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ABSTRACT Rapidly-exploring Random Trees (RRTs) are successful in single-query motion planning
problems. The standard version of RRT grows a tree from a start location and stops once it reached the
goal configuration. RRT-Connect is the bidirectional version of RRT, which grows two trees simultaneously.
These two trees try to establish a connection to stop searching. RRT-Connect finds solutions faster than
RRT. Following that, an asymptotically optimal version of RRT-Connect called RRT*-Connect has been
introduced. It not only rewires both trees while they are growing, but also it keeps searching the state space
for better solutions than the current one. However, it is inefficient and inconsistent to search all over the
state space in order to find better solutions than the current one concerning its single-query nature. The
better way is to look through states that can provide a better solution. In this paper, we propose Informed
RRT*-Connect, which is the informed version of RRT*-Connect that uses direct sampling after the first
solution found. Unlike RRT*-Connect, the proposed method checks only the states that can potentially
provide better solutions than the current solution. The proposed method benefited from the properties of
RRT*-Connect and informed sampling, which offers low-cost solutions with fewer iterations in comparison
to RRT*-Connect. Different simulations in OMPL have been carried out to show the significance of Informed
RRT*-Connect in comparison with RRT*, Informed RRT*, and RRT*-Connect.

INDEX TERMS Motion planning, path planning, RRT, RRT-Connect, RRT*, RRT*-Connect, informed
sampling.

I. INTRODUCTION
Motion planning problems have various applications such
as Self-driving cars, Unmanned Aerial Vehicles (UAVs),
medical surgery, computational biology, graphics animation
and virtual prototyping [1]–[7]. Motion planners are mostly
divided into two groups: graph-based and sampling-based
methods. Graph-based methods like Dijkstra’s algorithms [8]
and A* [9] discretize the configuration space first and then
search through the states. They are resolution complete meth-
ods so they can return the solution if one exists or they return
failure if no path exists. However, they cannot be scaled well
with the problem size, such as state dimension or problem
range [10].
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On the other hand, sampling-based methods such as
Expansive Space Trees (ESTs) [11], Probabilistic Roadmap
(PRMs) [12] and Rapidly-exploring Random Trees (RRTs)
[13] use random sampling to avoid constructing a graph
of the configuration space. They have shown practically a
significant impact upon the high-dimensional state spaces.
They are probabilistically complete, which indicates that the
planner will return a solution with a sufficient number of
iterations if there is any solution.

Among randomized methods, RRTs [13] have shown a
significant performance for single-query planning problems.
The standard version of RRT grows as an incremental tree
rooted in the start configuration over the collision-free portion
of the state space. It stops growing the exploring tree once it
spotted one vertex in the goal configuration. The dual-tree
version of RRT, RRT-Connect [14], is able to find solutions

19842 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-5831-2598
https://orcid.org/0000-0003-4894-0838
https://orcid.org/0000-0001-8414-2708
https://orcid.org/0000-0003-4324-8965
https://orcid.org/0000-0002-9549-2540
https://orcid.org/0000-0002-0726-4979


R. Mashayekhi et al.: Informed RRT*-Connect: Asymptotically Optimal Single-Query Path Planning Method

faster than RRT, especially when the goal location is chal-
lenging to reach regarding the presence of tight passages
that the planner has to pass through them to find solutions.
RRT-Connect is incrementally growing two trees simultane-
ously, one from the start location, while another from the
goal configuration. These two trees try aggressively to find a
connection. The planner stops exploring the state space when
a connection between its two trees established.

Nevertheless, RRT and RRT-Connect cannot return opti-
mized solutions due to the lack of optimization process.
In order to solve this problem, Karaman and Frazzoli intro-
duced RRT* [15], which explores the state space similar to
RRT, but it optimizes the tree by rewiring its branches to
achieve near-optimal solutions. RRT* keeps searching the
state space after the first solution has been found to return
better paths. RRT*-Connect [16] combines RRT-Connect
with RRT* to have a bidirectional method which returns
near-optimal solutions. Like RRT*, RRT*-Connect keeps
searching all over the area in order to return a better solution
than the current one.

Although RRT* and RRT*-Connect return near-optimal
solutions, they look through all states to optimize their paths.
However, it is not an efficient way to decrease the path cost.
In [10], [17], Gammell et al. demonstrated that the effective-
ness of the existing approaches diminishes factorially with
the dimension of the configuration space. Therefore, they
introduced Informed RRT*, which uses informed sampling
on RRT* after a first solution is found. Informed sampling
goes through a subset of the configuration space that can
provide better solutions. However, Informed RRT* has the
problem of other unidirectional tree planners, which is taking
time to reach goal configuration, especially when the goal
configuration hidden behind narrow passages.

In this paper, we introduce a single-query bidirectional
planning method for optimal motion planning problems
called Informed RRT*-Connect. Informed RRT*-Connect
behaves as RRT*-Connect until a first path is found, after
which the proposed method only takes samples from the
subset of states that may improve the solution. Like other
asymptotically optimal versions of RRTs, Informed RRT*-
Connect and RRT*-Connect keep exploring the state space
to return near-optimal solutions after the first solution found.
However, they are acting differently after a first solution is
found. RRT*-Connect look through all over the collision-free
part of the state space, while Informed RRT*-Connect search
is limited to an ellipsoid subset of the state space which
its eccentricity depends on the length of the shortest cur-
rent solution. Limiting states to a subset gives the ability
to the planner to return near-optimal solutions with fewer
iterations.

The remainder of the paper is organized as follows.
Section II presents the necessary background for the paper,
including motion planning definition, informed set and
related literature. Section III introduces the proposed method.
Section IV presents the simulation and Section V evaluates
the simulation’s results. Section VI concludes the paper.

II. BACKGROUND
In this section, the necessary background for the paper is
presented. It first explains the problem definition. Then,
the description of the informed set is presented. Afterwards,
all RRT-based methods that are related to this work are
explored.

A. PROBLEM DEFINITION
We define the optimal motion planning problem similarly to
[10], [15], [16]. Let X be the state space, the states that have
collisions with obstacles is named Xobs ⊂ X . Complement
of Xobs is Xfree = cl ( Xobs), all member states of Xfree are
permissible, where cl (.) is a closed set. Let xstart ∈ Xfree
be the start location and Xgoal ⊂ Xfree be the goal config-
uration. A path defined as a set σ [0, 1] → Xfree such that
σ (0) = xstart and σ (1) ∈ Xgoal .

Let c : 6Xfree → R≥0 be a cost function that assigns a
cost value to all collision-free paths. The cost value is the
parameter of path optimality. Therefore, the optimal motion
planning definition is to search for a path that connects
xstart to xgoal ∈ Xgoal , while minimizing the cost function.
Equation 1 shows the definition of optimized paths.

σ ∗ = argσ∈6min{c (σ ) | σ (0) = xstart , σ (1) ∈ Xgoal,

∀s ∈ [0, 1], σ (s) ∈ Xfree} (1)

Xf ⊆ X is a subset of the state space which can provide
better solution cost than the existing one, cbest ,

Xf = {x ∈ X | f (x) < cbest }. (2)

Therefore, planners can increase their convergence rate by
limiting their search on states that belong to Xf .
However, f (·) in (2) is unknown, and it is computationally

complicated to be found. Instead, a heuristic function, f̂ (·),
can be considered as an estimation which must not overes-
timate the actual cost of the path. The definition of f̂ (·) is
similar to (2).

B. INFORMED SET
The definition of the informed set comes from [10], as a
subset of the configuration space that includes states which
could improve the optimality of paths. The cost of the path
from xstart to xgoal , f (x), can be divided into two parts. One is
the cost of the path from xstart to x, g(x), while another is the
path cost from x to xgoal , h(x). In order to have an estimation
of f (·), we need to define the estimation of cost-to-come,
ĝ(·), and the estimation of cost-to-go, ĥ(·).
Euclidean distance is the heuristic for problems that

are looking for the minimum length of paths. Therefore,
the informed subset that can improve the current solution
cost, cbest , can be defined asXf̂ = {x ∈ X | ‖ xstart−x ‖2 + ‖
x − xgoal ‖2≤ cbest }, which is the general equation of an
n-dimensional prolate hyperspheroid. Fig. 1 shows an ellipse
with xstart and xgoal as its focal points, the transverse diameter

is cbest , and the conjugate diameter is
√
c2best − c

2
min, where

cmin is the Euclidean distance between xstart and xgoal .
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FIGURE 1. The estimated subset, Xf̂ , is an ellipse with xstart , and xgoal ,
as its focal points. The ellipse’s size is defined based on the minimum
cost between xstart and xgoal , cmin, and the cost of the current solution,
cbest . The ellipse’s eccentricity is calculated via cmin/cbest .

C. RELATED WORK
There are two types of sampling-based motion planners,
multi-query, and single-query. Single-query planning is about
finding a path between two points in the configuration space
which typically named start and goal configurations, while
multi-query planning is about making a graph over the
collision-free space of the state space in order to connect the
different states of the configuration space.

Rapidly-exploring Random Tree (RRT) [13] is a
single-query approach that incrementally extends a tree from
the start configuration over the collision-free part of the state
space and stops exploring once the tree reached the goal
configuration. Alg. 1 presents the standard version of RRT
in which V , E and G stand for the vertices matrix, the edges
matrix, and the tree, respectively. Sample function returns a
random state. Then the returned sample and the tree will be
passed to Extend in order to extend the tree toward the xrand .

Algorithm 1 RRT Algorithm
1: V ← {xstart };E ← ∅;
2: G← (V , E);
3: for i = 1 to n do
4: xrand ← Sample();
5: Extend(G = (V ,E), xrand );
6: end for
7: return G

Alg. 2 outlines the Extend function which first finds the
nearest tree vertex to xrand , then implements different con-
straints via Steer . If the connection between xnearest and xnew
is collision-free, the new vertex and its edge will be added
to the tree. This function returns three different outputs due
to the status of the new vertex. If xrand is added to the tree,
the function output will be Reached . If xrand is out of tree
reach and another vertex in the direction of xrand but nearer
to the tree is added to the tree, the function’s output will be
Advanced . If, due to the presence of an obstacle, xrand cannot
be added to the tree, the function output will be Trapped .

RRT explores the collision-free part of the state space
rapidly so that this simple but efficient method is successful
for many practical applications. However, RRT has some
problem to sample the goal configuration in some scenarios

Algorithm 2 Extend Function
1: function Extend(G = (V ,E), x)
2: xnearest ← Nearest(G, x);
3: xnew← Steer(xnearest , x);
4: if isCollisionFree(xnearest , xnew) then
5: V ← V

⋃
{xnew};

6: E ← E
⋃
{xnearest , xnew};

7: if (xnew = x) then
8: return Reached;
9: else
10: return Advanced;
11: end if
12: end if
13: return Trapped;
14: end function

in which reaching the goal configuration requires to pass
through one or more narrow passages. Moreover, the path
returned by RRT is non-optimal [15].

To solve this problem, Kuffner and LaValle proposed
RRT-Connect [14], which is a bidirectional version of RRT.
RRT-Connect explores the state space by using dual-tree. One
of these two trees is rooted in the start configuration, while
another is rooted in the goal configuration. These two trees
are growing simultaneously and trying to establish a con-
nection. The planner keeps expanding the trees until a con-
nection established. Alg. 3 demonstrates the RRT-Connect
approach. It initializes its trees and then expands them over
the collision-free part of the state space.

Algorithm 3 RRT-Connect Algorithm
1: Va← {xstart };Ea← ∅;
2: Vb← {xgoal};Eb← ∅;
3: Ga← (Va, Ea); Gb← (Vb, Eb);
4: for i = 1 to n do
5: xrand ← Sample();
6: if Extend(Ga, xrand ) 6= Trapped then
7: if Connect(Gb, xnew) = Reached then
8: return Ga, Gb;
9: end if
10: end if
11: Swap(Ga, Gb);
12: end for
13: return Ga, Gb;

In Alg. 3, the planner first extends Treea and then takes
the newly added vertex, xnew, of Treea and Treeb as inputs
to Connect function. Connect function keeps calling Extend
function in order to link Treeb and xnew of Treea. Connect
function will be stopped when the connection is found
or an obstacle blocks the connection. If Connect function
returns Reached , it means that the trees are now connected.
Therefore, exploring is finished, and the planner will return
the trees.
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Algorithm 4 Connect Function
1: function Connect(G, x)
2: repeat
3: S ← Extend(G, x);
4: until S 6= Advanced;
5: return S;
6: end function

Although RRT-Connect is taking fewer iterations than
RRT to find solutions in many problems, its output remains
non-optimal like RRT’s.

In 2011, Karaman and Frazzoli [15] introduced RRT*,
which is the optimized version of RRT. It guarantees optimal
solutions in which the optimality of solutions is defined based
on the path length. RRT* keeps rewiring the tree to minimize
the cost function.

In other words, RRT* is incrementally rewiring the tree
based on the newly added state to the tree. The newly added
states are considered as replacement parents for other exist-
ing nearby states in the tree. Alg. 5 outlines RRT* proce-
dure, which is similar to RRT, but it calls Extend∗ function
that is the optimized version of Extend function. Extend∗

includes the rewiring procedure, which tries to optimize the
tree vertices near the newly added vertex. Alg. 6 outlines this
procedure.

Algorithm 5 RRT* Algorithm
1: V ← {xstart };E ← ∅;
2: G← (V , E);
3: for i = 1 to n do
4: xrand ← Sample();
5: Extend∗(G, xrand );
6: end for
7: return G

RRT* is returning near-optimal solutions. Nonetheless,
it still holds the problem of unidirectional searches, such as
finding the first solution by consuming time in comparison
with bidirectional methods.

In 2015, Klemm et al. [16] presented the optimized ver-
sion of RRT-Connect. They replaced RRT by RRT* in
RRT-Connect and made RRT*-Connect, which is maintain-
ing both trees during their growth like RRT*. It is fast to
find solutions like RRT-Connect. Moreover, it optimizes its
solution while exploring the state space. Alg. 7 presented the
RRT*-Connect.
Connect∗ function is like Connect function, but Connect∗

calls Extend∗ instead of Extend function.
Although RRT*-based methods obtain near-optimal paths,

they are not consistent according to their single-query nature,
and they become expensive in high dimensions [10]. In order
to minimize the path cost, it is better to look through the
states that can achieve the less path cost. However, it is
computationally expensive to find the states that can provide
better solutions than the first one.

Algorithm 6 Extend* Function
1: function Extend∗(G = (V ,E), x)
2: xnearest ← Nearest(G, x);
3: xnew← Steer(xnearest , x);
4: if isCollisionFree(xnearest , xnew) then
5: V ← V

⋃
{xnew};

6: xmin← xnearest ;
7: Xnear ← Near(G, xnew, rRRT ∗ );
8: cmin← Cost(xnearest , G)

+Cost(Line(xnearest , xnew));
9: for each xnear ∈ Xnear\xnearest do
10: if isCollisionFree(xnear , xnew) &

(Cost(xnear , G)+ Cost(Line(xnear , xnew))
< cmin) then

11: xmin← xnear ;
12: cmin← Cost(xnear , G)

+Cost(Line(xnear , xnew));
13: end if
14: end for
15: E ← E

⋃
{xmin, xnew};

16: for each xnear ∈ Xnear\xmin do
17: if isCollisionFree(xnear , xnew) &

(Cost(xnew, G)+Cost(Line(xnew, xnear ))
< Cost(xnear , G)) then

18: xparent ← Parent(xnear , G);
19: E ← E \ {(xparent , xnear )};
20: E ← E

⋃
{(xnew, xnear )};

21: end if
22: end for
23: if (xnew = x) then
24: return Reached;
25: else
26: return Advanced;
27: end if
28: end if
29: return Trapped;
30: end function

Algorithm 7 RRT*-Connect Algorithm
1: Va← {xstart };Ea← ∅;
2: Vb← {xgoal};Eb← ∅;
3: Ga← (Va, Ea); Gb← (Vb, Eb);
4: for i = 1 to n do
5: xrand ← Sample();
6: if Extend∗(Ga, xrand ) 6= Trapped then
7: Connect∗(Gb, xnew);
8: end if
9: Swap(Ga, Gb);
10: end for
11: return Ga, Gb;

Gammell et al. [10], [17] presented an ellipsoid subset of
the state space, which is an estimation of all states that can
provide better solutions than the existing one. The subset is
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Algorithm 8 Connect* Function
1: function Connect∗(G, x)
2: repeat
3: S ← Extend∗(G, x);
4: until S 6= Advanced;
5: return S;
6: end function

an admissible estimationwhich is not computationally expen-
sive to achieve. They implemented the ellipsoid subset on
RRT* and made Informed RRT*, which uses direct sampling
after the first solution is found. Informed RRT* can achieve
near-optimal solutions faster than the standard version of
RRT*. However, it has the same problem of unidirectional
searches, which is finding the first solution in complex con-
figuration spaces, which only offers narrow passages between
the start and the goal configurations.

III. THE PROPOSED METHOD
In this section, we present the proposed method, Informed
RRT*-Connect, which is an asymptotically optimal dual-tree
RRT-based planner. Informed RRT*-Connect acts like RRT*-
Connect to explore the configuration space before the first
solution is found. Afterwards, it limits the search within an
ellipsoidal subset to return better solutions than the current
one by fewer iterations in comparison to the standard version
of RRT*-Connect.

Algorithm 9 Informed RRT*-Connect Algorithm
1: Va← {xstart };Ea← ∅;
2: Vb← {xgoal};Eb← ∅;
3: Ga← (Va, Ea); Gb← (Vb, Eb);
4: Xsoln← ∅;
5: cbest ←∞;
6: for i = 1 to n do
7: previous_cbest ← cbest ;
8: cbest ← CalculateShortestPathLengh(Xsoln);
9: if cbest < previous_cbest then
10: PruneTree(V , E, cbest );
11: end if
12: xrand ← InformedSample(xstart , xgoal, cbest );
13: if Extend∗(Ga, xrand ) 6= Trapped then
14: Connect∗(Gb, xnew);
15: end if
16: Swap(Ga, Gb);
17: if isSolutionFound(xnew) then
18: Xsoln← Xsoln

⋃
{xnew}

19: end if
20: end for
21: return Ga, Gb;

Alg. 9 outlines the steps of Informed RRT*-Connect
method. It first initializes the algorithm variables such as both
trees, then starts iterating both of them. It starts exploring
the configuration space similarly to RRT*-Connect until a

solution is found. After a solution found, the cost of the
shortest path is calculated by CalculateShortestPathLength
function, and then the returned value of this function will
be stored in cbest . If cbest is getting smaller than its previous
amount, the tree will be pruned based on cbest value. Then,
cbest will be passed to InformedSample function to limit the
search within the informed subset. After taking a sample from
the InformedSample function, the planner starts to extend
treea and try to make a connection between the newly added
vertex and treeb. Afterwards, the two trees will be swapped
for the next iteration. If a new solution is found, it will be
added to the solution matrix, Xsoln.

A. GRAPH PRUNING
Graph pruning is a method that removes some vertices from
the tree in order tomake it smaller so that the planning process
will be carried out faster. Karaman et al. [18] implemented a
graph pruning technique on a version of RRT*, which is able
to improve paths. They calculate the estimated cost of each
vertex as the sum of cost-to-come and estimated cost-to-go.
If the estimated cost is higher than the shortest path’s length,
then the vertex must be removed from the tree; otherwise,
the vertex will remain in the tree. However, the cost-to-come
of the vertices may be getting smaller due to the rewiring
process. As a result, this method may remove vertices that
could potentially provide better solutions.

Gammell et al. [17] uses another heuristic for pruning the
tree. The cost-to-come of a vertex estimated as the Euclidean
distance between xstart and the vertex. Similarly, the cost-to-
go estimated as the Euclidean distance between the vertex
and xgoal . If the estimated cost is smaller than the shortest
path length, then the vertex will not be removed from the tree.
In other words, this method keeps only the vertices that either
itself or one of its children located inside the informed set.
The details of this method is presented in Alg. 10.

Algorithm 10 PruneTree(V ⊆ X , E ⊆ V ×V , cbest ∈ R>0)
1: do
2: Vprune ← {v ∈ V | f̂ (v) > cbest , and ∀w ∈
V , (v,w) /∈ E};

3: E
−
← {(u, v) ∈ E | v ∈ Vprune};

4: V
−
← Vprune;

5: while Vprune 6= ∅;

PruneTree function removes the vertices of the tree which
are not parent of any other vertices and their estimated cost,
f̂ (v) = ĝ(v) + ĥ(v), is greater cbest . These vertices are not
able to provide better solutions than the existing one. In other
words, this function removes the leaves of the tree those have
estimated cost more than cbest .

B. DIRECT SAMPLING OF AN ELLIPSOIDAL SUBSET
The idea of direct sampling of an ellipsoidal subset comes
from [10]. In order to achieve uniformly distributed sampling
inside the ellipsoidal subset Xellipse ∼ U(Xellipse), we can
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transform uniformly distributed samples from unit n-ball to
ellipsoidal subset. Xball ∼ U(Xball), xellipse = Lxball + xcenter ,
where Xcenter = (xf 1 + xf 2)/2 is the center of the hyperel-
lipsoid with its two focal points, xf 1 and xf 2, and Xball =
{x ∈ X | ‖ x ‖2≤ 1} [19].

This transformationwill be calculated by Cholesky decom-
position of the hyperellipsoid matrix, S ∈ Rn×n, LLT ≡ S,
(x − xcenter )T S(x − xcenter ) = 1, S having eigenvectors
corresponding to the axes of the hyperellipsoid, {ai}, and
eigenvalues corresponding to the squares of its radii, {r2i }.
The transformation, L, maintains the uniform distribution
in Xellipse [20].

Therefore, the transformation of Xf̂ can be achieved just
by transverse the radii and axis. The diagonal matrix of the
transverse axis is
S = diag{

c2best
4 ,

c2best−c
2
min

4 , . . . ,
c2best−c

2
min

4 } and decompo-

sition L = diag{ cbest2 ,

√
c2best−c

2
min

2 , . . . ,

√
c2best−c

2
min

2 } where
diag{.} stands for a diagonal matrix.

In order to rotate the hyperellipsoid to the world frame,
the Wahba problem [21] can solve it. The rotation matrix is
calculated by
C = U diag{1, . . . , 1, det(U )det(V )}VT , where det(.)

stands for matrix determinant. U ∈ Rn×n and V ∈ Rn×n

are unitary matrices of U6V T
≡ M through singular value

decomposition. The matrix M is calculated via the outer
product of the first column of the identity matrix, 11, and the
transverse axis on the world frame, a1, M = a11T1 , where
a1 = (xgoal − xstart )/ ‖ xgoal − xstart ‖2 .
Thus, the below formula will calculate the states that

belong to the informed subset. xf̂ = CLxball+xcenter , Alg. 11
presents the informed sampling procedure.

Algorithm 11 InformedSample(xstart , xgoal, cmax)
1: if cmax <∞ then
2: cmin←‖ xgoal − xstart ‖2;
3: xcenter ← (xstart + xgoal)/2;
4: C← RotationToWorldFrame(xstart , xgoal);
5: r1← cmax/2;

6: {ri}i=2,...,n← (
√
c2max − c

2
min)/2;

7: L← diag{r1, r2, . . . , rn};
8: xball ← SampleUnitBall;
9: xrand ← (CLxball + xcenter )

⋂
X;

10: else
11: xrand ∼ U(X );
12: end if
13: return xrand ;

InformedSample function is for sampling the configu-
ration space. If the cbest is not infinity, it means that
a path between xstart and xgoal has already been found.
Therefore, InformedSample must return samples within the
ellipsoid subset. If no path is found, the function does not
limit the configuration space and returns a sample over the
configuration space.

FIGURE 2. Single Cube configuration space, (a), has an obstacle located
at the center of the configuration space, and the width of the obstacle is
a random variable uniformly distributed over the range [0.25, 0.5].
(b) shows Multiple Narrow Passages configuration space, which only
offers planners to pass through three gaps between xstart and xgoal to
produce solutions.

C. REWIRING NEIGHBORHOOD
RRT*-Connect is rewiring the neighbor vertices of new states
so that it almost-surely converges asymptotically to the opti-
mum solution. There are two types of definitions for the
neighborhood in a tree structure: r-disc variant and k-nearest
variant.

1) r-DISC VARIANT
In this definition, all vertices which are located within a
radius, r∗RRT∗−Connect will be considered as the neighbors.

r∗RRT ∗−Connect :=
(
2
(
1+

1
n

)(
λ(X )
ζn

)(
log(|V |)
|V |

)) 1
n

(3)

where | · | is the cardinality of a set, the Lebesgue measure of
an n-dimensional unit ball and the Lebesgue measure of a set
are shown by ζn and λ(·), respectively.

Informed RRT*-Connect searches the state space to find a
solution. Then, the search will be limited to a subset of the
configuration space so that the rewiring will be a function of
the number of vertices in the informed set, |V ∩ Xf̂ |, and its
measure,

λ
(
Xf̂

)
≤ min{λ(X ), λ(Xsubset )}.

Thus, r∗RRT ∗−Connect will be updated as

r∗RRT ∗−Connect ≤
(
2
(
1+

1
n

)(
min{λ(X ), λ(Xsubset )}

ζn

)

×

 log
(∣∣∣V ∩ Xf̂ ∣∣∣)∣∣∣V ∩ Xf̂ ∣∣∣


1
n

(4)

2) k-NEAREST VARIANT
In this definition, the near neighbor set includes k closest
vertices to the new vertex.

k∗RRT ∗−Connect := e
(
1+

1
n

)
log(|V |). (5)
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FIGURE 3. One run of RRT*-Connect and Informed RRT*-Connect in the
Single Cube scenario shown when the obstacle width is 0.5, and
1/dgoal = 2. (a), (b), and (c) show RRT*-Connect’s trees, while (d), (e), and
(f) demonstrate the trees obtained from Informed RRT*-Connect.

FIGURE 4. The median time required by Informed RRT*-Connect and
RRT*-Connect to find solution cost within 2% of the optimal path cost for
different amounts of l/dgoal in Single Cube scenario obtained from
100 runs. Error bars demonstrate a nonparametric 95% confidence
interval for the median time. It can be seen that Informed sampling
performs best comparatively when the distance between xstart and xgoal ,
dgoal , is much shorter than the size of the configuration space, l .

Similar to r-disc for Informed RRT*-Connect, the
k∗RRT ∗−Connect will be updated as

k∗RRT ∗−Connect := e
(
1+

1
n

)
log

(∣∣∣V ∩ Xf̂ ∣∣∣) . (6)

If the subset contains less number of vertices in comparison
to the whole configuration space, then the rewiring neigh-
borhoods of the Informed RRT*-Connect (4) and (6) will
be smaller than (3) and (5). Therefore, the planner requires
less computational time for the rewiring process. As a result,
its performance will be improved. However, if the distance
between xstart and xgoal be relatively big, then the informed
set is not limiting the rewiring neighborhoods consider-
ably so that Informed RRT*-Connect and RRT*-Connect act
similarly.

RRT*-Connect is a probabilistic complete and almost-sure
asymptotically optimal planner. Informed RRT*-Connect

FIGURE 5. One example of the trees and solution paths obtained by the
planners in Multiple Narrow Passages scenario.

FIGURE 6. The median time required by the planners to find solution cost
within 2% of the optimal path cost for different gap sizes in Multiple
Narrow Passages scenario obtained from 100 runs. Error bars denote a
nonparametric 95% confidence interval for the median time.

acts exactly like RRT*-Connect for the first solution so that
it is probabilistically complete. Moreover, Informed RRT*-
Connect maintains a uniform sample distribution over the
ellipsoid subset, in which it implements rewiring that sat-
isfies the bound mentioned in [15]. Therefore, it is also
almost-surely asymptotically optimal motion planner.

IV. SIMULATION
Informed RRT*-Connect was evaluated on simulated prob-
lems in R2, R3, and R6 using Open Motion Planning Library
(OMPL) [22]. The simulations carried out on a laptop with
the Intel Core i7-6700HQ processor and 12GB of RAM.
The laptop operating system was Ubuntu 16.04. Informed
RRT*-Connect has been compared with RRT*-Connect,
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FIGURE 7. The three OMPL App scenarios which have been tested in the simulation section. (a) is a 3DoFs configuration space, while (b) and (c) are
6DoFs problems.

RRT*, and Informed RRT* on different scenarios in order to
demonstrate the significance of the proposed method over the
existing planners.

The first two simulations configuration spaces are shown
in Fig. 2. These two simulations are simple which designed
for 2 Degree of Freedoms (DoFs) problems. The rest of the
simulations are the configuration spaces provided by OMPL
App. They are shown in Fig. 7. Maze planar configuration
space. Fig. 7a, is a 3D problem, while Home, Fig. 7b, and
Apartment, Fig. 7c, are 6D problems.

The planners were run 100 times in each scenario in order
to get the median of their results.

A. SINGLE CUBE
The idea of this simulation comes from [10], which designed
to examine the impact of informed sampling in relation to
the size of the map and distance between xstart and xgoal .
This simulation includes an obstacle located in the center of
the configuration space, which is a square with a randomly
selected width between [0.25, 0.5]. The Single Cube map
is shown in Fig. 2a, in which the distance between xstart
and xgoal is shown as dgoal , and the length of map is shown
as l. The simulation has been carried out for different val-
ues of l/dgoal . Fig. 3 demonstrates the trees obtained from
RRT*-Connect and Informed RRT*-Connect in this scenario.

The results obtained from 100 independent runs in Fig. 4
shows that Informed RRT*-Connect and RRT*-Connect,
both found solutions at almost the same time when dgoal was
equal to l, while at the smallest ratio, 4, Informed RRT*-
Connect was about ten times faster than RRT*-Connect.

B. MULTIPLE NARROW PASSAGES
This simulation has been carried out to examine the ability
of planners to find paths in the problems that offer only
narrow passages. Fig. 2b shows the configuration space of
Multiple Narrow Passages, in which there are three barriers
in the middle of the configuration space. Each barrier has a
slight passage with the height that shows as dgap. All these

passages have the same height. In order to solve this problem,
the planner has to pass through all the three gaps to connect
the xstart and xgoal configurations together. This simulation
has been carried out on the different heights of the passages so
as to examine the effect of the passage height on the planners.
The gap height in this simulation starts from 2% of the map
height, l, and getting smaller until 0.001325% of l. One run
of each planner is shown in Fig. 5.

For each gap height, the planners solved the problem
100 times, and their obtained results are shown in Fig. 6.
It can be seen that the four planners needed approximately
the same time to solve the problem when the gap per-
centage is equal to or bigger than 0.25%. However, they
needed a different amount of time to find solutions for
smaller gap height. Informed RRT*-Connect took the least
time to return solutions among all planners. Informed RRT*
was the second-fastest until the gap percentage was bigger
than 0.001325% in which RRT*-Connect acted faster than
Informed RRT* to return near-optimal solutions.

C. OMPL APP SIMULATIONS
OMPL App is a front-end for OMPL, contains several con-
figuration spaces and rigid body robots. We have used some
of its configuration spaces, including 3D and 6D problems.
The selected configuration spaces that have been tested in this
paper are shown in Fig. 7.

1) MAZE PLANAR
Maze Planar, Fig. 7a, is one of the OMPL App configuration
spaces that has been designed for problems with 3DoFs, two
real vectors (x-axis and y-axis) and rotation. The rigid body
on the left side is the start pose, the red-colored shape, while
the rigid body on the right side is the goal pose.

2) HOME
Home is a configuration space that has been designed for
problems with 6DoFs (3 coordinate planes (x, y, z) and their
rotations (roll, pitch, yaw)). Fig. 7b shows this configuration
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FIGURE 8. The success rate versus time of the four planners on OMPL
App configuration spaces.

space in which the table on the right side is the start pose,
while the table on the left side shows the goal pose. In order to
find near-optimal solutions, the planners have to pass through
the windows located between the start pose and the goal pose.

3) APARTMENT HARD
The last simulation is named ‘‘Apartment Hard’’ by OMPL
App developers, shown in Fig. 7c, in which start pose is the
piano located on the left side of the map in the hall, while
goal location is the piano which hidden beyond the kitchen
walls on the right side of the map. To find near-optimal

FIGURE 9. The path length versus time of planners for different OMPL
App configuration spaces. Error bars denote a nonparametric 95%
confidence interval for the median path length.

solutions, the planners need to pass the piano through the
kitchen door.

V. EVALUATION
We present the evaluation of simulation in this section. First
simulation, Single Cube scenario’s goal is to show how the
informed set acts on different map sizes. Fig. 4 shows that
when the distance between xstart and xgoal is equal to the
configuration space length, l, both planner acts similarly.
It is due to the fact that when the distance between xstart
and xgoal is relatively big and the subset almost covers all
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over the configuration space so that Informed RRT*-Connect
search area is not limited to a small portion of the configura-
tion space. Therefore, Informed RRT*-Connect is acting like
RRT*-Connect in these kinds of scenarios. In contrast, when
the distance of xstart and xgoal is getting smaller, the time
taken for the Informed version is significantly smaller (up to
10 times) than the standard version of RRT*-Connect.

The second simulation, which is about finding paths in
a configuration space that only offers narrow passages to
connect xstart and xgoal shows that dual-tree searches work
better than the single-tree methods. It is shown that Informed
RRT*-Connect acts better than Informed RRT*. Similarly,
RRT*-Connect found paths faster than RRT*. Moreover,
when the gap size was only 0.001325% of the map length,
the tightest gap, RRT*-Connect worked faster than not only
RRT* but also Informed RRT*. Informed RRT*-Connect
worked as the fastest motion planner in all the gap sizes.

OMPL Apps configuration spaces’ results are shown in
Fig. 8 and Fig. 9. The success rate graphs, Fig. 8, show
that the bidirectional searches, RRT*-Connect and Informed
RRT*-Connect, are more successful than the unidirectional
searches, RRT* and Informed RRT*. It is the significance
of bidirectional planners over the unidirectional planners that
are able to find solutions faster than unidirectional planners.
It is also noticeable that Informed version of each planner
work similar to the standard version in term of success rate.
It is due to the fact that the informed version and the standard
version act similarly before the first solution is found.

Informed RRT*-Connect and RRT*-Connect were able to
achieve above 90% success in all three simulations, while
Informed RRT* and RRT* were only able to achieve approx-
imately 85%, 70%, and 5% in Maze Planner, Home, and
Apartment Hard scenarios, respectively. Therefore, bidirec-
tional searches are preferable for motion planning problems
in which success in a limited time is essential.

Fig. 9 demonstrates the path length vs time in OMPL
App configuration spaces achieved by the planners. In Fig. 9a
and Fig. 9b, it can be seen that Informed versions of the plan-
ners produced better results in comparison with the standard
versions. RRT* and Informed RRT* were not able to find
solutions in Apartment Hard scenario so that for the path
length graph, Fig. 9c, RRT*-Connect and Informed RRT*-
Connect were shown. Informed RRT*-Connect was the most
successful planner in terms of success rate and path length.

VI. CONCLUSION
This paper presented a new motion planner that combines
the ability to quickly finding the first solutions from RRT*-
Connect with the capability of quickly returning near-optimal
solutions from Informed RRT*. Although RRT*-Connect is
a fast path planner in terms of finding solutions, it scans all
over the configuration space to return better solutions than the
existing one like RRT*, which is not efficient, especially in
high-dimensional problems.

The proposed method, Informed RRT*-Connect, not only
find its first solutions as fast as RRT*-Connect, which is

faster than single-tree based methods but also it returns
near-optimal solutions quicker than RRT*-Connect. It is
achieved by limiting the configuration space into an ellipsoid
subset, which depends on the location of the start configu-
ration, the goal configuration, and the length of the shortest
path.

We have successfully demonstrated that the proposed
method found first solutions similar to RRT*-Connect in the
simulations, and it returns near-optimal solutions faster than
the existing planners.

These properties make the proposed method suitable for
the motion planning problems in which optimal solutions
must be obtained with a limited number of iterations and/or
in a limited time slot.
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