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ABSTRACT In distributed cloud manufacturing (CMfg) systems, multi-resource service can complete
more complex manufacturing tasks than single resource service. Especially in business process, all the
resource services are invoked in a certain sequence, which is called the Resource-Service Chain (RSC).
The RSC, as a sequential composition of resource services, expresses the scheduling and the flow of
servicing to a distributed business process. A perfect composition can improve utilization ratio and efficient
matching availability of resource services greatly. However, most of the existingmethods for resource service
composition paid no attention to the temporal relationship between resource services. Moreover, the methods
strongly depend on relevant element to be considered. Inspired by biological evolution, a Resource-Service
Chain Composition Evolutionary (RSCCE) algorithm is proposed. Specifically, RSCCE tries to findmultiple
optimal solutions, namely all RSCs in a workflow with given constraints. To begin, initial sets of composite
resource service are resolved by calculating the degree of dependency between resource services, so as
to obtain initial RSCs by workflow. Then, RSCCE algorithm applies genetic algorithm to search for the
extended of each initial RSC, a longer chain composing of it, to improve the reuse of RSC. Under this
approach, gene and chromosome represent resource service and the entire RSC respectively. If the propagated
chromosomes violate the sequence of resource service, as constraint in RSCCE algorithm, they will be
repaired to obtain a valid solution. Finally, we take a multi-enterprise collaborative business process as an
example to simulate our approach. Experimental results confirm the effectiveness of the approach.

INDEX TERMS Distributed cloud manufacturing, resource-service chain, composition, evolutionary
algorithm, business process.

I. INTRODUCTION
Cloud Manufacturing (CMfg) is a new distributed network
manufacturing supplying all kinds of manufacturing ser-
vices on demand. All dispersed and diverse manufacturing
resources from different enterprises are encapsulated into
cloud services, organized and integrated into CMfg ser-
vice platform under the support of distributed computing
and cloud computing and Internet of Things technologies.
Accordingly, the resource services can be managed and
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operated in an intelligent and unified way, can be provided
to users in a united and centralized way to enable full shar-
ing and circulation of manufacturing resources and capabili-
ties [1]–[3].

In order to complete more complex manufacturing tasks,
existing single resource services should be organized as com-
posite resource service (CRS), being invoked as a whole,
to provide more efficient and better value-added resource
services [4] and integrate enterprises [5], [6]. For exam-
ple, in a collaborative design and manufacturing processes
of electrical apparatus, the task hardware design in the
business process needs a CRS composed of three single
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FIGURE 1. Collaborative design and manufacturing processes of electrical
apparatus.

resource services, as shown in Fig. 1. This is called resource
service composition. However in CMfg, massive and var-
ious manufacturing resources are published by enterprises
of different domains, including hardware, software, human
resources, data and information, etc. CRS should satisfy the
requirements of different industrial features [4]. In view of
these facts, business process, as functional representation to
responsibility scope of domains, should be taken into consid-
eration in resource service composition at least.

The researches on resources composition for distributed
computing systems primarily concentrate on concept and
method, despite of a relatively long history of manu-
facturing modes, including distributed manufacturing, dis-
persed network manufacturing, virtual enterprises and cloud
manufacturing/manufacturing-as-a-service [7], [8]. Of all
the existing methods for resource service composition,
agent-based methods have been used for resource composi-
tion, in which agent is regarded as integration of resource and
behavior to provide CRS [9], [10]. Semantics-based compo-
sition are very different approach to the above, in which appli-
cations of ontology have been found in describing resources
services [11]–[13], in describing semantic Web service com-
positions [14], and in modeling manufacturing resource
holons [3]. In [13], web services are invoked to compose the
domain web services. In [14], Ontology Web Language for
Services (OWL-S) described the properties and capabilities
of services in an unambiguous computer-interpretable form.
The approaches that are based on QoS (Quality of Service)
are proposed to solve resource composition [7], [15]–[17].
Their main purpose is for optimal allocation and optimal
selection of various manufacturing resources and capabil-
ities, using the business or non-functionality indicators of
QoS. In addition to the approaches, a Petri Net based
model [14], [18], a graph-based model [19], a formal privacy
model [20] and a Hidden Markov Model [21] are also used
for resource composition.

Other than the above, it should be noted that some of the
existing researches have already taken composite sequence

into consideration, that is to say, constructing CRS which
composed of resources in invoked sequence. In [4], [15]
and [17], the optimal resource services are selected from
candidate resource services according to QoS indicators, and
then composed following certain sequence. In [22], a rec-
ommendation of service chains was proposed. Another kind
of composition is for the purpose of detecting a business
anomaly [23] and correlation coefficient matching [24].

However, as described above, current works on resource
composition are mainly based on agents, semantics, QoS and
model. The resource service composition they considered
more was a kind of spatial integration, but more attention
was not paid to sequential composition. Generally, CMfg
service platform uses workflow technology to achieve cloud
manufacturing resources rapid sharing and efficient coordina-
tion [25]. However, workflow model do not capture when a
given resource allocated to a task will be available at runtime.
Consequently all resources have to be kept available until the
end of the business process. This leads to an inefficient use
of resources. Therefore, resource composition should be the
perspective of the scheduling and the flow of services to a
business process. As resources aremore variable and dynamic
in distributed manufacturing environment, if some of them
become unavailable after a business process has started, users
still have chance to reselect or reschedule the succeeding
resource services in RSCs before the related task starts.

If resource services are invoked in a certain sequence,
they form a chain of resource services, called the Resource-
Service Chain (RSC). We call this problem resource service
chains composition (RSCC). RSCC is to find the optimal
RSCs from resource services invoked by business process,
depending on the inter-dependencies between resource ser-
vices, not on others factors beyond workflow model, such
as QoS indicator. Therefore, RSCC, as a key technology
for resource selection and resource service recommendation,
should be a more general approach, and has not been ade-
quately addressed.

With the consideration of the above problems and situa-
tions, inspired by biological evolution, a newmethod, namely
resource-service chain composition evolutionary (RSCCE)
algorithm is proposed to resolve the composition of RSC in
CMfg. The problem of identifying RSC, which is the most
efficiency in execution, is an optimizing searching problem.
We use genetic algorithm (GA) to resolve the potential and
available RSCs, which satisfy the sequence constraints of
workflow. In our evolutionary algorithm, all possible RSCs
fromworkflowmodel are encoded in chromosome. The com-
position of RSC strategy is divided into two stages, building
initial RSC and optimization of extended RSC. At the first
stage, we resolve CRSs with high dependencies according
to task-related dependencies between resource services in a
workflow by a statistical algorithm, and obtain the initial
RSCs by workflow model. At the second stage, to improve
the reuse of RSC, we resolve the extended RSC by our evo-
lutionary algorithm RSCCE, which can evolve chromosomes
with different lengths.
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The rest of the paper is organized as follows. In Section II,
we describe the characteristics of the RSCC that we are
addressing. The formulation of RSCC problem is also
described for resolving the RSCs. The composition of RSC
strategy and an algorithm supporting it are also presented.
Section III presents the RSCCE in detail. The RSCCE has
been evaluated using different data sets. The evaluation crite-
ria, the design of the experiments and the results are presented
in Section IV. Finally, in Section V, we present a summary and
discuss what we intend to do as future work.

II. PROBLEM FORMULATION
A. FEATURE OF MANUFACTURING RESOURCE SERVICES
Cloud manufacturing aims to perform large-scale collabora-
tion for complex manufacturing by sharing distributed man-
ufacturing resources. Resources are encapsulated as cloud
services and deployed to the cloud service platform, where
manufacturing resources can be shared and accessed by het-
erogeneous applications. Workflow technology, as a standard
solution for business process management, is widely used to
integrate distributed tasks and resource services [1]. There-
fore in CMfg system, RSC is the sequence in which resource
services are used by workflow.

Before introducing the RSCC problem, an example is
presented to illustrate the method, as shown in Fig. 1. The
process collaborative design and manufacturing processes of
electrical apparatus, as a classic example of inter-enterprise
collaboration, is presented. The process has to be executed
by invoking several resource services, including machine
part delivery services, power supply services, various design
services and human resource services, etc. Some tasks need
more than one resource service. For example, the task hard-
ware design needs product design scheme service, hard-
ware designer service and hardware data service. These three
resource services can be composed as a CRS, which is only
a composition without considering sequences between them,
to complete any task hardware design in another similar
business processes. Along with the execution of a workflow
instance, sequence between CRSs is formed resulting from
temporal orders between resource services invoked by tasks.
Also as it is possible that one resource service is invoked
by different tasks in workflow, maybe there exist ‘‘shorter’’
sequences in a CRS. Therefor what we pay more attention
is not only CRS, but also the sequences in CRS, even those
in the entire workflow. In the example, the resource service
design scheme service and hardware data service are invoked
by the succeeding task product assembling. RSCC problem is
to find all RSCs, each of which describes the temporal order
of single resource services.

B. PROBLEM STATEMENT
Workflow can be considered as a technical context of business
process. Workflow model is used to prescribe the execution
precedence of tasks. However what we emphasize is the
inter-enterprise collaboration in CMfg. By analyzing above,

FIGURE 2. Resource service chain in workflow.

any workflow served to one of enterprises is a part of entire
workflow, so that as a whole, all these workflows execute
in sequence or parallel model. This is the design consider-
ation for our method. Formally, workflow can be defined as
follows.
Definition 1: workflow. A workflow Wf, is a 4-tuple <id,

Task, ≺, RS>, reflecting the execution of a manufacturing
process, where id is a unique identifier of the workflow, Task
is a set of tasks,≺ is a temporal order between tasks such that
for any tasks tp, tq ∈Task, tp ≺ tq indicates that tp is executed
before tq, i.e tp precedes tq in a workflow instance. RS is a set
of resource services andRS=RS1∪RS2. . .∪RSn, in whichRSi
⊆RS is a set of resource services invoked by task ti.
When a workflow is started, a resources service sequence

is formed. According to the analysis in last section, RSC is
defined as follows.
Definition 2: RSC. For any workflow Wf, a resources ser-

vice chain, denoted as RSC=< r1, r2, . . . , rn >, where ri is a
resource service of Ri, ri ∈ Ri, and Ri is a CRS invoked by a
task ti, ti ∈Task, 1< n <= N , where N is maximum number
of workflow from the start task to the end task.

For example as shown in Fig. 2, given aworkflow,wf, using
the notation above, we have a 4-tuple Wf=(id, Task, ≺, RS)
where id=101, Task={t1, t2, t3, t4, t5}, the set of order is
{t1 ≺ t2, t2 ≺ t3, t3 ≺ t5, t2 ≺ t4, t4 ≺ t5 }, and RS={r1, r2,
r3, r4, r5} in which R1 = {r1, r2}, R2 = {r1, r3, r5}, R3 = {r3,
r4, r5}.RSC1 =< r1, r3, r4, r5 > is an RSC, in which r1 ∈ R1,
r3 ∈ R2 and r5 ∈ R3. R1, R2 and R3 are all CRSs.
Given a workflow, the problem we are interested in is

to find the optimal RSCs. The optimal RSC is actually
acceptable RSC to best serve our purpose of resource ser-
vice selection and recommendation, as there is some kind of
dependency between resource services in the sequence. We
call this problem the RSCC.
To solve the problem RSCC, CRS should be initial data

source which is used to obtain optimal RSCs. This is for
the reason that all resource servers in CRS are invoked by a
common task and there exists a higher dependency between
them than other resource services.
For example as shown in Fig. 2, there exists dependency

between resource services r1 and r2 in CRS R1 because they
are invoked by task t1 in common. However, there exists
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higher dependency between resource service r3 and r5 in CRS
R2 or R3 than those in CRS R1 because they are invoked by
task t2 and t5 in common. Also according to workflow, there
are two temporal orders between r3 and r5, as a result, two
RSCs < r3, r5 > and < r5, r3 > can be obtained. The
RSCC is to find the extended RSCs of < r3, r5 > and < r5,
r3 >, such as < r3, r4, r5 >, so as to improve the resource
utilization.

C. COMPOSITION OF RSC STRATEGY
The composition of RSC strategy can be divided into two
stages: Building initial RSCs - At this stage, we resolve initial
CRSs based on dependency, and then obtain initial RSCs
according to workflow.

Optimization of extended RSC - At this stage, we optimize
the extended RSC by evolutionary algorithm. The detail of
this stage will be introduced in next section.

RSC is the sequence of resource services invoked by tasks,
as a full sequence, can be obtained from workflow initially.
In Fig. 2, the task t3 and t4 is executed in parallel mode,
so there are 36 RSCs all together, including < r1, r3, r4,
r3 >, < r2, r3, r5, r4 >, etc. However, RSC that needs to be
composed is not necessarily a full sequence which is initially
obtained from workflow, because that should depend on if
these resource services in the RSC are usually served some
common tasks. This task-related dependency between these
resource services is useful for discovering their principles
of usage in some fields. In order to resolve the task-related
dependency between resource services in a CRS, we use the
number of tasks that a CRS serves is to represent the strength
of them.
Let R = {R1, . . . , Rm} be a superset in which Ri denotes

the CRS invoked by task ti of workflow, R.dep=cnt(R′, R)
be a degree of dependency, which is denoted as a function
to calculate the number satisfied R′⊆ Ri, i = 1, . . . ,m.
In addition Ri, degree of dependency of its subsets should be
also considered, so iterations is needed until only one subset
is left. Let LR={LR1,. . . , LRs} be the superset during current
iteration, NR={NR1,. . . , NRs} be the superset during next
iteration, LR.N and NR.N be their amount of sets respectively.
A statistical algorithm is proposed to calculate all degrees of
dependency of CRSs and their subsets. The pseudo code of
the algorithm CRSDep is provided in Algorithm 1.
In Fig. 2, the initial set of CRS is R = {R1, R2, R3}.

The final set of CRS and their degrees of dependency are
R∗ ={R1, R2, R3, {r3, r5}} and (1, 1, 1, 2) respectively after
being calculated by algorithm CRSDep. The set {r3, r5} is a
new CRS with a higher degree of dependency.
Next, based on the set of CRS, initial RSCs can be obtained

by just finding the flow between resource services in CRS
directly according to workflow. For example, if all of the
initial CRSs with different degrees of dependency are con-
sidered, 10 RSCs will be obtained, as shown in Fig. 2. If only
higher degrees of dependency are selected, < r3, r5 > and
< r5, r3 > will be selected as initial RSCs.

Algorithm 1 CRSDep
Input: R = {R1, . . . , Rm}, set of CRS
Output: R∗ = {R1, . . . , Rn}, the updated set of CRS
1: For(i =1 to m)
2: Ri.dep = 1, LR← Ri, R∗← Ri//initialize R∗ with

Ri
3: End for
4: k = 0, LR.N= m
5: while(LR.N>1 )
6: For(i = 1 to LR.N)
7: For(j = 1 to LR.N)
8: NRk ← LRi∩LRj// calculate intersection
9: if (NRk = ∅ ) then // if intersection exists
10: NRk .dep← cnt(NRk , LR) // calculate the number of

intersections
11: R∗← NRk , k ++ //save for next

iteration.
12: End if
13: End for
14: End for
15: k ← 0, LR← ∅, LR← NR // ready for next

iteration
16: End while
17: return R∗

III. RSCRSCCE- EVOLUTIONARY ALGORITHM FOR RSCC
The initial RSC obtained at the first stage of RSC composition
strategy represents sequence in which the resource services
are most closely associated with each other. This paper aims
at improving the resource selection efficiency and utilization
in CMfg. However, as resource services are invoked in work-
flow frequently and repeatedly, it is necessary to extend the
initial RSC. The extended RSC should be optimal but not
infinitely, and under control but not arbitrarily. In view of the
multiple optimal solutions, inspired by the notion of natural
evolution, we try to design a new intelligent algorithm for it,
which is based on evolutionary algorithm.

The second stage of composition of RSC strategy, namely
optimization of extended RSC will be introduced in this
section.

A. REVIEW OF EVOLUTIONARY ALGORITHM
An evolutionary computation (EA) uses mechanisms inspired
by biological evolution, such as reproduction, mutation,
recombination, and selection, to solve combinatorial opti-
mization problems. GA-based (Genetic Algorithm-based)
strategies have been recognized as efficient solutions for
heuristically solving complex and intractable optimiza-
tion problems across various domains. Relevant researches
include resource-constrained project scheduling prob-
lem [26], [27], ranking problem [28], task scheduling in cloud
computing [29], and software-defined networks [30], etc.
InGA, a suitable chromosome representation, variable-length
or fixed-length, is needed to encode potential solutions to the
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FIGURE 3. Schematic representation of chromosome.

problem that the GA algorithm is trying to solve. A general
GA first initializes and evaluates the population to select the
best fitting chromosomes. It then applies crossover and muta-
tion operators to generate and evaluate the new offspring [31].
A fitness function is also required to evaluate how well a
candidate solution performs. If the fitness function is defined
imprecisely, the GA may be unable to find a solution to the
problem.

B. CCHROMOSOME REPRESENTATION OF RSC
One of the key issues in RSCCEwith GA is finding a suitable
chromosome representation as potential solution to a prob-
lem. The detailed way to encode solutions depends on the
nature of the problem. For the considered RSCC problem, N
different types of resource services invoked by a workflow
constitute a finite set RS. An RSC < r1, r2, . . . , rn > is
composed of resource service set {r1, r2, . . . , rn}, which is
a subset of RS, where n ≤ N .
Now, suppose that the maximum length of workflow exe-

cution paths, namely the number of tasks from start task
to end task in workflows, is L. The maximum length of
RSCs associated with a workflow is less than or equal to L.
Therefore, an RSC < r1, r2, . . . , rL > can be represented
as a solution chromosome, and each chromosome is made of
L genes, in which the i-th gene can exactly be represented
as the i-th resource service ri. Such integer representation of
the chromosome is suitable for the RSCC problem, so that a
search space of N dimension can be set up for RSCs.

A schematic representation of the chromosome is shown
in Fig. 3. There are 5 types of resource service invoked by
workflow. The maximum length of the workflow execution
path is 4. Of all the RSCs, the RSC < r1, r3, r4, r5 > can be
represented by chromosome (1345).

C. FITNESS FUNCTION
The fitness function fitness(ci) measures to what extent the
candidate solution satisfies some criteria. The basic genetic
operators are selection, crossover and mutation. In the selec-
tion process, an individual is selected for the next popula-
tion with the number of copies proportional to the fitness
value [31].

Given an initial RSC RSCi, if it is spaced by other resource
services and formed a new sequence RSC′i, we call the new
generated sequence RSC′i an extended RSC (exRSC) of RSCi.

Algorithm 2 RSCCE
Input: rsc=< r1, . . . , rm >, an initial RSC

RS, resource service set invoked by a workflow
fullRSC, a set of full RSCs associated with a
workflow

Output: RSC′ = {RSC′1,. . . ,RSC
′
s}, exRSC of rsc

1: P← ∅;
2: initPop (rsc, RS);
3: calFitness ();
4: while(gen<MAXGEN) {
5: gen ++, PS← Ø;
6: PS← select(P);
7: crossover ();
8: mutate ();
9: P← PS;
10: calFitness ();
11: End while

In order to select better chromosomes and obtain optimal
exRSC, fitness function is defined as follows:

fj=

n−1∑
i=1

di,i+1 × δdi,i+1−1

n
, (n ≤ L, 0 ≤ j < PSIZE), (1)

where di, i+1 is the distance between ri and ri+1, measured
by interval length between ri and rj+1, PSIZE is the number
of population, n is the length of exRSC, ri and ri+1 are the
two adjacent resource services in exRSC, L is the maximum
length of workflow execution paths.

If any two adjacent resource services ri and ri+1 are spaced
by other k resources < r ′i ,. . . , r

′
i+k >, the interval length

between ri and rj+1 is denoted as di, i+1. A larger value of di,
i+1 indicatesmore dissimilar between anRSC and its extRSC.
In addition, the similar degree depends on the number of
intervals, so in (1), all intervals value should be summed
up. Based on previous research [32], the similar degree can
decrease exponentially with the increasing value di, i+1 in an
interval < ri, ri+1 >. Therefore, we set the interval length of
adjacent resource services ri, ri+1 to 1, namely di, i+1 = 1,
take δ = 0.4 as base, di, i+1 − 1 as exponent.

D. EVOLUTIONARY ALGORITHM FOR RSCC
The genetic algorithm for RSCC finds the optimal solutions,
the extRSCs of initial RSCs. The pseudo code of the algo-
rithm RSCCE is provided in Algorithm 2.

1) INITIAL POPULATION AND CONSTRAINTS
The initial population consists of PSIZE randomly gener-
ated individuals, where PSIZE is the population size, as a
control parameter. Firstly, a chromosome is generated by
selecting L resource services randomly from the set RS,
where RS is resource services invoked by a workflow. Next,
n genes are selected from the chromosome, and replaced by
the resource services r1, . . . , rm respectively in the initial
RSC rsc=< r1, . . . , rm >, where n = |rsc|, the length of rsc.
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Algorithm 3 InitPop
Input: rsc=< r1, . . . ,

rm >, an initial RSC
RS, resource service set invoked by a workflow

Output: RSC′ = {RSC′1, . . . , RSC
′
s}, exRSC of rsc

1: while(|P| <PSIZE) {
2: ci = random (RS); //generate each chromosome

randomly according to RS
3: ci = generate (ci,rsc); // select |rsc| genes randomly,

replace them with resource services in rsc in
its sequence.

4: if(constraint(ci) == TRUE) then add ci to P;
5: End while

FIGURE 4. Constraints of chromosomes.

Finally, constraints must be satisfied. A detailed description
of function InitPop is given in Algorithm 3.

As each initial RSC is composed of a sequence of
task-related resource service, it is the basis to resolve. Obvi-
ously, the optimal solutions are variable-length individuals.
Their lengths are no less than L, where L is the maximum
length of workflow execution paths. The variable-length
chromosomes should satisfy the following criteria: 1) the
genes in chromosome, as resource services in an RSC, keep
the same temporal orders with its initial RSC; 2) the genes
in chromosome of initial RSC keep the same temporal orders
with those of any full RSC, which is formed of being invoked
by workflow tasks; and 3) the genes in chromosome of a full
RSC keep the same temporal orders with those of the solution
chromosome. The RSC < r3, r4, r5 > is an exRSC of initial
RSC < r3, r5 >, as shown in Fig. 4, in which r3 and r5 keep
the same temporal orders with a full RSC < r1, r3, r4, r5 >.
The constraint(ci) in algorithm 2 is used to ensure that the
optimal solutions meet the constraints above.

2) SELECTION OPERATOR
Selection operator, as an important part of genetic algorithms,
follows the rule: The better fitted an individual, the larger the
probability of its survival and mating [31]. Roulette-wheel
selection [33] is a traditional GA selection technique, which
assumes that the probability of selection is proportional to the
fitness of an individual. Suppose that there are N individuals
in a population, each of which is characterized by its fitness fi,
where fi >0 (i ≤ N ). The selection probability of the i-th

Algorithm 4 Select Operator
Input: a population P
Output: next generation population PS
1: F = 0;
2: for(i = 0; i <PSIZE; i++)F = F + fi;
3: p0 = f0/ F ;//calculate the selection probability

of the first individual
4: for(i = 0; i <PSIZE; i++)pi+1 = fi/ F + pi; // the

selection probability of the i−th individual
5: for(i = 0; i <PSIZE; i++) {
6: find j where pj <rand (1)≤ pj+1//j is proportion

of F
7: add cj to PS from P
8: End for

individual can thus be expressed as (1).

pi = fi/
N∑
j=1

fj, (i = 1, 2, . . . ,N ) (2)

In Algorithm 2, (1) is implemented by the function calFit-
ness. The algorithm of function select is given as Algorithm 4.

3) CROSSOVER OPERATOR
Crossover operator is used to replace some of the genes in
one parent with corresponding genes of the other. In RSCC
problem, a single point crossover is applied. Firstly, the cut-
off point j is selected randomly to cut the chromosome into
two segments, the left and the right, where 0< j < L,
as shown in Fig. 5. Then, the genes of left segment are copied
from another parent and replaced by them one by one.

FIGURE 5. Single-point crossover operator.

The algorithm of function crossover is given as Algo-
rithm 5.

4) MUTATION OPERATOR
The mutation operator can maintain the diversity of the
population to enlarge the search space of exRSC. Firstly,
a mutation position is selected randomly from a chromosome,
where 0< j < L. Then the gene at the position j is replaced
by another gene, which is a resource service represented by
an integer. Suppose that the probability of mutation is pm,
the algorithm of function mutation is given as Algorithm 6.

IV. SIMULATION AND RESULTS
A. EXPERIMENTAL SETUP
We take collaborative design and manufacturing processes
of electrical apparatus as a case, to analyze our method,
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Algorithm 5 Crossover Operator
Input: a population PS
Output: the updated PS after doing crossover
1: for(i = 0; i < pc∗PSIZE/2;) //pc is the probability

of crossover
2: select cm, cn pair from PS at random;// cm and cn

are the two individuals.
3: find crossover point j (0< j < L) at random;//

single point
4: for(k = 0; k < j; k ++) //copy left segment to

another parent
5: copy gk from cm to c′n; //gk is a gene
6: copy gk from cn to c′m;
7: End for
8: for(k = j; k < L; k ++) // generate new offspring

c′m and c′n
9: copy gk from cm to c′m;
10: copy gk from cn to c′n;
11: End for
12: if(constraint( c′m) = TRUE and constraint (c′n)=

TRUE) then update PS with c′m and c′n; i++;
13: End for

Algorithm 6 Mutation Operator
Input: a population PS
Output: the updated PS after doing mutation
1: for(i =0; i <pm∗PSIZE;) {//pm is the probability of

mutation
2: select cm from P at random;// cm is the individual.
3: find mutation point j (0< j < L) at random;
4: replace gj with rand(|RS |), generate a new

chromosome c′m //generate a integer, to replace the
gene at position j

5: if(constraint( cm) = TRUE then
6: update PS with c′m;
7: i++;
8: End if
9: End for

as shown in Fig. 1. There are 5 business processes in this case,
including product designing, hardware and machine manu-
facturing, product assembling and parts supplying. Product
designing needs four different professions to work coopera-
tively, which are hardware design, software design, machine
design and power design.

The business processes need invoke resource services,
including hardware resource, human resources and technol-
ogy resources, as shown in Table 1.

A resource service graph is formed along with the exe-
cution of the workflow, featured by collaboration, as shown
in Fig. 6. In the graph, there are 912 full RSCs all together.

The simulation experiment has two steps: 1) setting up
the initial set of RSCs according to workflow model by

TABLE 1. Tasks and resource services invoked by tasks.

FIGURE 6. Resource service graph of workflow.

Algorithm CRSDep; 2) resolving optimal revolutions using
the RSCCE algorithm.
Steps 1 Setting Up the Initial Set of RSCs:According to the

task-related dependency between resource services in work-
flow model, as shown in Fig. 6, using Algorithm CRSDep,
the initial RSCs are <{r1, r10, r13}, r7 >, < r2, r5 >,
< r5,{r2, r3, r4}>,< r3,{r2, r4, r5}>,< r4,{r2, r3}>,< r16,
r6 >, < r2,{r3, r4}>, < r18,{r11, r12}> and < r4, r5 >.
Steps 2 Resolving Optimal Revolutions Using the RSCCE

Algorithm: Based on the set of RSCs above, the RSCC prob-
lem for the collaborative processes can be solved using the
RSCCE algorithm. The parameters in the algorithms are set
as follows: (1) the size of the population is 15; (2) the length
of chromosome is 7; (3) the termination condition is 200
generations reached; (4) the crossover probability is 0.8; (5)
the mutation probability is 0.1, and (6) the value of fitness is
from 0.6 to 1.
Using these parameters, there are a larger number of

optimal solutions. For the purpose of resolving optimal solu-
tions, in each generation, RSCCE will remove duplicate opti-
mal solutions from current population and only retains new
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TABLE 2. Result of RSCCE for optimal revolutions.

FIGURE 7. Two experimental results for population size is 50 and 100.

optimal solutions which are different from those in previous
generations. In the following generations, the number of new
optimal solutions remains steady at approximately between
0 and 2. There are 45 optimal solutions, as shown in Table 2.

B. RESULTS AND DISCUSSIONS
To illustrate the trend of evolution, parameters are adjusted,
the size of the population set to 50 and 100 respectively, the
maximum generations set to 500. There are 94 and 63 optimal
revolutions respectively. The two similar trend curves indi-
cate that, as shown in Fig. 7, RSCCE has steadiness in finding
optimal solutions.

In some generations, there is no optimal solution to be
resolved. One of the reasons is the constraint violation. The
3 constraints of RSCCE have been introduced in section III,
of which the most important criteria is ‘‘keep the same tem-
poral order with its initial RSC’’, so that lots of chromosomes
are removed in every generation. That is also the main bottle-
neck of RSCCE performance.

To illustrate the power of RSCCE, we still take the same
case collaborative design and manufacturing processes of
electrical apparatus, to compare this algorithm with the pre-
viously proposed RSCCA algorithms [6]. We use the same
strategy, i.e. the task-related dependency between resource
services, to resolve initial set of RSCs. Based on the same
initial set of RSCs, we first compare the number and the
precision of optimal solutions between RSCCA and RSCCE.
The initial RSCs are rsc1 =< {r1, r10, r13}, r7 >, rsc2 =<
r2, r5 >, rsc3 =< r5, {r2, r3, r4}>, rsc4 =< r3, {r2, r4,
r5}>, rsc5 =< r4, {r2, r3}>, rsc6 =< r16, r6 >, rsc7 =< r2,
{r3, r4}>, rsc8 =< r18, {r11, r12}> and rsc9 =< r4, r5 >.
The quantity of optimal solutions is compared, as shown
in Fig. 8. The optimal solutions are candidate RSCs which
will be provided to the business process. Therefore, a smaller
candidate set of RSCs can contribute more efficient resource
service selection to a business process.

FIGURE 8. Comparison of candidate RSCs quantity between RSCCA and
RSCCE.

However, in addition to requirement of quantity, candi-
date set of RSCs should be as precise as possible because a
more precise candidate set of RSCs can bring more efficient
to a business process. Therefore, we use formula (3) [6]
to calculate the distance to measure precision, between the
optimal solutions and their initial set of RSCs. In formula
(3), |RSC| is the length of RSC. The result of comparison
is shown in Fig. 9. By comparison, the optimal solutions
RSCCE resolve has a significant advantage.

dis(RSC, RSC′i) = (
∣∣RSC′i∣∣− |RSC|)/ ∣∣RSC′i∣∣ (3)

FIGURE 9. Comparison of candidate RSCs precision between RSCCA and
RSCCE.

V. CONCLUSION
Composition of resource service chain is an important prob-
lem in CMfg system. In this paper, an approach RSCCE is
proposed to improve the efficient of resource-service selec-
tion. Steadiness is the advantage of RSCCE. In the optimal
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solutions, the candidate RSCs are better if they are more
similar with their initial RSCs than in other methods. These
candidate RSCs have more opportunities to be chosen. A rec-
ommended future work focuses on clustering algorithm to
deal with large scale data. Though some relevant researches
for large scale data [34]–[36] and time series data [37] have
been carried out, fast clustering algorithm applied to dis-
tributed cloud manufacturing system should be paid more
attention. This is helpful to improve practicality of resource
usage.
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