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ABSTRACT Empirical wavelet transform (EWT) has become an effective tool for signal processing.
However, its sensitivity to noise may bring side effects on the analysis of some noisy and non-stationary
signals, especially for the signal which contains the close frequency components. In this paper, an improved
empirical wavelet transform is proposed. This method combines the advantages of piecewise cubic Hermite
interpolating polynomial (PCHIP) and the EWT, and is named PCHIP-EWT. The main idea of the proposed
method is to select useful sub-bands from the spectrum envelope. The proposedmethod selects the maximum
points of the spectrum to reconstruct the spectrum envelope on the basis of PCHIP. Then, a new concept and
a threshold named the Local Power (LP) and λ are defined. Based on the new concept LP and the λ, the useful
sub-bands can be obtained. Finally, the experimental results demonstrate that the PCHIP-EWT is effective
in analyzing noise and non-stationary signals, especially those that contain the closely-spaced frequencies.

INDEX TERMS Empirical wavelet transform (EWT), spectrum envelope, piecewise cubic Hermite inter-
polating polynomial (PCHIP), sub-bands, noisy signal.

I. INTRODUCTION
Most real systems are worked in the complex dynamic envi-
ronment, while the dynamic response of these complicated
mechanisms are high nonlinear, which brings many difficul-
ties to the signal feature extraction. To analyze these types of
signals, wavelet transformation (WT) is proposed. It attempts
to decompose the processed signals into a set of intrinsic
modes and separate the dominant or interesting features from
other irrelevant modes by some criteria. This approach has
been proved to be very effective for analyzing noisy and
non-stationary signals. But it needs to predetermine basis
functions and subdivision scheme, which significantly limits
its application [1]. Therefore, how to decompose the noisy
and non-stationary signals adaptively has become a focus in
research. One of them is the Empirical mode decomposition
(EMD) proposed by Attoh-Okine et al. [1]. The basic idea of
the EMD is to decompose the signal into multiple Intrinsic
Mode Functions(IMFs) adaptively. In [2], [3] presented that
the EMD has good results for the diagnosis of heart diseases
in the electrocardiogram (ECG). Edwards et al. [4] proved
that this approach is effective for fault diagnosis in rotating
machinery. However, it is generally known that the EMD suf-
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fers from some drawbacks such as boundary effect and mode
mixing [5]. Therefore many experts and scholars put forward
some methods to improve its performance. In [6], Smith put
forward an improved approach called local mean decomposi-
tion (LMD). The LMD iteration process uses local means and
magnitude to decompose the data instead of the cubic spline
which is used in the EMD. And the LMD has been proven to
be more effective than the EMD in analyzing amplitude and
frequency modulated signals. Jain and Pachori [7]proposed
a new iterative approach called eigenvalue decomposition
(EVD) and proved that the EVD is neither affected by the
ratio of their mean frequencies nor by their relative ampli-
tudes. Li et al. [8]used the order-statistics filters to replace
the traditional interpolationmethods of the EMD and testified
that the processed method is fast, time- efficient and effec-
tive. Besides the EMD and improved EMD method, some
new approaches have emerged to the signal decomposition.
Dragomiretskiy and Zosso [9]put forward a new approach
named variational mode decomposition (VMD). The VMD
is not only effective for the noisy and non-stationary signal
decomposition but also has a solid mathematical foundation
which is favorable for wide application. After that, Liu et al.
[10] came up with an improved VMD approach that com-
bines VMD and detrended fluctuation analysis (DFA) named
DFA-VMD. The noisy and non-stationary signals are first
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broken down by theVMDand then reconstructed by theDFA.
Although the DFA-VMD has the same computational com-
plexity and time complexity with the EMD, it performs better
than the EMD in denoising and discrete wavelet threshold
filtering. The VMD method has a solid mathematical foun-
dation, but it is difficult to pre-determine some parameters,
which restricts its application.

Recently, Gilles [11] proposed a new method named EWT
which can decompose the noisy and non-stationary signals
into several IFMs adaptively. The EWT is an adaptive decom-
position method which extracts narrow-band frequency com-
ponents from the analyzed signal based on the frequency
information contained in the signal spectrum. Compared with
the EMD, the EWT performs more effectively in process-
ing the noisy and non-stationary signals. After the EWT
was introduced, it has been widely used in many fields and
achieved positive results. Yu et al. [12]used the EWT to
compound faults decoupling diagnosis of rolling bearings
and proved that the mode mixing and overestimation can
be resolved by EWT. Chen et al. [13] applied the EWT
to generator bearing fault diagnosis for wind turbines and
obtained good results. Kedadouche et al. [14] drew a compar-
ison between the EWT and EMD in fault diagnosis field and
proved that the EWT has superior performance in obtaining
the frequency and associated harmonics of the faulty bearing.
Zheng et al. [15] applied the EWT to the fault diagnosis of
the rotor system with local rubbing and proved that the EWT
shows a better effect than the EEMD and EMD. In [16], Cao
et al. used the EMT in the wheel-bearing fault diagnosis of
trains. However, along with the wide application in various
fields, some drawbacks of EWT have already appeared, such
as improper segmentations when the noisy and non-stationary
signals are processed. Thus, many improved methods were
proposed in order to solve the aforementioned shortcomings
of the EWT. Chen et al. [13]used wavelet spatial neighboring
coefficient denoising before applied the EWT to obtain the
accurate modes from the heavy noise signal. However,the
wavelet basis function and the number of components in the
decomposed signal needs to be determined in advance, which
limits its application. To fulfill an adaptive signal decompo-
sition, Zheng et al. [15] proposed an adaptive parameterless
EWT(APEWT). The APEWT includes two parts, segmented
the Fourier spectrum adaptively and established the filter
group. However, the APEWT has end-point effect. In order
to build appropriate boundaries for creating the wavelet filter
group, Juan et al. [17]proposed a new adaptivemultiple signal
classification-empirical wavelet transform (MUSIC-EWT).
Although the MUSIC-EWT not only immunes to noise but
also estimates the close frequencies with high accuracy, it is
hard to establish the exact order of signal subspace without
prior knowledge of the signal. In [18], an enhanced empirical
wavelet transform for noisy and non-stationary signal pro-
cessing was proposed by Yue Hu. This method uses the order
statistics filter (OSF) to modify the spectrum segmentation
and applies some criteria to pick out useful peaks. How-
ever, the close frequency component cannot be decomposed

successfully. In order to obtain improved TF representation
of non-stationary signals, Bhattacharyya et al. [19]presented
a newmethod that combines the advantages of Fourier-Bessel
series expansion and EWT called FBSE-EWT. It is difficult
to pre-determine some parameters when using this method.
In order to obtain correct boundaries, Luo et al. [20]proposed
a revised method called AR-EWT. The AR-EWT detects
boundaries in the auto-regressive (AR) power spectrum using
the Burg algorithm and can considerably suppress white noise
and non-stationary factors. However, low SNR will cause
false peaks in the AR power spectrum. Wang et al. [21]used
sparsity to guide the EWT, this proposed method can extract
repetitive transients caused by single and multiple bearing
defects, especially when the signal is mixed with unwanted
vibration components, unknown heavy noises and modula-
tion and resonance phenomena. However, this method fails
to get rational segmentations when the signal contains closely
spaced frequency components.

Considering the above methods fail to decompose closely
spaced frequency components in the TF plane and reducing
the number of parameters that need to be determined in
advance, in this work, we present an improved empirical
wavelet transform named PCHIP-EWT that detects bound-
aries in the spectral envelope calculated by PCHIP algorithm.
The experimental results show that the proposed method
not only reduce the number of invalid components but also
improve the ability to deal with the noise and non-stationary
signal, especially when the signal involves closely frequency
components.

The structure of the paper is as follows: Section 2 briefly
introduces the mathematic principles of EWT and its
drawbacks. Section 3 demonstrates the proposed method.
Section 4 presents the experimental results and discusses the
effectiveness of the PCHIP-EWT method; Section 5 con-
cludes the paper.

II. EMPIRICAL WAVELET TRANSFORM
A. MATHEMATICAL OF THE EWT METHOD
The EWT method is proposed by Gilles [11]. The greatest
advantage of this method is that it can decompose signals
adaptively and its key idea is to obtain the intrinsic mode
of the signal through devising a proper wavelet filter bank.
The EWT method includes three important steps: (1)get-
ting the local maximum of the spectrum; (2)segmenting the
spectrum by classifying boundaries; (3)establishing a wavelet
filter group. Gilles utilizes the Littlewood-Paley and Meyer
wavelets to construct the filter group [22]. In the [11], the fil-
ter group is defined by the scaling function φn(ω) and the
experience wavelet ψ n(ω) through the following equation:

φn(ω) =



1 if |ω| ≤ ωn − τn

cos
[
π

2
α(

1
2τn

(|ω| − ωn + τn))
]

if ωn − τn ≤ |ω| ≤ ωn + τn
0 otherwise.

(1)
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ψn(ω) =



1 if ωn + τn ≤ |ω| ≤ ωn+1 − τn+1

cos
[
π

2
α(

1
2τn+1

(|ω| − ωn+1 + τn+1))
]

if ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin
[
π

2
α(

1
2τn

(|ω| − ωn + τn))
]

if ωn − τn ≤ |ω| ≤ ωn + τn
0 otherwise.

(2)

where α(y) is any discretionary multinomial function within
certain limits [0,1], and has the follow properties:

α(y) =


0, if y ≤ 0
and α(y)+ α(1− y) = 1, ∀y ∈ [0, 1]
1, if y ≥ 1

(3)

There are so many multinomial functions satisfied these fea-
tures. In this paper, we use polynomial function which is first
suggested by Daubechies and used by Gilles:

α(y)=y4(35− 84y+ 70y2 − 20y3) (4)

After the homologous wavelet filter group is established by
equation (1)(2), the processing signal x(t) is disassembled
into several frequency bands based on EWT defined as the
following:

W ε
f (0, t) = IFFT (x(ω)φn(ω)) (5)

W ε
f (n, t) = IFFT (x(ω)ψn(ω)) (6)

where the detailsW ε
f (0, t) and approximationW ε

f (n, t) mod-
ulus are obtained via the inner products of the signal with
the wavelet filter group and IFFT means the inverse Fourier
transform.

B. SHORTCOMINGS OF THE EWT METHOD
The EWT method performs well when the signals have rel-
atively well separated Fourier spectrums, which is difficult
to satisfy this condition in practical application. It brings
great challenges to decomposing the signal reasonably in the
following cases: producing the mode mixing problem which
is caused by close frequency components and obtaining more
invalid components due to the high level noise.

In Fig.1, the dotted perpendicular lines represent the
detected Fourier spectrum boundaries by the EWT. Area
A reveals that close frequency components cannot be seg-
mented, and area B shows that the spectrum is divided into
many parts which led to too many invalid components time
domain.

The EWT also has other limitations, for example, it is
sensitive to noise and needs to set some parameters in advance
which is difficult to determine due to the lack of prior knowl-
edge of signals. Therefore, it is significant to investigate a
rational way to improve the empirical wavelet transform.

III. PROPOSED METHODOLOGY
In order to overcome the aforementioned drawbacks of the
EWT, an improved empirical wavelet transform method

FIGURE 1. The spectrum segmentation by the EWT.

PCHIP-EWT is proposed. The PCHIP-EWT detects bound-
aries in the spectral envelope calculated by the PCHIP algo-
rithm. The major steps of the PCHIP-EWT are as follows:

Step 1: Obtain the noisy and non-stationary signal y(t), and
acquire Fourier spectrum Y (f ) by the fast Fourier transform
(FFT) algorithm.

Step 2: Calculate the spectrum envelope of the K (f ) from
the spectrum Y (f ) based on the PCHIP. In this method,
the PCHIP is able to make the Fourier spectrum Y (f )
more smooth. Compared to the original spectrum waveform,
the spectrum envelope K (f ) can reduce the effects of noisy
and non-stationary components to a certain extent.

Step 3: In section 3.1, calculate spectrum envelope
K (f )based on the PCHIP. In Section 3.2, calculate LP pi(f )of
the spectrum envelope K (f )and select the helpful sub-bands
based on the LP and threshold λ.

Step 4: Process the signal through the EWT.

A. THE SPECTRUM ENVELOPE APPROACH BASED ON
PIECEWISE CUBIC HERMITE INTERPOLATING
POLYNOMIAL
The PCHIP is widely used in the global navigation satellite
system to regenerate the satellite-to-earth distance from the
available sparse motion data. The main reasons why the
PCHIP is used to obtain the spectral envelope are explained
as follows. Firstly, the PCHIP is well ‘‘shape preserving’’ and
can not form an overshoot, so it reduces the error between the
envelope and the original curve, and can truly reflect the orig-
inal data [23]. Secondly, the PCHIP has good performance
when processes the highly noisy and non-stationary signal
[24]. Thirdly, Thirumalaisamy and Ansell [25]demonstrates
that the upper spectrum envelope contains more feature infor-
mation. Therefore, in this paper, obtains the upper spec-
trum envelope through the PCHIP. The spectrum envelope
in the following paragraphs all refer to the upper spectrum
envelope. We give a detailed description in the following
paragraphs.

Before exploring the PCHIP in depth, we first obtain
the local maximum of spectrum Y (f ) within the ranges
[a, b]. We assume that the local maximum points and its
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corresponding index are [fi, Yi(f )](i = 0,1,2,. . . ,n), and let
Y ′i (f ) is approximations of the derivative of Yi(f ). After that
we define the PCHIP function K (f ) as follows:

K (f ) =


K1(f ), f ∈ [f0, f1]
K2(f ), f ∈ [f1, f2]
. . . . . .

Kn(f ), f ∈ [fn−1, fn]

(7)

where the Ki(f ), f ∈ [fi−1, fi], satisfies the following condi-
tions:

Ki(fi−1) = Y (fi−1)

Ki(fi) = Y (fi)

K ′i(fi−1) = Y ′(fi−1)

K ′i(fi) = Y ′(fi) (8)

And the Ki(f ) has the form:

Ki(f )=a1+a2(f −fi)+a3(f −fi)2+a4(f −fi)2(f −fi+1) (9)

where:

a1 : = Y (fi−1)

a2 : = Y [fi−1, fi] = Y ′i(f )

a3 : = Y [fi−1, fi−1, fi] = (mi − Y ′i(f ))/ki
a4 : = Y [fi−1, fi−1, fi, fi]

= (Y ′i+1(f )+ Y ′i(f )− 2mi)/k2i (10)

and 1Yi(f ) = Yi+1(f )− Yi(f ), ki = fi+1 − fi, mi = 1fi/ki.
Therefore, we can use the K (f ) to approximate the spec-

trum Y (f ). Here, an example to illustrate the advantages of
the PCHIP is given:

y = cos(2πx)+ η (11)

where η is the Gaussian white noise with 20db.
The waveform of this signal is presented in Fig.2. The

red solid line represents the original signal without noise,
the blue solid line is the signal mixed with noise; and the
black waveform is obtained by the PCHIP. It is obvious that
the black waveform is smoother than the blue one and close
to the red one. Therefore, the PCHIP has the ability of noise
reduction and can be used to process noise signals.

The spectrum of the signal y obtained by the FFT is shown
in Fig.3(b) and the spectrum envelope based on the PCHIP
is displayed in Fig.3(a). It is quite obvious that the spectrum
envelope K (f ) is much smoother than the Fourier spectrum
Y (f ) due tomix with less noise. In Ref [26], Adrien concludes
that it is easier to decompose the signal which has a smooth
spectrum. Therefore, in this paper, we use the spectrum enve-
lope by the PCHIP instead of the Fourier spectrum to segment
the boundaries.

B. PICKING OUT THE USEFUL SUB-BANDS AND
DETECTING THE BOUNDARIES
After obtaining the spectrum envelope K (f ) based on the
spectrum Y (f ) by the PCHIP, the helpful sub-bands are

FIGURE 2. The piecewise cubic Hermite interpolating polynomial.

FIGURE 3. (a)The spectrum envelope by the PCHIP; (b)The spectrum by
the FFT.

selected. First of all, we define a new concept which is called
the LP pi(f ) for each sub-band as follows:

pi(f ) =
Kmax(i)(f )

fkmin(i+1)
− fkmin(i)

(12)

where pi(f ) is the ith local power, Kmax(i)(f ) refers to the ith
local maximum values of the K (f ), fkmin(i+1)

and fkmin(i)
is the

index of the local minimum of the K (f ) which is next to the
kmax(i)(f ). Secondly, a threshold λ is defined and we can pick
out the useful sub-bands by comparing the values of pi(f ) and
λ. If pi(f ) ≥ λ, it means that this sub-band contains useful
information. If pi(f ) ≤ λ, it means this sub-band is consisted
of noise. In such case, the most important thing is to estimate
the appropriate value of the λ. Based on a large number of
experiments, we conclude that the λ can be calculated by
using the following equation:

γ =
pmax
pmin

(13)

λ =


γ

10
γ ≥ 1000

γ 10 ≤ γ < 1000
10γ 0 ≤ γ < 10

(14)

where pmax and pmin represent the maximum and minimum
of the local power. It is worth noting that, we only present
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FIGURE 4. The illustration of detecting the boundaries.

FIGURE 5. sig1 with different SNR. (a) SNR=5db, (b) SNR=1 db,
(c) SNR= −10db.

a simple way to calculate λ by the experiment results, but a
deeper analysis is necessary to provide a more robust method.

The boundaries detection is based on the useful sub-bands
obtained in the above. Each boundary is the upper cut-off
frequency of the useful sub-bands in the spectrum envelope
K (f ). If the useful sub-bands are defined as sbn and detected
boundaries are defined as wn, then:

wn = fkmin(n+1) (15)

where fkmin(n+1) is the index of the local minimum of the K (f )
which is the nearest to Kmax(i) on the right. Fig.4 is given
to illustrate this method. The blue line is its the spectrum
envelope; the red dashed lines are the detected boundaries.
The useful sub-bands and the useless sub-bands are also
labeled in Fig.4.

IV. EXPERIMENTS AND RESULTS
In this section, three simulated signals and two real signals
have been used to test and verify the effectiveness of the
proposed PCHIP-EWT method.

A. SIMULATION EXPERIMENT
Example 1: In example one, we have been considered

a noisy signal sig1 composed of three different frequency

FIGURE 6. Wigner-Ville distribution of the sig1 with different SNR.
(a) SNR = 5 db, (b) SNR = 1 db, (c) SNR = −10 db.

FIGURE 7. Time-frequency distribution of the sig1 based on short-time
Fourier transform with different SNR. (a) SNR=5 db, (b) SNR = 1 db,
(c) SNR = − 10 db.

components(20Hz, 40Hz, and 150Hz). The frequency com-
ponents of the first and second are close to each other, and
the third is obviously bigger than the former. The difficulty
in analyzing this signal is how to perfectly segment the signal
with different levels of the white Gaussian noise. The sig1 is
defined as:

s1 = cos(40π t)

s2 = cos(80π t)

s3 = cos(300π t)

sig1 = s1 + s2 + s3 + η (16)

where η is the Gaussian white noise with different signal-
to-noise(SNR) (5db,1db,−10db). And different SNR means
different decomposition difficulty.

Set SNR to different values(5db,1db,−10db) and the sig-
nals have been shown in Fig.5, respectively. The obtained
time-frequency(TF) distribution based on the Wigner-Ville
distribution and short-time Fourier transform have been pre-
sented in Fig.6 and Fig.7, respectively. It can be observed
that the TF distribution becomes more obscure as the noise
intensity increases. And in the Fig.6, the cross-term inter-
ference can be seen clearly, which is a major shortcoming
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FIGURE 8. Boundaries segmented by EWT with (a) SNR = 5 db (c) SNR =
1 db, (e) SNR = − 10 db; and PCHIP-EWT (b) SNR = 5 db, (d) SNR= 1 db,
(f) SNR = − 10db.

FIGURE 9. The signal sig2 and its components.

in Wigner-Ville distribution. The boundary segmentations by
the EWT and the PCHIP-EWT have been shown in Fig.8.
The comparison between Fig.8(a) and Fig.8(b) indicates that
when the SNR is high (5db), both of them are able to split
two components with close frequencies. But the Fig.8(a)
contains more boundaries which bring more invalid compo-
nents in the time domain. When the SNR is smaller (1db),
the results have been shown in Fig.8(c) and Fig.8(d). The
Fig.8(c) demonstrates that the EWT fails to separate close
frequency components and leads to more ineffective bound-
aries than the Fig.8(d). In Fig.8(d), it can clearly see that
the PCHIP-EWT remains effective with the reduced SNR.
Compared Fig.8(e) with Fig.8(f), a similar conclusion can
be obtained. Therefore, example one proves that the EWT
can separate the signal whose frequencies are close when the

FIGURE 10. sig2 boundaries segmented by (a)EWT. and(b)PCHIP-EWT.

FIGURE 11. The intrinsic mode functions of (a)EWT method and
(b)PCHIP-EWT method.

SNR is relatively high (5db), but is unable to separate when
the signal is mixed with high noise (1db,−10db). Thus,the
PCHIP-EWT provides better boundary segmentation for the
sig1 in comparison to the EWT method.
Example 2: In the example two,we have considered a more

complex multi-component signal sig2 expressed as:

s1 = cos(220π t)

s2 = cos(10π t + 10π t2)

s3 = cos(80π t − 15π)

s4 = 0.5 cos(200π t)

sig2 = s1 + s2 + s3 + s4 + η (17)

where η = 5 dB.
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FIGURE 12. The signal sig3 and its components.

FIGURE 13. sig3 boundaries segmented by (a)EWT and (b)PCHIP-EWT.

The multi-component signal has been shown in Fig.9.
It can be seen that the sig2 is composed of four components:
the s1 and the s4 contain two close frequencies (110Hz,
100Hz) with different amplitudes, the s2 is a chirp signal
and the s3 is a signal with constant frequency 40Hz. There
are some difficulties in analyzing this signal, accurately
reconstructed unstable component such as the chirp signal,
segmented the signals who are consisted of close frequency
components, and separated the main components from the
high level white Gaussian noise.

The boundary segmentation results of both methods have
been shown in Fig.10. The Fig.10(a) which the boundaries
have been presented in red dotted vertical lines shows the
spectrum segmentation by the EWT method and Fig.10(b)
used the blue dotted vertical lines represents the spec-
trum segmentation by the PCHIP-EWT. Compared with
the Fig.10(b), the Fig.10(a) is unable to separate the close
frequency components of 100Hz and 110Hz. Meanwhile,
dozens of divided domains have appeared which results in an
enormous amount of ineffective components in the next step
of signal decomposition. In Fig.10(b), it can be observed that
the PCHIP-EWTmethod can generate the optimal boundaries
to identify the close frequencies accurately.

The results of the sig2 decomposition have been shown
in Figs.11(a) and 11(b) for the EWT and the PCHIP-EWT,
respectively. It can be seen in Figs.11(a) that IMF1 and
IMF2 are the components with the frequency of 5Hz,
40Hz respectively. Apparently, there is modal aliasing in
IMF3 which is consisted of two frequencies (110Hz, 100Hz)
because the EWT is unable to separate the close frequencies.
IMF4 and the remaining parts are ineffective components
that are composed of the noise. Therefore, the EWT method

FIGURE 14. The modal components and details obtained by the
EWT.(a)The components and (b)Details of (a).

FIGURE 15. The modal components and details obtained by the
PCHIP-EWT.(a)The components and (b)Details of (a).

is unable to segment this multi-component signal reason-
ably. It is observed from the 11(b) that the four different
frequencies are impeccably segregated by the PCHIP-EWT.
The IMF1, IMF2, IMF3, IMF4 are the components with the
frequency of 5Hz, 40Hz, 100Hz, 110Hz, and IMF5 is the
noise. There are some small fluctuations in the amplitude
of the spectrum on account of the noise. Taken together,
this example indicates that the PCHIP-EWT more effective
than the EWT method for the multi-component signal that is
consisted of closed frequency components.
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TABLE 1. The RMSE of the signal reconstruction.

FIGURE 16. Inner ring fault signal.

Example 3: In order to compare the performance of the
PCHIP-EWT with the EWT algorithm in non-stationary
synthetic signal decomposition, a signal sig3 with high-
frequency components at different times and with the White
Gaussian noise has been considered:

s1 = 2 sin(400π t)[g(t − 0.09)− g(t − 0.12)

+ g(t − 0.23)− g(t − 0.3)+ g(t − 0.49)

− g(t − 0.64)+ g(t − 0.78)− g(t − 0.9)]

s2 = 10 cos(16π t)

sig3 = s1 + s2 + η (18)

where η = 5db, s1 represents the simulation bearing fault
signal and g(t) denotes the step signal. The signal duration is
considered as 1s with a sampling rate of 1KHz.

The signal and its components have been displayed
in Fig.12. The sig3 is consisted of two different frequency
components, 4Hz, and 200Hz. And the high-frequency tran-
sient component exists in four different time periods. The
main challenge to analyze this signal is separated from the
high-frequency transient components and the low-frequency
components from the low SNR.

Detected boundaries by the EWT and the PCHIP-EWT
method have been shown in Fig.13(a) and Fig.13(b), respec-
tively. Compared these two different approaches, the EWT
generates too many boundaries, which will lead to too many
useless components in time decomposition. Even though
there has an unnecessary boundary in Fig.13(b) due to the
small amplitude of high-frequency component and the high
level of noise, the PCHIP-EWT is better than the EWT.

The main components decomposed by the EWT have
been shown in Fig.14(a). s1 represents the high-frequency
transient component and s2 represents the low-frequency

FIGURE 17. The segmentation of the boundaries (a)EWT and
(b)PCHIP-EWT.

FIGURE 18. The Fourier spectrum of mode 1. (a)EWT and (b)PCHIP-EWT.

component. The detail decomposition results have been dis-
played in Fig.14(b). The decomposition results of the PCHIP-
EWT have been shown in Fig.15(a). From the Fig.14(a)
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and the Fig.15(a), we can find that there seems to be no
difference between these two figures. However, the details
are discrepant between the Fig.14(b) and Fig.15(b). In the
high-frequency transient component, the noise-contaminated
by the PCHIP-EWT is less than the EWT and s2 which is
obtained by the PCHIP-EWT is of pure low-frequency com-
ponent. Therefore, the PCHIP-EWT performs well in decom-
posing this signal by reason of its better detected boundaries.

For evaluating reconstruction results by the PCHIP-EWT
and EWT, root-mean-square-error(RMSE) is introduced:

RMSE =

√√√√ 1
N

N∑
n=1

(s(n)− ŝ(n))2 (19)

where s(n) and ŝ(n) are the original signal and the reconstruc-
tion signal, respectively.

Table 1 shows the reconstruction error of PCHIP-EWT
and EWT. For the sig1 and sig2, the reconstruction error by
PCHIP-EWT is slightly less than EWT. But for the sig3 which
the signal is more complex, the performance of the PCHIP-
EWT is obviously higher than EWT with the reconstruction
error 0.295 and 0.854 respectively. Therefore, the proposed
method is more reasonable than EWT.

B. APPLICATIONS
Example 5: The bearing fault signal used in this paper is

made available publicly by Case Western Reserve University
(CWRU) [27]. The bearing fault signal has a sampling rate
of 12 KHz, the motor speed is 1797 RPM and the fault
of the 0.007 inches in diameter is introduced at the inner
raceway. Based on the rotating speed and geometrical param-
eters, the characteristic defect frequency of the inner race is
calculated at 162Hz.

The original signal has been shown in Fig.16. There is a
large number of noise in the original signal. The segmenta-
tion of the boundaries by the EWT and PCHIP-EWT have
been shown in Fig.17. As is shown in Fig.17(a), The whole
spectrum is divided into six regions and six different modes
are obtained in total. From Fig.17(b), it can be clearly seen
that the whole spectrum envelope is divided into four regions
and four different modes are obtained. The Fourier spectrum
of mode 1 have been shown in Fig.18(a) and (b). As is shown
in Fig.18(a), the characteristic frequency of the inner race
162.3Hz and the triple failure frequency 486.7Hz obtained.
In Fig.18(b), except the characteristic frequency and the triple
failure frequency, the twice defect frequency 326.8Hz also
can be obtained, which is an important important indicator
of fault diagnosis. Meanwhile, the amplitude variation of the
defect frequency and its harmonics is more suitable for fault
diagnosis. Therefore, the PCHIP-EWT has better anti noise
performance in bearing fault diagnosis.
Example 6: In this subsection, in order to compare the

performance of the PCHIP-EWT with the EWT, the same
EEG signal analyzed by Gilles [11] has been employed. The
EEG signal has been shown in Fig.19. Beyond an oscillating
low-frequency pattern due to the baseline wander [2] we can

FIGURE 19. Results of the boundaries segmented on ECG signal (a)EWT
and (b)PCHIP-EWT.

FIGURE 20. Results of the decomposition on ECG signal (a)EWT and
(b)PCHIP-EWT.

clearly see the spike pulse which is driven by the rhythm [3].
Thus, the goal of analyzing this signal is to extract the helpful
components from the baseline wander.

The results of the detected boundaries by the PCHIP-
EWT and the EWT have been shown in Fig.20. Compared
the Fig.20(a) with Fig.21(a), it can be found that the whole
spectrum is divided into six regions by the EWT method and
the PCHIP-EWT.The decomposition results of both methods
have been displayed in Fig.21. From the Fig.21(a), it can be
observed that the low-frequency is wrongly divided into two
modes. Thus, the EWT fails to separate the baseline wander
interference from the clean ECG signal. In Fig.21(b), it can

24492 VOLUME 8, 2020



C. Zhuang, P. Liao: Improved EWT for Noisy and Non-Stationary Signal Processing

FIGURE 21. Results of the reconstruction on ECG signal (a)EWT and
(b)PCHIP-EWT.

FIGURE 22. ECG signal.

be found that more rational mode decomposition result is
obtained using the PCHIP-EWT algorithm. The first mode
captures the low-frequency oscillation of the baseline. The
second,third,four,five modes oscillates precisely at the fre-
quency of the heartbeat; the last mode is the most prominent
feature of ECG signal, named QRS complex. In [18], Hu
et al. proves that in order to get a clean ECG signal without
the baseline wander interference, the first mode should be
removed. According to this theory, the reconstruction results
by the PCHIP-EWT and the EWT have been shown in Fig.22.
It can be found that the baseline wander interference can be
removed by the PCHIP-EWT while the EWT can not. Thus,
the PCHIP-EWT has a better performance than the EWT in
analyzing the ECG signal.

V. CONCLUSION
In this paper, a new method called the PCHIP-EWT was pro-
posed for the decomposition of the noisy and non-stationary

signals. The Fourier spectrum was replaced by the spectrum
envelope for the computation of optimal boundary detected.
Three numerical simulations and two real-life example were
presented for the purpose of comparing the PCHIP-EWT
with the original EWT. The simulation experiment results
prove that the PCHIP-EWT can successfully separate the two
components, which are close to each other in the spectrum,
but EWT cannot. The applications prove that the PCHIP-
EWT ismore suitable than the EWT in bearing fault diagnosis
and EEG signal analyzes.

If the proposed method is unable to decompose the signal
which includes components overlapping in both time and
frequency domains such as two linear frequency modulation
(LFM) chirp signals. Such cases may be addressed by build-
ing more redundancy adaptive frames. However,the PCHIP-
EWTmethod has a good performance in analyzingmany real-
life noisy and non-stationary signals such as vibration signal,
ECG signal and railway axle bearings fault signal. Thus the
PCHIP-EWTmethod has potential to analyse wide classes of
real life noisy and non-stationary signals.
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