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ABSTRACT A marine vessel re-identification system has to determine whether or not different images
represent the same vessel. Accurate vessel re-identification improves onshore closed-circuit television
monitoring in a vessel traffic services system as well as onboard surveillance of surrounding vessels.
However, because ships are rigid bodies and the marine environment is harsh, the accurate re-identification
of vessels at sea can be very difficult. We describe a marine vessel-re-identification framework, Global-
and-Local Fusion-based Multi-view Feature Learning (GLF-MVFL), which is based on a combination of
global and fine-grained local features. GLF-MVFL combines cross-entropy loss with our newly-developed
orientation-guided quintuplet loss. We exploit intrinsic features of marine vessels to optimize multi-view
representation learning for re-identification. GLF-MVFL uses ResNet-50 as the backbone network to extract
features for simultaneous quintuple input. It detects and discriminates between features and estimates
viewpoints to form a comprehensive re-identification framework. We created an annotated large-scale vessel
retrieval dataset, VesselID-539, which contains images from viewpoints similar to those of an autonomous
surface vessel, to use in evaluating the performance of the model. Extensive experiments and analysis of the
results obtained from using VesselID-539 demonstrate that our approach significantly increases the accuracy
of vessel re-identification and is more effective and robust for images from different viewpoints than other
approaches.

INDEX TERMS Autonomous surface vessel (ASV), maritime surveillance, VesselID-539 dataset, multi
views, vessel re-identification (V-ReID).

I. INTRODUCTION
An autonomous surface vessel (ASV) is a robotic agent
that must sense its surroundings in real-time and identify
where shores, islands, or other vessels around it are located.
In practice, the obstacles most likely to be encountered by an
ASV at sea are nearby vessels, making it important that the
ASV is able to detect and track them in real-time. The ASV
must recognize essential cues to support the advanced driver
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assistance system (ADAS) in avoiding collisions and mak-
ing decisions concerning compliance with the International
Regulations for Preventing Collisions at Sea (COLREGs) [1].
The ASVmust be aware of the movement of surrounding ves-
sels when making decisions for collision avoidance, possibly
in case of emergency. In the past, detection and tracking of
targets at sea has depended on radar and automatic identifica-
tion systems (AIS), which treat a vessel as a point. However,
this approach led to uncertainty because it ignores the size of
a vessel. To determine the size of a vessel, it is necessary for
the identification system to detect and re-recognize the vessel
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from multiple camera frames that may not be consecutive.
An ASV must determine whether or not frames identify the
same vessel and then decide whether to associate them with
existing tracklets or initiate a new track. By doing this, the
problem of repetitive tracklet initiation is overcome.

Re-identification of vessels is similar to the re-
identification of pedestrians [2]–[6] or vehicles [12],
[14]–[17]. It is important for security surveillance, and in
the creation of intelligent transportation systems (ITS) at
sea [10]. Fig. 1 shows the four principal stages of vessel
re-identification: vessel detection, feature extraction, feature
transformation, and creation of a similarity metric.

FIGURE 1. Stages in the vessel re-identification system.

Re-identification of people is significantly different from
re-identification of marine vessels. There are three cate-
gories of problems that vessel re-identification must address.
Vessels in the same class are rigid and homogeneous, and
therefore highly similar, thus making it difficult to detect
the subtle differences between them. Large ships vary sig-
nificantly in appearance when the viewpoint changes. And,
as far as we know, there is no available large-scale ves-
sel re-identification dataset, whereas datasets for person
re-identification are readily available. The extensive research
on person and vehicle recognition can be used as a guide for
vessel re-identification, although the conditions under which
an onboard camera must operate are much harsher than those
of the other two applications. A generalized model based on
the visual appearance of vessels is urgently needed for vessel
re-identification. To address these challenges and facilitate
future research, we built a large-scale image dataset of marine
vessels. The images have a variety of angles of view and are
mainly from ship-borne cameras.

A. CONTRIBUTIONS
This study was developed in three stages. We first created
a large-scale well-annotated dataset both for this study and
future research needs. We then developed a deep learning
framework for vessel re-identification that included a feature
detection and discrimination module. The module extracts
fine-grained local features and weights them according to
global and local conditions, thereby ranking their impor-
tance. Finally, we derived a novel loss function and an
orientation-guided quintuple loss function, based on view-
point estimation and sample data mining.

In the remainder of this paper, Section II reviews the related
literature. Section III gives a detailed description of the
VesselID-539 dataset, including the methods we used to col-
lect and annotate images. Section IV describes our method-
ology, and Section V presents our experimental designs and
our analysis of the results.

II. RELATED WORK
In this section, we briefly review related work in generic
object re-identification (emphasizing person and vehicle re-
identification) and marine vessel detection and identification.
We then outline developments in feature identification and
discrimination and viewpoint estimation.

A. GENERIC OBJECT RE-IDENTIFICATION
1) PERSON RE-IDENTIFICATION
Person re-identification is intended to identify the same
pedestrian from different camera views. Zajdel et al. were
the first to address pedestrian re-identification in solving
the cross-camera data association problem using multi-target
multi-camera (MTMC) tracking [2]. Zheng et al. divided
person re-identification into two stages: person detection and
person re-identification, which latter is in turn divided into
two steps: feature extraction and estimating feature simi-
larity [3]. Hermans et al. developed TriHard loss to enable
training networks to learn from hard samples [4]. Cai et al.
created an attention network built on multi-scale and multi-
part masks [5]. Heo et al. developed a teacher–student-based
semi-supervised framework to estimate a person’s attitude
and orientation [6]. However, these state-of-the-art part-based
and fine-grained methods for person re-identification do not
work well on marine vessels well because the attitude of a
ship can change greatly from different viewpoints. There are
many widely-used person re-identification datasets, includ-
ing Market1501 [7], MARS [8], DukeMTMC-reID [9] and
CUHK-SYSU [11].

2) VEHICLE RE-IDENTIFICATION
Vehicle re-identification is fundamental to automatic vehi-
cle control and has been extensively researched. Liu et al.
created a large-scale dataset for vehicle re-identification and
introduced a mixed difference network (MDNet) for vehicle
recognition and re-identification [12]. Xiang et al. devel-
oped a global topological constraints network for fine-grained
vehicle recognition [13]. They modeled the interactions
between components using global constraints and incorpo-
rated them into a unified CNN network. Bai et al. developed
a group-sensitive triplet embedding process (GS-TRE) to
extract fine-grained vehicle features to resolve the problem
of variation in features between different classes of vehi-
cle [14]. Guindel et al. estimated vehicle orientation when
locating the vehicle in an image using Faster R-CNN [15].
Zhang et al. developed a partially guided attention mecha-
nism to locate regions for discrimination and combined it
with global features [16]. Vehicle re-identification datasets
include VehicleID [12], VeRi-776 [17], VERI-Wild [18], and
CityFlow [19].

B. MARINE VESSEL DETECTION AND IDENTIFICATION
There have been many recent developments in ship detection
and recognition based on remote sensing images [20]. The
major drawbacks of using remote sensing images are that they
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are taken from overhead and that they cannot be processed in
real-time due to the long period between sensing and re-use.
The development of edge discrimination enables us to create
improved re-identification techniques for ASVs. Ward et al.
synthesized aNAVHAZdataset to avoid collisions at sea [21].
They generated 20 equally-spaced angles of the headway of
each ship under different weather conditions and different
sea states. Heyse et al. developed a method of identifying
marine vessels using multi-level descriptions and created a
refined multi-level classifier based on deep features [22].
Qiao et al. addressed ship re-identification for the long-term
tracking of vessels at sea by considering each image as a
set of visual cues [23]. Tian et al. used a word bag model
to recognize depth features [24] and demonstrated its use
on a large image gallery. Hilton et al. investigated the use
of a capsule network to address viewpoint invariance in the
classification of marine vessels [25]. Jinwen et al. introduced
a graphic model based on energy loss in the metric-learning
phase of a ship recognition algorithm [10]. To our knowledge,
there is only one small dataset that has been created for ship
re-identification [26].

C. VIEWPOINT ESTIMATION AND DISCRIMINATIVE
FEATURE-BASED MODELS
1) VIEWPOINT ESTIMATION
Variation in the viewpoint of a vessel makes vessel re-
identification a difficult task, while viewpoint can be esti-
mated accurately in person and vehicle re-identification.
Estimation of viewpoint is critical in both predicting vessel
trajectory and vessel re-identification. Current efforts in this
field concentrate on the use of convolutional features for
estimating the viewpoint of the object. These attempts can
be categorized into two types: direct estimation from features
derived from the appearance of the vessel, and calculation
from predicted key points. Saquib et al. developed an attitude-
sensitive embedding network model which took account of
a person’s attitude and orientation; they incorporated the
individual’s features by weighting three-way views [27].
Ghahremani et al. utilized a single-shot detector to combine
classification of the vessel type with an estimation of the
viewing angle [28]. Li et al. introduced a viewpoint discerni-
bility matrix to resolve viewpoint ambiguity caused by poor
light or adverse weather conditions [29]. Wang et al. pro-
posed an orientation-invariant feature-embedding framework
for vehicle re-identification, which aggregated viewpoint-
based features extracted from 20 predefined points in four
orientations [30].

2) DISCRIMINATIVE FEATURE-BASED MODELS
Recent studies in person re-identification and vehicle re-
identification have shown that global features alone are insuf-
ficient to differentiate near-identical objects because they
lack fine-grained features necessary for individual discrim-
ination [31]. Extracting partial features from multiple images
has been shown to be effective; it significantly improves

recognition and is increasingly used in fine-grained object
recognition. Sun et al. developed a feature-based convolu-
tional baseline approach which divides the entire image of
a pedestrian into fixed equal parts in the horizontal direction,
assigns a soft weight to the spatial distribution of each part,
and eventually aligns them [32]. Tan et al. built on previous
work to develop the multiple granularities network for person
re-identification [33] by using two horizontal stripes and two
vertical stripes (i.e., 2× 2 grids) to semantically characterize
vehicle features [34]. He et al. improved the detection of local
features by combining partial and global features during the
training phase [31]. Tan et al. developed the EfficientNet scal-
ing method by uniformly scaling up CNN width, depth and
resolution using a compound scaling method [35]. We used
EfficientNet as the feature extractor to locate discriminative
features in the images.

III. THE MARINE VESSEL RE-IDENTIFICATION DATASET
We built and annotated a large-scale image database,
VesselID-539, to use in evaluating the model we propose and
to support future research into vessel re-identification or fine-
grained feature recognition. To the best of our knowledge,
VesselID-539 is the largest corpus to date for marine vessel
re-identification. In this section, we describe the collection
and annotation of the dataset.

A. DATA COLLECTION
The marine vessel images dataset VesselID-539 was cre-
ated using images from the website Marine Traffic (www.
marinetraffic.com) for the period 2019-03-13–2019-03-16.
(The download links for raw images and the processing
and annotation script will be made public after this paper
is accepted.) The raw vessel image dataset contains over
149 465 images of 511 vessels. These images were captured
mainly by professional photographers around the world, from
onboard or onshore cameras, at different times and loca-
tions. Each ship in the VesselID-539 dataset is represented
by numerous images from different viewing angles showing
different aspects. Fig. 2 shows some sample images for four
different challenging scenarios.

B. ANNOTATION DESCRIPTION
We used YOLOv3 [36] to automatically locate the bound-
ing box (BBox) of a vessel by using the pretrained weight
from ImageNet and then fine-tuning it on the MARVEL
dataset [37]. Table 1 displays the feature map and anchor box
of the VesselID-539 dataset.

Wemanually corrected a number of annotationsmislabeled
by YOLOv3, relabeled some missing BBoxes, and identified
the vessel of interest if there were two or more vessels in the
image. The images of some vessels cover periods of up to
several years, so we consider the same vessel with different
colors or different loading conditions (e.g., container ships
under full load or ballast conditions) as different vessels.
Fig. 3 shows the statistics for VesselID-539, which indi-
cates the number of vessels falling into a certain interval,
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FIGURE 2. Examples of challenging images in the VesselID-539 dataset. Each quadrant (of six images) shows the same vessel in a different challenging
scenario (clockwise, from top left: different Illuminations, variation in scale, change in background, and different viewpoints).

FIGURE 3. Statistical distributions of the VesselID-539 dataset.

the number of discriminative features for each vessel, and the
distribution of the viewpoints for each vessel. The predefined
orientation bins are discussed in Section IV.

After data cleaning and relabeling, we had acquired
149 363 vessel images belonging to 539 vessels. There are
on average 277 images per vessel in VesselID-539; maximum
images per vessel are 1414 and minimum images per vessel
are 3, as shown in Fig. 3(a). The work was done by six
volunteers over two weeks. The statistical distributions of
vessel type and hull color are shown in Fig. 4.

We cropped each image to the size of the ship’s BBox.
To exploit more information for vessel re-identification,
we annotated each image with rich attribute labels such
as ship name, color of the hull (e.g., white, grey, black,
and red) and vessel type (e.g., passenger ship, tug, cargo
carrier and special craft) as well as the angle of view of
the vessel (orientation); we refer to these as multi-features.

Although additional annotation increases the complexity of
re-identification, it increases the flexibility necessary for real-
time marine surveillance. For each cropped image of the
vessel, we further manually annotated corresponding sub-
BBoxes as multiple discriminative features, varying from one
to four. A total of 447 926 sub-BBoxes were labeled in our
VesselID-539 dataset. This work was done by ten volunteers
over six weeks.

C. DATASET PARTITIONING
We divided VesselID-539 into training and test datasets using
an 80/20 ratio, according to the empirical rule. The training
set contained 104 554 images with 377 IDs, and the test set
included 44 809 images with 162 IDs. The test set was further
split into a probe set (20% of the IDs) and a gallery set (80%
of the IDs). The partitioning of the dataset is shown in Fig. 5.
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FIGURE 4. The statistical distribution of the VesselID-539 dataset: (a) the distribution of vessel types; (b) the distribution of vessel colors
(specifically, the color of the ship hull above the waterline and below the main deck).

TABLE 1. The feature map and prior anchors of the VesselID-539 dataset. Using the K-means algorithm, nine prior anchors are clustered from the ground
truth BBox of the training set. The aim is to constrain the range of the predicted vessels and achieve multi-scale learning.

FIGURE 5. The partition diagram of the VesselID-539 dataset.

TABLE 2. Comparison results with other vessel datasets.

Table 2 shows a comparison of our VesselID-539 dataset
with the only publicly available dataset [26]. The VesselID-
539 dataset contains more images in total and on average for
each vessel, and thus more samples from diverse viewpoints;
it also provides semantic annotations of each vessel’s charac-
teristics.

IV. APPROACH
In this section, we describe the GLF-MVFL model in detail.
The architecture of the model is shown in Fig. 6. In the
GLF-MVFL pipeline, we identify the discriminative features
and then extract local features from the fine-grained images
and aggregate them. Global features and local features are
concatenated for discriminative feature learning.

When determining the similarities in images of a ship cap-
tured from different viewpoints, or when comparing an image

of part of a ship with an image of the entire ship, the non-
intersecting regions will be a distraction for the GLF-MVFL
model. We developed a partition-and-aggregate strategy in
response to this challenge, which is magnified by intra-class
variation and inter-class similarity. Note that we train the
detection model and the re-identification model separately;
this paper focuses on viewpoint estimation and the vessel
re-identification model.

A. PRELIMINARIES
1) PROBLEM STATEMENT
Vessel re-identification has similar goals to person and vehi-
cle re-identification. For a given pair of input images taken
from different viewpoints, the output is a similarity score
indicating whether the two input images represent the same
object. More formally, given a training set T = {(It ,Yt )}Nt=1,
where Ii represents the input vessel image andYi is its identity
label, then for any two vessel image pairs, a distance metric
function is defined by D(Ia, Ib) : RD

× RD
→ R [38].

The key task of the V-ReID model is to cluster vessel images
in the feature space F and to find an optimal mapping func-
tion f (It ,2) through training by minimizing a predefined
loss function, where 2 indicates the parameters of f (·) to
be learned. If two images Ia and Ib are of the same vessel
from different viewpoints, they are clustered together and the
similarity score S(Ia, Ib)→ 1; if they are different vessels,
separate them and S(Ia, Ib) → 0. In summary, D(Ia, Ib)
satisfies the following conditions:

D
Ya==Yb
Va≈Vb

(IVaa , IVbb )≤ D
Ya==Yb
Va<>Vb

(IVaa , IVbb )<< D
Ya 6=Yb

(IVaa , IVbb )

(1)

where the superscripts Va, Vb denote the viewpoints of the
input vessel(s).
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FIGURE 6. Illustratio. of the overall framework of the GLF-MVFL model, which consists of five major components: global feature
learning module, discriminative feature detection module, local feature extraction module, viewpoint estimation module, and
weighted feature fusion module. Items contained in the blue boxes are the focus of this paper.

2) DEFINITION OF MULTIPLE VIEWS AND SEMANTIC
FEATURES
We divide the ship hull into a few semantic features, using a
global-and-local fusion method: Ii = {Pki }, k = 1, 2, . . . ,M,
where Pki devotes the k th part of vessel image Ii withM parts
in total. For simplicity, we treat all enclosing structures above
the upper deck as a single superstructure. We defined four
vessel parts for our model: stem, stern, side freeboard, and
superstructure; in Fig. 7, they are marked with yellow lines.
We can dynamically adjust the number of multiple views and
defined vessel parts. In this study, we set them to a typical

FIGURE 7. Th multiple views and multiple parts of our model (the images
are of a container ship drawn randomly from VesselID-539): (a) port side
viewpoint; (b) starboard side viewpoint; (c) stem viewpoint; (d) stern
viewpoint. The yellow boxes indicate the detected discriminative features.
We observe that a vessel’s name is usually marked on each of its sides,
and both name and port of registry are marked on the stern.

value of 4 because our goal is to demonstrate the effectiveness
of GLF-MVFL.

B. GLOBAL FEATURE EXTRACTION
In the re-identification stage, we first resize all the input
images to the size of 256 × 384 and use an output feature
map size of 2048 × 8 × 12. The input images are fed into
the residual neural network (ResNet-50) for training and fur-
ther feature extraction. In the global feature extraction stage,
we introduce feature normalization (FN) to impose influence
on the final feature representation layer of our vessel re-
identification model. We do this to increase the discrimina-
tion capability of learned features and to mitigate the effects
of unnormalized features during the loss calculation phase.
FN, a technique suggested by Hasnat et al. [39], is a special
form of BN and compatible with a normal distribution to
ensure each feature contributes equally to the cost function.
We set the scaling and translation parameters β = 0 and
γ = 1 and substitute them into BN, allowing us to write the
forward propagation formula of the FN network layer as:

x̂i =
xi − µB√
(σB)

2
+ ε

, yi← x̂i ≡ BN
β=0,γ=1

(xi) (2)

where µB ←
1
n

∑n
i=1 xi, B = {x1, x2, . . . , xn} is the mean

of the mini-batch, and (σB)2 =
1
m

∑m
i=1 (xi − uB)

2 is the
variance of the mini-batch.

C. DETECTION OF DISCRIMINATIVE FEATURES AND
FEATURE EXTRACTION
Wedevised the discriminative feature detector using the state-
of-the-art framework YOLO (You Only Look Once) [36],
which incorporates the multi-scale concept; its accuracy is
on a par with ResNet-101 but it has an obvious advantage
in speed. We modified YOLO by replacing the original
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Darknet53 with EfficientNet [35] as the backbone network
to improve the feature extraction capability of the detector.
We merged the parameters of the batch normalization (BN)
layer [40] into the convolution layer to improve the forward
inference speed of the YOLO detector. The merging process
of the convolution layer is:

x̂i =
γ
(∑n

i=0 (x
∗
i wi)− µ

)
√
σ 2 + ε

+ β

=

n∑
i=0

xi∗γ
wi

√
σ 2 + ε

− γ
µ

√
σ 2 + ε

+ β (3)

In Eq. (3), we put η = γ (σ 2
+ε)−1/2 and eventually obtain

the merged weight parameter wmerged = η × wi and the bias
parameter βmerged = β−η×µ; for the YOLO-based detector,
the constant ε is set to 0.00001 to ensure numerical stability.
We use ResNet-50 as the local feature extractor, as we did

to extract global features. Feature learning for each detected
feature is facilitated by using the vessel ID as a label and the
softmax function with cross-entropy loss as the classification
supervisor. The total local branch loss is expressed as:

Lparts =

M∑
m=1

λmL(m)
S

= −
1
N

N∑
n=1

M∑
m=1

(
λig(m)n log

(
ĝ(m)n

))
(4)

where L(m)
S = −

1
N

N∑
n=1

g(m)n log
(
ĝ(m)n

)
is the cross-entropy

loss of the m th feature [41], and M and N are the total
numbers of vessel identities and features. As will be detailed
in Section IV, λi is the weight the cross-entropy loss of each
feature.

D. VIEWPOINT ESTIMATION APPROACH
Zhang et al. suggested a method of resolving the problem
of estimating viewpoint by discretizing the viewpoint space
and predicting the probability for each orientation bin [16].
Accordingly, viewpoint estimation is performed as a classifi-
cation task. The procedure for precisely aligning the matched
parts of two vessel images is as follows. We quantize the
viewpoint space into bins; the space is divided into four types,
based on the symmetry of the hull (Fig. 8). Following [22]
and [28], we divide the full range of viewpoints (360◦) into
Nv = 16 bins (itemized, starting at 1), with each bin repre-
senting a 22.5◦ angle. For each binOn(n = 1, 2, . . . ,Nv), the
following condition is satisfied:

On=

{
θn ∈ [0, 360)|

360
Nv
×(n− 1) ≤ θn <

360
Nv
×n
}

(5)

where θn falls into a half-open interval.
Each vessel image with orientation bin Ob is assigned to

its viewpoint V(Ob). As can be seen from Fig. 8, we take the
symmetry of the hull into consideration, and regard port and

FIGURE 8. Illustration of the four predefined viewpoint bins. The sectors
represented in the figure are: 0 stem viewpoint, 1 stem-starboard side
viewpoint, 2 starboard-side viewpoint, and 3 stern viewpoint. Sectors 1
and 2 include symmetrical starboard and port sides. It should be note
that ϕ gives an indication of viewpoint angle, which is calculated from the
north as the 0◦ starting point.

starboard as belonging to the same bin. Details are:

V (Ob)

=


stem, where Ob ∈ {1} ∪ {16}
stem -starboard, where Ob ∈ {2, 3} ∪ {14, 15}
starboard− side, where Ob ∈ {4, 5} ∪ {12, 13}
stern , where Ob ∈ {6, 7, 8, 9, 10, 11}

(6)

We classify the bin to which the vessel’s viewpoint belongs
indirectly, similar to [42]. By maximizing the classification
interval in cosine space [43], this problem can be addressed
for each orientation class by cosine cross-entropy loss:

Lve

= −
1
Ns

Ns∑
i=1

log exp
(
s · cos

(
θyi , i

)
−m

)
exp

(
s · cos

(
θyi , i

)
−m

)
+

Nv∑
j=1,j6=ji

exp
(
s · cos

(
θj, i

))

(7)

s.t. cos
(
θj, i

)
= W T

j xi (8)

where θ represents the angle between weight vector Wj and
input vector xi, s is a scale factor, andm is a margin parameter
which controls the distance (cosine margin term) and satisfies
the decision boundary condition s · (cos θi−m− cos θj) = 0.
Note that bothW and x are normalized in Eq. (8) to encourage
the CNN network to focus on the task of optimizing the
estimated viewpoint.

E. ORIENTATION-GUIDED QUINTUPLET LOSS
Current efforts in the re-identification of persons, vehicles,
and evenwild animals (e.g., Amur tiger re-identification [47])
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focus on the exploitation of contrastive loss [44], triplet
loss [45], and some improved variants of triplet loss, such as
batch-hard triplet loss [4] or quadruplet loss [46].

Large vessels are more sensitive to a change in viewpoint.
Therefore, for similarity metric learning, we add two extra
image samples (one positive and one negative) to the triplet to
constitute the quintuplet, as shown in Fig. 9. The orientation-
guided quintuplet loss (O-Quin) is given by:

LQuin =
[
D
(
Ia, Ips

)
−D (Ia, Ins)+ α

]
+

+
[
D
(
Ia, Ipd

)
−D (Ia, Ind )+ β

]
+

s.t. α >> β (9)

FIGURE 9. Metric learning of orientation-guided quintuplet loss. Given
the input quintuples {< A,PVS ,PVD,NVS ,NVD >}, which are
anchor image A, positive image from the same viewpoint
PVS (Positive-vs), positive image from a different viewpoint PVD
(Positive-vd), negative image from the same viewpoint NVS
(Negative-vs), and negative image from a different viewpoint NVD
(Negative-vd).

where [•]+ = Max[0, •]. In Eq. (9), α and β are margin
values and satisfy the constraint that α � β, meaning that
α has a strong pull and β a weak pull. Here, D(Ii, Ij) is the
cosine distance function, which is:

D
(
Ii, Ij

)
= 1− cos θ = 1−

f (Ii) · f
(
Ij
)

‖f (Ii)‖2
∥∥f (Ij)∥∥2 (10)

where θ is the angle between feature vectors f (Ii) and f (Ij),
and ‖•‖2 is an operator that denotes the L2 norm; d(•) is in
the range [0, 2], with 0 being the most similar.

According to [4], learning only from simple samples limits
the capacity of a trained network to generalize. We clas-
sify samples as hard according to the estimated viewpoint
to incorporate hard sample mining in learning. As shown
in Fig. 9, PVD represents a selected image with an almost
completely different viewpoint from the anchor image, such
as the stem rather than the stern (i.e., a very different positive
sample).NVS indicates the most difficult negative samples to
pick; they have a relatively small distance for feature vectors
compared with the anchors. For simplicity, we ignore the
effects of D(Ia, Ips), D(Ia, Ind ) and β, and rewrite Eq. (9)
as:

LQuin =
1

V ×K
∑

Ia∈batch
[ max
Tpd∈A

D
(
Ia, Ipd

)
− min

Ins∈B
D (Ia, Ins)+ α]+ (11)

where the batch consists of V vessels (each with a unique ID)
and K different images of each vessel, for a total of
V ×K images.

F. FUSION OF GLOBAL AND LOCAL FEATURES
The aspect of a vessel varies greatly from different view-
points, and each aspect may contain different salient features.
Over 90% of the vessel images in the dataset have more than
three discriminative features. Thus we need to consider the
weights of differentiated features in the process of feature
fusion. Given one global feature fg and a number of partial
features

{
fpi
}n
i=1, we first aggregate these partial features into

a local feature by:

flocal = α1f1 ⊕ α2f2 ⊕ · · · ⊕ αPfP (12)

where the αi, i = 1, 2, . . . ,P, are the soft attention
weights calculated by ResNet combined with a Squeeze-and-
Excitation (SE) module [48], referred to as ResNet-SE.

Since partial features can be a perfect complement to
global features, we combined the concentrated flocal with the
global feature fglobal as follows:

ffusion =
[
λfglobal, (1− λ) tanh (flocal �W + B)

]
(13)

where weight vectors W and bias terms B are learnable
parameters; λ is a hyperparameter to weight partial features
and global features that has an optimized value λ = 0.4.
A goal of training is to minimize the total loss function,

which is the sum of Eq. (4), Eq. (7) and Eq. (11), by varying
the weights of each component. We formulated the objective
function as:

Lreid = β1LQuin + β2Lve︸ ︷︷ ︸
LGlobal

+β3Lve + β4Lparts︸ ︷︷ ︸
LLocal

(14)

where β1, β2, β3 and β4 are hyperparameters used to balance
the four different loss functions.

V. EXPERIMENT AND RESULT ANALYSIS
This section describes how we conducted a series of compar-
ative and reductive experiments to evaluate the effectiveness
of the GLF-MVFL model.

A. IMPLEMENTATION DETAILS
1) NETWORK ARCHITECTURE AND TRAINING
We used a residual convolutional network, ResNet-50 [49],
as the backbone network for partial feature extraction, with
a mini-batch size of 32. We ran 100 epochs with an initial
learning rate of 0.001 divided by a factor of 5 every 20 epochs
after the 40th epoch. Because of the constraints of graphics
memory, we set V = 32 and K = 8 (i.e., Batch = 32× 8).

2) BASELINE METHOD
The ResNet-50 model with cross-entropy combined with
hard triplet loss was our baseline for comparison with
GLF-MVFL [50]. Two other methods were selected to con-
duct the comparison experiments: the embedding network
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(Cross-Entropy (Xent)+ triplet loss, sometimes called multi-
loss, which also uses ResNet-50 as the backbone network)
was used from Bai’s repository [14]; MDNet was also used,
using the VGG_CNN_M_1024 backbone network, with cou-
pled cluster triplet loss [12].

All algorithms in our experiments were processed on a
2.1 GHz Intel Xeon silver 4116 CPU with 64 GB of memory
and two NVIDIA RTX2080Ti GPUs (11GB frame buffer)
using the Pytorch deep learning framework (version 1.2).

B. EVALUATION PROTOCAL
We assume that each vessel in the query set will lead to the
retrieval of a similar vessel from the gallery set. Therefore
we used cumulative match characteristic (CMC), mean aver-
age precision (mAP) and mean average orientation similar-
ity (mAOS) as performance metrics to evaluate our approach
and to enable us to compare our results with other state-of-
the-art methods.

1) CUMULATIVE MATCH CHARACTERISTIC
Rank-k indicates the probability that the top-k images in the
search results (with the highest confidence) contain the cor-
rect result. In this study we evaluated several typical rank -k
rankings (i.e., k = 1, 5, 10, or 20). Cumulative match
characteristic curves are drawn from rank-k values and are
commonly used as evaluative indicators for closed-set testing.
Assuming that querying and sorting operations are performed
on the probe set consisting of Q vessels, the sorting results of
each query are expressed in k = (k1, k2, . . . , kQ) and CMC
can be defined as:

CMC(K) =
1
Q

Q∑
i=1

{
0, ki > K
1, others

(15)

2) MEAN AVERAGE PRECISION
The average precision (AP) is given by the area enclosed
by a precision-recall (P–R) curve and the coordinate axis.
It indicates the performance of a Re-ID model. The AP of
each query q can be calculated by:

AP(q) =
N∑
k=1

P(k)×1r(k) (16)

where N is the total number of images in the test set, P(k) is
the precisionwhen the k th image can be identified, and1r(k)

indicates the recall value change in the number of images
identified from k−1 to k . For a total of Q queries, mAP is
given by:

mAP =
1
Q

Q∑
q=1

AP(q). (17)

3) MEAN AVERAGE ORIENTATION SIMILARITY
We use mAOS to evaluate the performance of viewpoint
estimation [16]:

mAOS =
1
Q

Q∑
q=1

AP(q)×
1 + cos(1ϕq)

2
(18)

where 1ϕq is the angular difference between estimated and
ground truth orientation of detection.

C. COMPARISON TO STATE-OF-THE-ART RESULTS
Using the VesselID-539 dataset, we compared the perfor-
mance of our approach with several state-of-the-art methods:
baseline, EmbeddingNet, MDNet [12], and IORNet [26]. The
results are summarized in Table 3.

From Table 3, it is evident that our GLF-MVFL approach
provided the best results. When compared to the baseline
pipeline results, GLF-MVFL showed 9.2%, 5.5% and 6.6%
increases in mAP, Rank-1 and Rank-5. Note that after dis-
carding the last down-sampling operation of ResNet-50 by
modifying the last stride from 2 to 1, both mAP and
Rank-1 improvements are even greater, increasing 3.2% and
2.8% of the original GLF-MVFL results. We customized a
lightweight model, GLF-MVFL (Lite), in which the back-
bone network uses the same RestNet-50 as the baseline net-
work to better verify the effect of O-Quin. Table 3 shows that
GLF-MVFL (Lite) exceeded the baseline by 7% on mAP;
it also showed a significant improvement in Rank-1/5/10/20.

D. VISUALIZATION OF RESULTS
In this section we provide some typical visualization results
to show intuitively the accuracy of our vessel re-identification
model as following.

Fig. 10 shows the top-10 retrieval results showing diverse
viewpoints for the same vessel in our GLF-MVFL model.
In contrast, the results retrieved by the baseline method are
monotonous. We infer that features of the same vessel can be

TABLE 3. Results (%) compared with other state-of-the-art methods.
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FIGURE 10. Illustration of the top-10 ranking list for retrieval results (four query images in total) from our VesselID-539 datasets. For each query image,
the first row shows the top 10 retrieval results of our GLF-MVFL model; and the second row for the baseline model. The red bounding boxes show false
positives.

TABLE 4. Performance (%) of different detectors and the effects of different vessel detectors. Note that we also use floating point operations per second
(FLOPs) and frames per second (FPS) to indicate the complexity and inference speed of the model.

clustered together using our GLF-MVFL model, no matter
what the orientation of the vessel.

E. ABLATION STUDY AND DISCUSSION
1) EFFECT OF VESSEL DETECTOR
We tested the GLF-MVFL model to see if it could be
developed further, using the viewpoint estimation approach
described in Section IV.We replaced the detectors with Faster
R-CNN [51], SSD [28], YOLOv3 (with MobileNetv2 as the
backbone) and native YOLOv3 with Darknet53 [36] and
conducted comparative experiments. The results are shown
in Table 4.

Table 4 shows that our method gives the best tradeoff
between mAP and FPS using the VesselID-539 dataset, and
reduces both the time complexity (GFLOPs) and space com-
plexity (Params). The key mAP and mAOS indexes increased
by 20.4% and 16.6% over native YOLOv3. The best result

is then given in the subsequent V-ReID, as shown on the
right side of Table 4. The results also show that our view-
point estimation approach is robust and compatible with
many other state-of-the-art detectors and has better scalabil-
ity. Table 4 also shows that there is a positive correlation
between mAOS and mAP for V-ReID.

2) EFFECT OF GLOBAL-AND-LOCAL FUSION
To evaluate the effect of our global-and-local fusion mecha-
nism,we conducted an ablation study by removing the global-
and-local fusion and attentionmechanisms. Table 5 shows the
results.

A comparison of the results in Table 5 shows that when we
combined partial features with global features, we improved
the mAP and Rank-1 to 74.9% and 61.4%, which are the
highest values of all methods. Global+ Partial shows results
that show large increases over Global Only, particularly
the 9.5% increase for Rank-20. For our overall framework
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TABLE 5. Results of our method and three other variants (%).

TABLE 6. Effects of different resolutions (%).

(Global + Partial + Attention), the gain comes mainly from
the extraction of fine-grained partial feature and the embed-
ding of the channel attention module. These results also
suggest that using our global-and-local fusion mechanism
provides a greater capacity to discriminate than the use of
global features only.

3) EFFECT OF DIFFERENT RESOLUTIONS
We conducted experiments using different resolutions to eval-
uate the effect of input size on mAP and CMC. Table 6 shows
the results of using typical input size ranges from 64×196 to
256× 768 pixels.
Table 6 shows that the best results are obtained when the

input image size is 256×384, especially formAP andRank-1,
which increased by 8.2% and 7.5% over the 64 × 196 input
size. These data lead us to conclude that higher resolution
improves performance. However, there are some bottlenecks:
when further increasing resolution to 256 × 768, Rank-5,
Rank-10 and Rank-20 show no improvement. Taking these
results into account, we resized the input to 256× 384 (with
a height to width ratio of 2:3) for the rest of this study.

4) EFFECT OF BACKBONE NETWORK
To ensure a fair comparison between different backbone
networks, we resized all images to 256 × 384 to com-
pare our model with other state-of-the-art backbone models,

ResNet-34/50/101/152, DenseNet, and SE_DenseNet, using
the VesselID-539 dataset.

Table 7 shows that the combination of SE and ResNet-50
gave significantly better results and increased mAP by 2.3%.
In contrast, the combination of SE and DenseNet gave only
a fairly minor improvement. The reason for this result is that
SE reduces the redundancy of ResNet, giving a more diverse
internal structure, whereas DenseNet cannot be further
optimized.

In summary, our GLF-MVFL model has the advantage
that, without using any temporal information (e.g., RNN) and
without the need for extra re-ranking, it achieved state-of-
the-art results in marine vessel re-identification. The results
demonstrate that the use of different detectors has sig-
nificant effects on vessel re-identification. Thus, using an
ingeniously-designed detector that can estimate the viewpoint
is preferable to the use of off-the-shelf detectors. Previous
experiments also demonstrate the universality of the vessel
re-identification framework that we built.

VI. CONCLUSION
We have presented a global-and-local feature fusion vessel
re-identification model which combines metric learning and
representation learning for network training and incorporates
global and local features. Experimental results demonstrate
that our model accurately extracts discriminative features
from ship images. This capability gives the model state-
of-the-art performance in vessel re-identification. We also
conducted ablation studies to identify the contribution of
each component of our model to the overall performance.
The VesselID-539 dataset that we created uniquely pro-
vides a large-scale dataset for marine vessel re-identification.
VesselID-539 is well annotated and rich in attributes. In addi-
tion to its use for vessel re-identification, VesselID-539 can be
generalized for other vision tasks at sea, such as fine-grained
ship classification. Our future work has two directions.
We will exploit this novel method to locate unannotated
discriminative features and combine vessel re-identification
with MTMC tracking for marine surveillance; and we will
combine RGB images with infrared images, AIS, and video
echoes from navigational radar. Our ultimate goal is to realize
multi-modal re-identification of marine vessels. Due to the
lack of other available large-scale datasets, we have to await
the emergence of more vessel re-identification datasets to
further evaluate our proposed model.

TABLE 7. Performance evaluation results with different backbone networks (%).
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