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ABSTRACT Cluster validity index plays an important role in assessing the quality of clustering results.
However, most of the existing validity indices take a trial-and-error strategy, and their correctness depend on
not only the measurements of intra- and inter-cluster distances but also the specific clustering algorithms and
data structures. Consequently, the applications of these indices are limited in practice. In this paper, we firstly
define the total surface area and volume of all clusters in a 2-dimensinal data space, thereby recovering their
natural interrelation among various numbers of clusters. On this basis, a novel validity index is proposed
to directly assess the clustering results of any dataset, which does not require any trail-and-error process,
clustering algorithms, data structures, or the measurements of intra- and inter-cluster distances. In the case
of a high-dimensional data space, all clusters are transformed into spherical clusters of normalized size in a
2-dimensinal data space through a multidimensional scaling transformation. Two groups of typical synthetic
datasets and real datasets with various characteristics are used to validate the novel validity index.

INDEX TERMS Cluster validity index, multidimensional scaling transformation, volume and surface area.

I. INTRODUCTION
Cluster analysis, with which one can find the hidden struc-
tures inside the investigated datasets, playing an important
role in the domain of data mining [1], [2]. Clustering algo-
rithms and cluster validity indices are two most important
tasks in cluster analysis [3],[4]. Determining the optimal
number of clusters is usually completed based on one cluster
validity index or several [5], [6]. A great number of validity
indices have been proposed, ranging from the typical Davies-
Bouldin measure (DB) [7] to the latest unsupervised cluster
validity index [8]. Various validity indices have played a
very important role in evaluating results from any clustering
algorithm. For example, in a novel way both internal and
external validity indices were used to evaluate clustering task
when clustering was carried on a large high dimensional
dataset [9]. The symmetry validity in [10] was used to deter-
mine the number of clusters so that the human precuneus can
effectively be subdivided to six connected parcels by using
an eigen clustering approach. In [11], the notation of cluster
has led to scaling hierarchical power efficient clustering with
energy aware routing, and so on.
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Nowadays, under the background of big data [12], [13], the
efficiency of cluster validity index has become a focus beside
clustering algorithm [14]. Various similarity norms may
greatly affect the accuracy of the cluster validity [15], [16].
The computational complexity of each iteration when using
Bregman clustering algorithms [17] is linear with respect to
the number of data points. Therefore, these related algorithms
are scalable and appropriate to largescale machine learning
tasks. Recently, graph-based algorithms have effectively been
applied to express clustering structure and natural relation
hidden in investigated objects. For instance, the DB indexwas
used as fitness function to evaluate the quality of the clusters
in a largescale dataset [18], several indices commonly eval-
uated the clustering results from large uncertain graphs [19]
or the minimum spanning tree [20] that were used to present
the clustering structure.

The above methods have their own applicable and efficient
ranges. However, they cannot solve the classical clustering
assessment problems such as measurements of intra- and
inter-cluster distances [21], or multiple time repeated compu-
tation of clustering algorithms [22]. In this paper, efforts have
been made to solve the above problems. After uncovering the
interrelation between surface area and volume of all clusters
in a dataset, a novel validity index is proposed.
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II. RELATED WORK
Let X = {x1, x2, . . . , xn} be a dataset consisting of n points in
a d-dimensional space. When X is partitioned into c subsets,
i.e., C1,C2, . . .Cc, a binary membership function U can be
used to describe the relationship between points and sub-
sets [23]. If point xj belongs to the ith subset Ci, then uij is
equal to 1; otherwise, 0. The binary membership function can
be expressed as

uij =

{
1, xj ∈ Ci
0, xj /∈ Ci

, i=1, 2, . . . , c; j=1, 2,. . ., n (1)

A hard partitioning of X means that each point in X only
belongs to one subset [24]. In this situation, all points are
divided into c disjoint subsets, i.e.,

X = C1 ∪ C2 ∪ . . . ∪ Cc, Ci ∩ Cj = ∅, i, j = 1, 2, . . . , c

(2)

On the contrary, if each point in X belongs to all subsets
with its individual membership degrees, then this kind of par-
tition is called fuzzy partitioning [25]. Here, the partitioning
matrix satisfies

uij ∈ [0, 1], s.t.,
∑c

i=1
uij = 1,

i = 1, 2, . . . , c, j = 1, 2, . . . , n (3)

Generally, a validity index is a function of the number
of clusters (c), which combines the intra- and inter-cluster
distances [26], [27]. A validity index is usually denoted as

min(max) z = f (φc, δc), c = 1, 2, . . . ,C (4)

where φc and δc denote the intra- and inter-cluster distances,
respectively.

By minimizing φc and maximizing δc, (4) can reach its
maximum orminimum.Most validity indices take a trial-and-
error way to find the optimum of (4) [28]. Various combina-
tions of δc and φc can result in different kinds of indices [29].
Five typical cluster validity indices will be described as
below. Here, the upward arrow indicates that the maximum
of the corresponding index refers to the optimal partition,
and the corresponding number of clusters denotes the optimal
number of clusters. In contrast, the downward arrow indicates
the opposite meaning.

A. CALINSKI-HARABASZ INDEX (CH ↑) [30]
The compactness of this index is computed in terms of the
distances between each point and the centroid of a cluster, and
the separation is estimated by the distances between centroid
of each cluster and the global centroid. Thus, for a dataset
containing n points, CH can be defined as

CH (c) =
n− c
c− 1

·

∑c
i=1 ni||zi − z||

2∑c
i=1

∑ni
k=1 ||xk − zi||

2
(5)

where ni and zi denote the number of points and the centroid
of cluster i, respectively; and z is the centroid of the whole
dataset.

B. DAVIES-BOULDIN INDEX (DB ↓) [13]
Let1i and zi denote the compactness and centroid of cluster i,
respectively; δij represents the separation between clusters i
and j. DB can be expressed as

DB(c) =
∑c

i=1
Ri/c,

s.t.,


Ri = maxj,j6=i(1i +1j)/δij
δij = ||Zi − Zj||
1i =

∑
x∈Ci ||xi − zi||/|Ci|

(6)

where |Ci| denotes the number of points in cluster i.

C. TIBSHIRANI’S GAP STATISTIC INDEX (GS ↑) [31]
GS can be defined as

W (c) =
∑c

i=1
Di/(2|Ci|),

s.t., Di = 2|Ci|
∑

j∈Ci
||xj − x||, x =

∑|Ci|

i=1
xi/|Ci| (7)

The optimal number of clusters appears at the inflection
point on the curve computed by (7). Owing to the subjectivity
of the detection of inflection point, the gap statistics can be
formulated as,

gap(c) = E∗[log(W (c))]− log(W (c)),

s.t., W (c) =
∑c

i=1
Di/(2|Ci|) (8)

where E∗ refers to the expectation under a null reference
distribution.

D. PAKHIRA AND BANDYOPADHYAY’ INDEX (PB ↑) [32]
PB is proposed by Pakhira and Bandyopadhyay to evaluate
the clustering results from both hard and fuzzy algorithms,
i.e.,

PB(c) = (
1
c
×
E1
J
× Dc)2, s.t.,


E1 =

∑n
j=1 ||xj − z||

Dc =
∑c

i,j=1 ||zi − zj||

J =
∑c

i=1
∑n

j=1 ||xj−zi||
(9)

E. XIE–BENI’S SEPARATION INDEX(XB ↓) [33]
XB is designed for fuzzy clustering algorithms, which is the
ratio of compactness to separation of a dataset, i.e.,

XB(c) =

∑c
i=1

∑n
j=1 u

m
ij ||xj − zi||

2

n ·mini6=j ||zj − zi||2
(10)

where m denotes the fuzzy exponential.
However, there are at least three problems with the existing

validity indices.
1) Measurement of intra- and inter-cluster distances.

Various measurements may lead to different assess-
ment results based on distances such as Euclidean and
Hausdorff [34]. Recently, the Bregman divergence has been
applied in the process of assessing clustering results [35].
In addition, the line symmetry distance measures [36] can
enhance the efficacy of existing widely used validity indices

VOLUME 8, 2020 24171



Q. Li et al.: Volume and Surface Area-Based Cluster Validity Index

and this method can deal with clusters of any shape or size
in a given dataset. Nevertheless, there is no fixed rule for
choosing the optimal measurement, and how to combine
these measurements is still also a challenge.

2) Dependence on clustering algorithms. The existing
validity indices depend on specific clustering algorithms, e.g.,
C-means algorithm [37]. In the case of clustering results
obtained using other clustering algorithms, these indices will
not be applicable.

3) Trial-and-error way. The existing validity indices take
the trial-and-error way to find the optimal number of clus-
ters [38]. However, in the case of a highly scalable dataset, the
time consumption is intolerable since the clustering algorithm
has to be performed repeatedly.

Recently, some advanced clustering techniques have been
proposed to deal with datasets and evaluate the clustering
results in complicated situations. Tong et al proposed a
Scalable Clustering Using Boundary Information (SCUBI)
algorithm [39], which can obtain almost the same clustering
results as those obtained using the existing clustering algo-
rithms when dealing with some typical datasets. Dunn’s [40]
cluster validity index has quadratic time complexity O(pn2),
where p denotes the dimension of the dataset. As a result, its
computation is impractical for datasets with large values of n.

The typical validity indices cannot solve the above prob-
lems. For example, the improved Dunn index [41] relies on
the trail-and-error strategy and specific clustering algorithms.
As for SCUBI, the intra- and inter-cluster distances cannot
be defined well. In this paper, our novel validity index aims
to take advantage the interrelation between surface area and
volume of a dataset in an unsupervised manner.

III. NOVEL VALIDITY INDEX
In a d-dimensional data space, any cluster occupies a dis-
tributed space position. If the cluster is assumedly spherical,
then there will be a natural relation between its hyper-surface
area and hyper-volume, which can be used to construct a
novel validity index as follows.

In any 2-dimensional (2-D) data space, the hyper-surface
area and hyper-volume can be reduced to area and perimeter
of all clusters. Firstly, we define the area and perimeter in a
2-D data space, where all clusters are assumedly spherical.
In the case of a high-dimensional data space and arbitrary-
shaped clusters, we use the Multidimensional Scaling
(MDS) [42], [43] method to map all clusters to a 2-D data
space, and transform the arbitrary-shaped clusters to approx-
imately spherical clusters of normalized size using the nota-
tion of chain. By revealing the interrelation between area and
perimeter, a novel cluster index can be formulated.

A. AREA AND PERIMETER OF CLUSTER IN 2-D DATA
SPACE
In this section, we will introduce the notations of area and
perimeter of all clusters of a dataset X in any 2-D data space.
For any point xi ∈ X , we approximate its neighborhood by a

rectangle, whose side length and area can be characterized by
its k-nearest neighbors.
Definition 1 (The Side Length and Area of a Point): Let

KNN4(xi) be the set of 4-nearest neighbors of xi in X (see
Fig. 1), then the side length of xi can be defined as

li =
1
8

∑
j∈KNN4(xi)

dist(xi, xj) (11)

FIGURE 1. Occupied area in a 2-D data space.

And the area occupied by xi is computed as

si = l2i (12)

where dist(xi, xj) denotes the Euclidean distance between
points xi and xj. Since dist(xi, xj) is shared by xi and its neigh-
bor xj, li can be represented by half of the average 4-nearest
neighbors’ distances. Consequently, the total occupied area S
of all points in X is

S =
∑n

i=1
si (13)

where n is the number of points in X .
Definition 2 (Density): For any data point xk ∈ X , its m

nearest neighbors are denoted as, xk,1, xk,2,. . . , xk,m, with
distances dist (xk , xk,1), dist(xk , xk,2),. . . , dist(xk , xk,m), where
m = 2d . Thus, in a 2-D space, m = 4.

density(xk )={
∑m

j=1
dis(xk , xk,j)}−1, k = 1, 2,. . ., n (14)

Different from the existing density notations [44], [45],
the proposed density is nonparametric, which does not
need any prior information and can reduce uncertainties in
practice.
Definition 3 (Boundary and Interior Points): Point xi in X

is called a boundary point if half of its 4-nearest neighbors
have higher density than its own; otherwise, it is called an
interior point.

Hereafter, let BX and IX denote the set of boundary and
interior points in X , respectively.
Definition 4 (Perimeter): The perimeter of all clusters in X

can be defined as

P =
∑

j∈BX
lj (15)

Fig. 1 shows a cluster in a 2-D data space, whose bound-
ary points are determined after densities of all points are
computed. Note the boundary and interior points are marked
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in red and blue, respectively; the area in green denotes the
occupied area of this cluster, and the perimeter represented
by red dotted lines is computed according to the determined
boundary points. The right part of Fig. 1 also shows the
occupied area of point o and the length of this rectangle
denotes the side length of point o, demonstrating that any
point can be measured by its 4-nearest neighbors.

B. MULTIDIMENSIONAL SCALING
In the case of a data space whose dimensionality is larger
than 2, the occupied positions of all points have to be mea-
sured in terms of the hyper-volume and hyper-surface area
in principle. However, they are difficult to measure. In this
paper, MDS is used to project high-dimensional datasets into
a 2-D data space, where the hyper-volume and hyper-surface
area are reduced to area and perimeter, respectively.

MDS can reveal the structure of any dataset in a two/three-
dimensional data space by constructing a low-dimensional
configuration [46], which aims to preserve distances between
points so that the structure of the dataset is unchanged [47].
The typical process of MDS is illustrated as follows. For any
dataset X , the distance matrixM ∈ Rn×n can be defined as

Mij =

(
dist2

(
x1, xj

)
+dist2 (xi, x1)−dist2

(
xi, xj

))
/2 (16)

Then,M can be decomposed by eigenvalue decomposition
as

M = USUT (17)

where U is an n× nmatrix of eigenvectors, and S is an n× n
diagonal matrix whose diagonal elements are the correspond-
ing eigenvalues.

Finally, the mapping coordinates Y ∈ Rn×n can be com-
puted as follows.

Y = U
√
S (18)

Generally, the first two columns of Y represent the whole
matrix Y with a small deviation [48], which is further cho-
sen as the mapping coordinates in the corresponding 2-D
data space in view of the tradeoff between accuracy and
complexity.

Fig. 2 shows the well-known IRIS and Helix datasets [49],
and the contained clusters from a 3-D distribution are trans-
formed into a 2-D data space. In view of the unchangeable
density characteristic of MDS, the transformed clusters keep
both their mutual positions and the positions of all points
unchangeable. Consequently, in the 2-D data space, there are
identical clustering structures and points distribution. As a
result, the correct number of clusters in any dataset can be
estimated in the corresponding 2-D data space.

C. PROPOSED VALIDITY INDEX
Assume that a dataset X in a d-dimensional data space con-
tains c clusters which are nearly spherical with the same
radius r , and then the hyper-volumeVd [50] and hyper-surface

FIGURE 2. Two transformed datasets by MDS from a 3-D to 2-D data
space.

area Sd of any cluster can be computed as follows.

Vd (r) =
πd/2

0(d/2+ 1)
rd and Sd (r) =

2πd/2

0(d/2)
rd−1 (19)

where 0(x) =
∫
∞

0 tx−1e−tdt (x > 0) is the gamma func-
tion [51], satisfying the recurrence equation as below

0(x + 1) = x · 0(x) (20)

In the case of c clusters, their total hyper-volume and
hyper-surface area are

V = c · Vd (r) and S = c · Sd (r) (21)

When V and S are known, the unknown variables of c and
r can be computed by

c =
π−d/20(d/2)

2dd−1
·
Sd

V d−1 (22)

Considering that the computations of V and S in a
high-dimensional data space are difficult, we apply MDS
to transform these clusters into the corresponding 2-D
data space, and whereby V and S can be computed by
(13) and (15).

However, all clusters in any dataset are not often nearly
spherical with the same radius r , i.e., (22) cannot directly rec-
ognize the correct number of clusters when a dataset contains
different-sized and arbitrary-shaped clusters (see Fig. 3).

To solve this problem, the notation of chain is introduced,
based on which the arbitrary-shaped clusters can be trans-
formed into spherical clusters and the size of each cluster can
be normalized at the same time.

For each point xi, we define a density-based distance σi,
i.e., the minimum distance from xi to other points with a
higher density than xi. The corresponding point is called the
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FIGURE 3. Datasets containing different-sized and arbitrary-shaped
clusters.

nearest density-based neighbor ϕi. Here, σi and ϕi can be
formalized as

σi = min
j:ρi>ρj

dist
(
xi, xj

)
(23)

ϕi = arg min
j:ρi>ρj

dist
(
xi, xj

)
(24)

Definition 5 (Key Points): Points with relatively higher
density and larger value of σi are regarded as key points,
which can be determined by the value of kpi, i.e.,

kpi = ρi · σi (25)

In general, the maximal number of clusters is less than
|
√
n| [52], where | · | is an integer operator. Thus, the number

of key points can be set as |
√
n|.

The adjacent points in X can be connected following the
connecting rule. For any point xi, the next point xj is the
nearest density-based neighbor of xi. The above steps are
repeated till a key point is visited.
Definition 6 (Chain): A chain is a subset of points in X ,

i.e., xi1, xi2, . . . , xik , which starts with xi1 and stops at a key
point xik according to the above connecting rule. The length
of chain Ti is defined as

Ti =
∑k−1

i=1
dist (xik , xik+1) , i = 1, 2, . . . ,

√
n (26)

where dist(xik , xik+1) is the distance between adjacent points
on the i th chain.
Considering that the two datasets in Fig. 3 both have

90 points, then all points in each dataset can be divided
into
√
90 chains, i.e., 9 chains (see Fig. 4), where the key

points are marked by green triangles and the red lines with
arrows denote the directions of chains. Fig. 4 shows that each
chain contains a group of points. In most cases, due to the
different-sized and arbitrary-shaped clusters, different chains
have different numbers of points and lengths.

To normalize the size of each cluster and make the shape
of each cluster spherical, the j th line segment dist(xkj, xkj+1)
on any k th chain is transformed into a new one, i.e.,

dist∗
(
xkj, xkj+1

)
= dist

(
xkj, xkj+1

)
/Tk , k = 1, 2,. . .,

√
n

(27)

By using (27), the lengths of long chains will be shortened
whereas those of the short chains will be relatively enlarged.

FIGURE 4. Distributions of key points and chains in the two datasets
in Fig. 3.

Consequently, centralizing at any key point, the points on a
long chain move to the key points and those on a short chain
move far from the key points after all chains are transformed
according to (27). Fig. 5 shows a detailed transformation
process, with the smallest cluster in Fig. 3 (a) as an example.

FIGURE 5. Original and transformed points in the smallest cluster
in Fig. 3(a).

In Fig. 5, the numbers accompanying these points are
ranked in order, and the corresponding points after transfor-
mation are marked with the numbers unchanged. The area
occupied by each cluster is circled by a curve. The three
chains (9-10-11, 12-11, 14-13-11) in the left of Fig. 5 have
different lengths. And after transformation, the lengths of the
three chains are similar, which can be illustrated in the right
of Fig. 5. Fig. 5 shows that the shape of the cluster can be
normalized after transformation. In addition, the noise points
can be assigned to the nearest clusters by using the notation
of chain, which has no effect on the evaluation process.

Fig. 6 illustrates the transformation results of datasets in
Fig. 3. And different colors represent different clusters and
the occupied area of each cluster is circled by a corresponding
curve. The dotted lines with arrows connect the original clus-
ter and the corresponding transformed cluster. Fig. 6 shows
that the transformed datasets have spherical clusters of nor-
malized size, which is consistent with the assumption above.

Hereafter, the proposed volume and area-based index
is called VAI. The evaluation process of VAI is listed in
Algorithm 1.

Compared with the existing indices, VAI has the following
characteristics:

1) UNSUPERVISION
Since VAI is nonparametric and does not need any prior
information (e.g., the clustering results from a specific clus-
tering algorithm), the entire evaluation process is independent
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FIGURE 6. Original and transformed clusters in two datasets.

Algorithm 1 Evaluation Process of VAI

Input: A dataset X ∈ Rd containing n points.
Output: Number of clusters.
Steps:
1) Map X into a 2-D data space using MDS.
2) Transform the mapping dataset into a normalized

dataset with spherical clusters and normalized size.
3) Compute the density of each point in 2) and partition

the points into boundary and interior points.
4) Compute the side length of each point in the trans-

formed dataset using (11).
5) Compute the area of the transformed dataset

using (13).
6) Compute the perimeter of the transformed dataset

using (15).
7) Compute the number of clusters c using (22).
8) Stop and give the number of clusters.

of underlying clustering. In contrast, most of the existing
indices take a trial-and-error way, which relies on clustering
algorithms and can only work for spherical clusters.

2) GENERALITY
VAI can reflect the structure hidden in any dataset no matter
what distributions it has. In addition, it can evaluate datasets
containing noise points.

3) NO DIMENSION CONSTRAINTS
VAI has no limitation in dimensions, and it can suggest the
number of clusters in high-dimensional datasets.

For any dataset containing n objects distributed in c clus-
ters, the computation of VAI mainly consists of three parts:
1) computing all distances in X , 2) mapping all points
in X into the corresponding 2-D data space using MDS,

and 3) normalizing all distances in any chain. The compu-
tational complexity of the first part is O(n2). The runtime of
the second part is the longest, since the computation of eigen-
values and eigenvectors leads to computational complexity
O(n3). Note the runtime of the third part is much shorter than
that of the second one. Therefore, the efficiency of the second
part is key to reducing the runtime of VAI.

IV. EXPERIMENTAL RESULTS
To validate VAI, experiments are carried out on synthetic and
real datasets. Four existing hard validity indices (i.e., CH,DB,
GS, and PB) and one fuzzy validity index XB are used to
make a comparison.

A. TESTS ON SYNTHETIC DATASETS
Fig. 7 shows seven groups of datasets with various character-
istics. Different colors represent different clusters. Datasets
in the first column denote the original datasets without
noise points, and those in columns 2–4 are generated by
adding 10%, 20%, and 30% uniformly distributed noises to
the original ones, respectively, with ‘‘+’’ denoting a noise
point.Groups 1–4 show regular datasets of spherical clusters,
where Groups 1 and 2 contain clusters of different sizes
and Groups 3 and 4 contain clusters of different densities.
Datasets in Group 5 have 15 spherical clusters, and those
in Groups 6 and 7 have arbitrary-shaped clusters.

Fig. 8 shows the corresponding transformed datasets of
Fig. 7, indicating that the transformation rule can transform
irregular clusters into spherical clusters and the occupied area
of each cluster is normalized. Moreover, the noise points in
datasets can be assigned to the nearest clusters and have no
effect on the evaluation process, demonstrating the robustness
of VAI.

Table 1 lists the evaluation results of datasets in Fig. 7. The
number marked by ‘‘

√
’’ denotes that the evaluation result

based on the corresponding index is true; otherwise, it is
wrong.

The validity indices are analyzed as follows.
1)Different Sizes:Datasets inGroups 1 and 2 contain clus-

ters of different sizes, on which CH, DB, and GS have similar
evaluation results, i.e., they are capable of determining the
correct numbers of clusters when datasets have fewer noise
points (e.g., 10%). However, when the proportion of noise
points is higher than 10% (e.g., 20% and 30%), the evaluation
results of these indices are incorrect. XB suggests the correct
cluster numbers for Sets1–6. PB cannot find the correct num-
bers of clusters in these eight datasets. On the contrary, VAI
can give the correct numbers of clusters in all datasets.

2) Different Densities: Datasets in Groups 3 and 4 con-
tain clusters of different densities. The evaluation results of
CH are all 2, which is relatively smaller. On the contrary,
PB gives relatively larger numbers. DB, GS, and XB all can
find the correct cluster numbers for Sets9–11 that contain
fewer noise points. When the proportion of noise points is
larger (e.g., Set 12), DB, GS, and XB cannot give correct
evaluation results. As for Group 4, the other five indices
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FIGURE 7. Seven groups of synthetic datasets.
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FIGURE 8. Transformed results of datasets in Fig. 7.
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TABLE 1. Evaluation results of seven groups of synthetic datasets.

cannot obtain the correct cluster numbers in most cases. VAI
is capable of finding the correct cluster numbers for datasets
in Groups 3 and 4.
3) Large Numbers of Clusters:When datasets have a large

number of clusters (see Group5), CH, DB, PB, and XB will
give relatively smaller numbers. On the contrary, GS gives the
opposite evaluation results, which is the nearest to the correct
cluster number. VAI can obtain the correct cluster numbers
for datasets in Group 5.

4) Arbitrary Shape: Datasets in Groups 6 and 7 contain
arbitrary-shaped clusters. The evaluation results of the other
five indices are all incorrect. On the contrary, VAI can reveal
the structures of datasets and determine the real numbers of
clusters, regardless of noise points in datasets.

In summary, the evaluation results of the other five indices
may be affected by the distributions and noise points in the

investigated datasets. When the proportion of noise points
becomes larger, the evaluation results will be worse. VAI can
find the hidden structures in datasets and suggest the correct
numbers of clusters for all these datasets.

B. TESTS ON REAL DATASETS
The UCI Machine Learning Repository [53] contains many
kinds of databases, domain theories, and data generators. The
datasets in UCI are from the real-world, covering a wide
range of domains so that they are relevant and representative.
The characteristics of these datasets are introduced in detail,
such as the attribute types, number of instances, number of
attributes and year published. UCI datasets are usually used
to evaluate machine learning algorithms and provide a useful
baseline for comparison.
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In this paper, eight real datasets from UCI are selected
to test the proposed VAI index. The characteristics of
these datasets are listed in Table 2. The first column of
Table 2 denotes the names of these datasets. The second
and fourth columns represent the numbers of clusters and
points of datasets, respectively. And the third column denotes
the dimensions of these datasets. The last column shows the
number of points of each cluster in datasets.

TABLE 2. Characteristics of eight real datasets from UCI.

1) Cancer has 699 points in total, and the number of
features of each point is 9. In this paper, we remove 16 records
which have missing features, so the number of remaining
records is 683. One cluster has 444 records which represents
the cluster Benign, and the other has 239 records denoting the
clusterMalignant.

2)Seeds contains 210 points with 7 features. The number
of clusters is 3 and each cluster has 70 instances.

3) Iris has 150 points in total and each point has four
attributes. It has three clusters and each cluster has 50 points.
One cluster is separated from the other two clusters, whereas
the latter two clusters are overlapped with each other.

4) Ecoli is a nonlinear dataset with 8 clusters. It contains
336 instances with 7 features. And the majority of clusters
have different numbers of instances except the last two clus-
ters. The numbers of points in the last three clusters are much
less than the other clusters, which can be regarded as noise
instances.

5) Satimage dataset has 2000 samples consisting of 6 clus-
ters. Each sample has 36 attributes. And these clusters have
various shapes and sizes.

6)Vertebral has 310 instances in total, and each instance
has 6 features. And the number of clusters is 3. Its character-
istics are similar to those in Iris.
7)Wholesale dataset contains 440 points with 7 attributes.

There are two clusters in this dataset, containing 298 and
142 points, respectively.

8) Wine is a dataset with a relatively higher dimension,
and each point in Wine has 13 attributes. The three clusters
in this dataset are nonlinear and mutually overlapped, which
is similar to those in Iris.
When evaluating datasets in a high-dimensional data space,

VAI maps these datasets into a 2-D data space at first.
The mapping results of UCI datasets in Table 2 are listed

TABLE 3. Mapping and transformation results of eight UCI datasets.

in Table 3. Columns 2 denotes the mapping results by
using MDS algorithm. Columns 3 denotes the transformation
results by using the transformation rule above. Points in
different colors represent different clusters, which is based
on the true labels of these points.

1) Cancer has relatively clear boundaries in a 2-D data
space. However, the sizes of its two clusters are quite dif-
ferent. After transformation, clusters in Cancerhave similar
sizes.

2) Each cluster in the mapping result of Seedsis circu-
larly distributed and overlapped with each other slightly.
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The normalized clusters are well separated with several mis-
classified points.

3) The mapping result of Irisshows that the left cluster
is linearly separable from the other two, which are par-
tially overlapped. The boundary of different clusters is much
clearer compared with the other datasets, which can help
to calculate the volume and surface area occupied by the
dataset precisely. Datasets Vertebral, Wine, and Wholesale
has similar mapping results as Iris.
4) The clusters in the 2-D projection of Ecoliare a little

overlapped. The number of data points in each cluster is
different, and the four clusters with fewer objects do not
have an obvious distribution structure, which are easy to be
neglected.

5) The mapping clusters of Satimageare all nonspherical.
Although the transformation rule can make these clusters
spherical, there are some misclassified points due to the
greatly overlapped clusters.

Table 4 shows the evaluation results of VAI and other
five indices. CH suggests the real numbers of clusters for
Cancer andWholesale. XB can find the right evaluation result
of Cancer. With regard to the other datasets, CH and XB
give relatively small numbers, which are close to the real
numbers. On the contrary, GS and PB give relatively larger
numbers. DB suggests the right evaluation results for Cancer
and Vertebral. It can be seen that VAI is capable of finding
the hidden structures in datasets, and the corresponding eval-
uation results are the nearest to the real numbers of clusters.

TABLE 4. Evaluation results of eight real datasets.

V. CONCLUSION
Finding the real number of clusters in a dataset is the first task
in clustering analysis. The correct clustering results result
from the correct identification of the number of clusters.
In this paper, we map the original datasets into a 2-D data
space firstly, and then transform the mapping clusters into
spherical shapes with normalized sizes. Finally, we uncover
the interrelation between hyper-volume and hyper-surface
area of all clusters in a dataset, and originally propose a novel
validity index. This index is unsupervised and independent
of clustering algorithms and data distributions. Experimental
results validate the accuracy of the novel index.

There are some opportunities for future research.
1) There are two possible ways to reduce the computational

complexity of the proposed index. Firstly, using alternative
algorithm to replace MDS but keeping its basic functions in
our proposed method. Secondly, decomposing theMDS tasks
into multiple units can greatly reduce the computational com-
plexity, such as parallel algorithm, popular cloud computing,
and so on.

2) The misclassified points in the overlapped area may
affect the transformation process, which leads to inaccurate
evaluation results. Therefore, how to identify the points in
the overlapped area and rectify the deviation caused by the
transformation process still remains as one of our research
focuses in the future.
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