. All tasks in IEDF algorithm are not periodic
tasks, and each task has different running time, which is
more consistent with the task execution process of embedded
system.

(3) In a typical EDF algorithm tasks’ priorities change
according to their deadlines. In IEDF algorithm, the final
priority of task scheduling is not only determined by deadline,
but determined by static priority, deadline and execution time
together.

20060 VOLUME 8, 2020



Y. Wang et al.: Research on Real-Time Embedded Software Scheduling Model Based on EDF

FIGURE 2. State space and transferring process.

Suppose N (t) = {N1(t),N2(t)} are two types of priority
tasks in the system. N1(t) has a higher priority than N2(t),
so N (t) = {N1(t),N2(t)} is a two-dimensional Markov pro-
cess. When the system reaches a steady state, set

Pij = lim
t→∞

P{N1(t) = i,N2(t) = j} (1)

Pi = (Pi,0,Pi,1,Pi,2, ...Pi,N ) i ≥ 0 (2)

will get state space and transferring process, as shown
in Figure 2.

When the service system runs long enough, the system
goes into a stable state. At this time, for each state, the number
of tasks entering this state is equal to the number of tasks leav-
ing the state for a fixed period of time. Obtain the stationary
equation in each state as follows:

(λ1 + λ2)P(0, 0) = u2P(0, 1)+ u1P(1, 0) (3)

(λ1 + λ2 + u2)P(0, j) = u2P(0, j+ 1)+ u1P(1, j)

+λ2P(0, j− 1), j ≥ 1 (4)

(λ1 + λ2 + µ1)P(i, 0) = λ1P(i− 1, 0)+ u1P(i+ 1),

i ≥ 1 (5)

(λ1 + λ2 + µ1)P(i, j) = λ1P(i− 1, j)+ µ1P(i+ 1, j)

+ λ2P(i, j− 1), i ≥ 1, j ≥ 1

(6)

The matrix is used to represent the service process, then
the generator matrix of this service process is Q

Q =



S0 E 0 0 0 0 · · ·

F S1 E 0 0 0 · · ·

0 S2 S1 E 0 0 · · ·

0 0 S2 S1 E 0 · · ·

0 0 0 S2 S1 E · · ·

0 0 0 0 S2 S1 · · ·
...

...
...

...
...

...
. . .


(7)

S0 =


−λ λ2 0 0 · · ·
µ2 −(λ+ µ2) λ2 0 · · ·
0 µ2 −(λ+ µ2) λ2 · · ·
...

...
...

...
. . .

 (8)

S1 =


−(λ+ µ1) λ2 0 0 · · ·

0 −(λ+ µ1) λ2 0 · · ·
0 0 −(λ+ µ1) λ2 · · ·
...

...
...

...
. . .

 (9)

E =


λ1
λ1
λ1
. . .

λ1

 (10)

F = S2 = µ1 I =


µ1

µ1
µ1

. . .

µ1

 (11)

IV. MODEL IMPLEMENTATION
Assuming a higher-priority task request arrives, the system
can consider as that no other level of task request exists.
At this time, the system can be regarded as the Poisson dis-
tribution whose task arrival rate obeys the parameter λI1 , and
the service time of the task obeys the M/M/1 queuing system
with the negative exponential distribution of the parameter
µI1 [17,18]. Wqi and Wsi are the average queue waiting time
and average stay time of the task of the level i priority in the
system. It is easy to get the average queue waiting time WqI2
and average dwell time WsI2

of level I1 task in the system,

WqI1
=

LqI1
λI1
=

λI1

µI1 (µI1 − λI1 )
(12)

WsI1
=

LsI1
λI1
=

1
µI1 − λI1

(13)

LqI1 is the average wait length of the system under M/
M/1 model, and LsI1 is the average wait length of the system.

When a lower priority task request arrives, the system can
be considered to have I1 and I2 priority task requests due to
preemption priority. WsI1∼I2

is the average dwell time of I1
and I2 priority task requests in the system, that:(

λI1 + λI2
)
WsI1∼I2

= λI1WsI1
+ λI2WsI2

(14)

that is,

WsI2
=

(
1+

λI1

λI2

)
WsI1∼I2

−
λI1

λI2
WsI1

(15)

For WsI1∼I2
in the formula, when the higher-priority task

request comes, the service of the task that is being served
at the lower level can only be interrupted and rejoin the
queue. Its service is still negative exponential distribution and
the parameters are the same as the previous. WsI1∼I2

can be
considered as the M/M/1 queuing system with the arrival rate
λ = λI1 + λI2 , and the service time is

WsI1∼I2
=

1

µ−
(
λI1 + λI2

) (16)

VOLUME 8, 2020 20061



Y. Wang et al.: Research on Real-Time Embedded Software Scheduling Model Based on EDF

FIGURE 3. Ordinary queuing algorithm execution results with enough
deadlines.

Substitute equation (13) and (16) into equation (15), then

WsI2
=

(
1+

λI1

λI2

)[
1

µ− (λI1 + λI2 )

]
−
λI1

λI2

(
1

µI1 − λI1

)
(17)

WqI2
= WsI2

−
1
µ

(18)

The pseudo-code of the IEDF algorithm is shown as Algo-
rithm 1.

Space Complexity of the algorithm: O (2n). Execute queue
pool n, and it is additionally required to set two high/low
priority pools of length n. Therefore, the space complexity
is O (2n).

Algorithm time complexity: All processes need to be
cycled n times. Each cycle needs to sort the execution job
pool, and the task approaching the deadline is executed first.
The time complexity of the sorting is n, because the data in
the execution job pool is almost ordered, and the total time
complexity T(n) = O(n2).

V. EXPERIMENTS
This scheduling algorithm is based on the ideal environment
as follows: (1) tasks are independent, that is, each task’s
request does not depend on other tasks’ start or completion
requests; (2) the resources of the task execution environment
are sufficient, that is, except CPU resources there are no
resources competing; (3) some time costs are ignored such as
task switching and performance adaptive control calculation;
(4) when a task exceeds the deadline, the task will abandon
the execution and give up the CPU resources. (5) the task is
not allowed to be preempted when it is executed in the critical
region.

In order to test the IEDF scheduling algorithm proposed in
this paper, a simulation comparison experiment is conducted
between this algorithm and the ordinary queuing model [19].
There are 20 test tasks in the task set in Table 1, and they
arrive randomly. Setting flag bits for each task represents its

Algorithm 1 Pseudo-Code for IEDF Algorithm
Input:
Task information
Output:
Output tasks in sequence

1: Input All tasks enter the wait queue
2: Procedure EDF(pool)
3: Initialization highTaskList High priority list, lowTaskList
Low priority list
4: time = 0;
5: while pool.length > 0 && highTaskList.length>0 &&
lowTaskList.length>0 do
6: if pool.queueFront().arrriveTime == time then // The
arrival time of the first task in the waiting queue is equal to
the current time
7: work = pool.pop();
8: if High priority task then
9: highTaskList.push(work);
10: else
11: lowTaskList.push(work);
12: if highTaskList.length>0 then
13: Update highTaskList Other tasks waiting time
14: Update highTaskList.queueFront().restTime-1
15: if highTaskList.queueFront().restTime == 0 then
16: work = highTaskList.pop();
17: output work;
18: sort by (the task with a small value between the cut-off
time and the remaining running time get priority)
19: if highTaskList.length>0 &&
highTaskList.queueFront().waitTime+highTaskList.
queueFront().restTi
me > highTaskList.queueFront().offTime then
20: work = highTaskList.pop();
21: output work(Forced out of the queue);
22: else Low priority queue is not empty then
23: Update lowTaskList Wait times for other tasks
24: Update lowTaskList.queueFront().restTime-1
25: if lowTaskList.queueFront().restTime == 0 then
26: work = lowTaskList.pop();
27: output work;
28: sort by (the task with a small value between the cut-off
time and the remaining running time get priority)
29: if lowTaskList.length>0 &&
lowTaskList.queueFront().waitTime+lowTaskList.
queueFront().restTim
e > lowTaskList.queueFront().offTime then
30: work = lowTaskList.pop();
31: output work(Forced out of the queue);
32: else
33: Exit
34: end
35: end procedure

20062 VOLUME 8, 2020



Y. Wang et al.: Research on Real-Time Embedded Software Scheduling Model Based on EDF

TABLE 1. Test data.

FIGURE 4. EDF algorithm execution results with enough deadlines.

FIGURE 5. IEDF algorithm execution results with enough deadlines.

static priority, 1 for Class I (high) priority and 0 for Class
II (low) priority. Each test runs the same task, and the task
set execution time Ti is randomly generated during the test
time. The relative deadline Di is 4 times of the task execution
time, which is carried out in an uncertain environment. For
the purpose of illustration, the time scale has been expanded
by 10,000 times and the new time unit is seconds.

As shown in Figure 3 to Figure 8 and Table 2, when
tasks have enough deadline, the comparison among the

FIGURE 6. Execution results of ordinary queuing algorithm with enough
deadlines.

FIGURE 7. Execution results of EDF algorithm with enough deadlines.

FIGURE 8. Execution results of IEDF algorithm with enough deadlines.

execution results of the ordinary queuing, EDF and IEDF
algorithm can lead to conclusions: the total waiting time
of IEDF algorithm with enough deadline is much less
than that of ordinary queuing algorithm and EDF algo-
rithm; in the IEDF algorithm, tasks with high static priority
will be executed first, so high-priority tasks will preempt
low-priority tasks. In the ready queue of the same priority
task, consider the deadline, when a task waiting time is
close to the task deadline, this task will be executed first.
So, in low-priority tasks, the shorter task will be executed
first.

VOLUME 8, 2020 20063



Y. Wang et al.: Research on Real-Time Embedded Software Scheduling Model Based on EDF

TABLE 2. Comparison of execution results of three algorithms with
enough deadlines.

FIGURE 9. Ordinary queuing algorithm execution results with deadlines
(deadline is 4 times of the task execution time).

FIGURE 10. EDF algorithm execution results with deadlines (deadline
is 4 times of the task execution time).

FIGURE 11. IEDF algorithm execution results with deadlines (deadline
is 4 times of the task execution time).

As shown in Figure 9 to Figure 15 and Table 3, when tasks
have deadlines, the comparison among the execution results
of the ordinary queuing algorithm, EDF algorithm and IEDF

FIGURE 12. Execution result of ordinary queuing algorithm with
deadlines (deadline is 4 times of the task execution time).

FIGURE 13. Execution result of EDF algorithm with deadlines (deadline is
4 times of the task execution time).

FIGURE 14. Execution result of IEDF algorithm with deadlines (deadline
is 4 times of the task execution time).

algorithm can lead to conclusions: the IEDF algorithmmakes
far fewer errors than the ordinary queuing algorithm and EDF
algorithm. When a task goes wrong, it means that the task
is not executed, and it happens in this case: tasks with high
static priority will be executed first, so high-priority tasks will
preempt low-priority tasks. In the ready queue of the same
priority tasks, the deadline is taken into consideration. In the
ordinary queuing algorithmwith deadlines, if the task waiting
time of exceeds its deadline, the task will be discarded; in

20064 VOLUME 8, 2020



Y. Wang et al.: Research on Real-Time Embedded Software Scheduling Model Based on EDF

TABLE 3. Comparison of execution results of three algorithms with
deadlines (deadline is 4 times of the task execution time).

FIGURE 15. Comparison of the error numbers in three algorithms.

the IEDF algorithm, when the task’s waiting time is close to
the deadline, the task will be executed first, and if the task’s
waiting time exceeds the deadline, the task will be discarded.

In the experiments, the IEDF algorithm is compared with
the ordinary queuing algorithm and EDF algorithm in two cir-
cumstances: deadline is long enough and the deadline is four
times of task execution time. The comparison includes end
time, total wait time and the error numbers (the total number
of tasks which are discarded before they are completed). The
conclusions are obtained through comparison of simulation
experiments: (1) The total waiting time during the execu-
tion of the IDEF algorithm with long enough deadlines is
much shorter than the ordinary queuing and EDF algorithms;
(2) The number of errors in the IDEF algorithm with dead-
lines is far less than the ordinary queuing and EDF algo-
rithms. Therefore, the IEDF algorithm proposed in this paper
can effectively reduce the waiting time and the number of
errors, thereby reducing the number of abandoned tasks, and
better ensuring the real-time performance of the system.

VI. CONCLUSION
In this paper, we present the IEDF scheduling algorithm,
which is more suitable for the scheduling of real-time embed-
ded system. Then, we provide the model description of IEDF
scheduling algorithm. The IEDF scheduling algorithm is
based on the EDF (Earliest Deadline First) algorithm. But
the IEDF algorithm can be applied to non-periodic and ran-
domness tasks, it is more universal than the universality of
EDF algorithm. Finally, in order to analyze the relationship
of various time performance indicators during the process
of task execution in real-time embedded system, we add

the queuing theory into the IEDF scheduling algorithm.
The experiment shows that the IDEF scheduling algorithm
can effectively reduce the waiting time and the number of
errors and better ensure the real-time performance of the
system. These conclusions will have some reference value for
tasks scheduling for embedded systems software. However,
the IEDF algorithm running on a periodic server remains to
be further studied.

REFERENCES
[1] R. I. Davis, S. Altmeyer, L. S. Indrusiak, C.Maiza, V. Nelis, and J. Reineke,

‘‘An extensible framework for multicore response time analysis,’’ Real-
Time Syst., vol. 54, no. 3, pp. 607–661, Jul. 2018.

[2] X. Liu, X. Chen, and F. Kong, ‘‘Utilization control and optimization of
real-time embedded systems,’’ FNT Electron. Design Autom., vol. 9, no. 3,
pp. 211–307, 2015.

[3] W. Bo, B. X. Ying, and C. W. Guang, ‘‘Temporal defect detection
of embedded software using timed execution trace,’’ Chin. J. Comput.,
vol. 40, no. 12, pp. 3–25, Dec. 2017.

[4] C.-W. Chang, J.-J. Chen, T.-W. Kuo, and H. Falk, ‘‘Real-time task schedul-
ing on island-based multi-core platforms,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 2, pp. 538–550, Feb. 2015.

[5] X.-F. Meng and X.-Y. Zhang, ‘‘Parallel task scheduling strategy with
multi-objective constraints in P2P,’’ Comput. Integr. Manuf. Syst., vol. 14,
no. 4, pp. 761–766, 2008.

[6] Z. Qingbing, L. Yu, and H. Ming, ‘‘Method for evaluating reliability of
cyber-physical systems online basedon machine learning,’’ Comput. Eng.
Appl., vol. 50, no. 10, pp. 128–130, 2014.

[7] A. De Matos Pedro, D. Pereira, L. M. Pinho, and J. S. Pinto, ‘‘Logic-
based schedulability analysis for compositional hard real-time embedded
systems,’’ SIGBED Rev., vol. 12, no. 1, pp. 56–64, Mar. 2015.

[8] N. C. Kumar, S. Vyas, R. K. Cytron, C. D. Gill, J. Zambreno, and
P. H. Jones, ‘‘Hardware-software architecture for priority queue manage-
ment in real-time and embedded systems,’’ Int. J. Embedded Syst., vol. 6,
no. 4, p. 319, 2014.

[9] V. A. Fajardo and S. Drekic, ‘‘Waiting time distributions in the preemptive
accumulating priority queue,’’ Methodol. Comput. Appl. Probab., vol. 19,
no. 1, pp. 255–284, Mar. 2017.

[10] V. Muliukha, A. Ilyashenko, O. Zayats, and V. Zaborovsky, ‘‘Preemptive
queueing system with randomized push-out mechanism,’’ Commun. Non-
linear Sci. Numer. Simul., vol. 21, nos. 1–3, pp. 147–158, Apr. 2015.

[11] C. L. Liu and J. W. Layland, ‘‘Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,’’ J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[12] T. Park and S. Kim, ‘‘Dynamic scheduling algorithm and its schedulability
analysis for certifiable dual-criticality systems,’’ in Proc. 9th ACM Int.
Conf. Embedded Softw. (EMSOFT), 2011, pp. 253–262.

[13] M. Mahdiani and A. Masrur, ‘‘On bounding execution demand under
mixed-criticality EDF,’’ in Proc. 26th Int. Conf. Real-Time Netw.
Syst. (RTNS), 2018, pp. 170–179.

[14] L. Santinelli, D. Doose, G. Durrieu, F. Boniol, C. Lesire-Cabaniols,
and C. Grand, ‘‘Schedulability analysis for mixed critical cyber physi-
cal systems,’’ in Proc. IEEE Ind. Cyber-Phys. Syst. (ICPS), May 2018,
pp. 297–303.

[15] A. Burns and R. Davis, ‘‘Mixed criticality system—A review,’’ 12th ed.
Dept. Comput. Sci., Univ. York, U.K., Tech. Rep., Mar. 2019.

[16] S. Ting-na, C. Zheng-wei, and F. Hong-wei, ‘‘Extension EDF fuzzy
scheduling for tasks with uncertain characteristics in networked control
system,’’ J. Tianjin Univ., vol. 8, pp. 690–694, Aug. 2011.

[17] D. Strzȩiwilk and W. M. Zuberk, ‘‘Modeling and performance analysis
of priority queuing systems,’’ in Proc. Comput. Sci. On-Line Conf., 2018,
pp. 302–310.

[18] P. Jayarajan, R. Maheswar, V. Sivasankaran, D. Vigneswaran, and
R. Udaiyakumar, ‘‘Performance analysis of contention based priority
queuing model using N-policy model for cluster based sensor net-
works,’’ in Proc. Int. Conf. Commun. Signal Process. (ICCSP), Apr. 2018,
pp. 229–233.

[19] C. Kai, W. Jie, and Z. Kuanjiu, ‘‘Reliability of interrupt services for
embedded systems,’’ J. Tsinghua Univ. (Sci. Technol.), vol. 56, no. 8,
pp. 878–884, 2016.

VOLUME 8, 2020 20065



Y. Wang et al.: Research on Real-Time Embedded Software Scheduling Model Based on EDF

YINGJIE WANG was born in 1977. She received
the M.E. degree from Yanshan University, China,
in 2004. She is currently pursuing the Ph.D. degree
with the School of Software, Dalian University
of Technology. She is currently an Associate
Professor with the College of Information Engi-
neering, Dalian University. Her current research
interests include software engineering and trust-
worthy software.

KUANJIU ZHOU was born in 1966. He received
the B.E. and M.E. degrees in computer soft-
ware and the Ph.D. degree in management engi-
neering from the Harbin Institute of Technology.
He is currently a Professor with the Software
School, Dalian University of Technology. His cur-
rent research interests include formal methods,
software engineering, and trustworthy software.

ZUMIN WANG was born in 1975. He received
the M.E. degree in mechanical manufacturing and
automation from the North University of China,
in 2004, and the Ph.D. degree in physical elec-
tronics from the Chinese Academy of Sciences,
in 2007. He is currently a Professor with Dalian
University, since 2014. His current research inter-
ests include wireless sensor networks, the Internet
of Things, and smart city.

MINGCHU LI was born in 1963. He received the
B.S. degree in mathematics from Jiangxi Normal
University, in 1983, the M.S. degree in applied
science from the University of Science and Tech-
nology, Beijing, in 1989, and the Ph.D. degree
in mathematics from the University of Toronto,
in 1997. He was an Associate Professor with the
University of Science and Technology, Beijing,
from 1989 to 1994. He was involved in research
and the development of information security with

Longview Solution Inc., and Compuware Inc., from 1997 to 2002. Since
2002, he has been a Full Professor with the School of Software, Tianjin
University. He has been with the School of Software Technology, Dalian
University of Technology, as a Full Professor, a Ph.D. Supervisor, and the
Vice Dean. His main research interests include theoretical computer science
and cryptography. His other research interests include graph theory, network
security, and game theory.

NAN CHEN was born in 1998. He is currently pur-
suing the bachelor’s degree in computer science
and technology with the School of Information
Engineering, Dalian University.

BIN LI was born in 1996. He received the
bachelor’s degree from Dalian University, China,
in 2019. He is currently pursuing the master’s
degree with the School of Software Engineering,
University of Science and Technology.

HONGXUAN TIAN was born in 1998. He is cur-
rently pursuing the bachelor’s degree in computer
science and technology with the School of Infor-
mation Engineering, Dalian University.

20066 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	MODEL DESCRIPTION
	MODEL IMPLEMENTATION
	EXPERIMENTS
	CONCLUSION
	REFERENCES
	Biographies
	YINGJIE WANG
	KUANJIU ZHOU
	ZUMIN WANG
	MINGCHU LI
	NAN CHEN
	BIN LI
	HONGXUAN TIAN


