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ABSTRACT In recent years, cyber-attacks against individuals, businesses, and organizations have increased.
Cyber criminals are always looking for effective vectors to deliver malware to victims in order to launch an
attack. Images are used on a daily basis by millions of people around the world, and most users consider
images to be safe for use; however, some types of images can contain a malicious payload and perform
harmful actions. JPEG is the most popular image format, primarily due to its lossy compression. It is used
by almost everyone, from individuals to large organizations, and can be found on almost every device (on
digital cameras and smartphones, websites, social media, etc.). Because of their harmless reputation, massive
use, and high potential for misuse, JPEG images are used by cyber criminals as an attack vector. While
machine learning methods have been shown to be effective at detecting known and unknown malware in
various domains, to the best of our knowledge, machine learning methods have not been used particularly
for the detection of malicious JPEG images. In this paper, we present MalJPEG, the first machine learning-
based solution tailored specifically at the efficient detection of unknown malicious JPEG images. MalJPEG
statically extracts 10 simple yet discriminative features from the JPEG file structure and leverages them
with a machine learning classifier, in order to discriminate between benign and malicious JPEG images.
We evaluated MalJPEG extensively on a real-world representative collection of 156,818 images which
contains 155,013 (98.85%) benign and 1,805 (1.15%) malicious images. The results show that MalJPEG,
when used with the LightGBM classifier, demonstrates the highest detection capabilities, with an area under
the receiver operating characteristic curve (AUC) of 0.997, true positive rate (TPR) of 0.951, and a very low
false positive rate (FPR) of 0.004.

INDEX TERMS JPEG, image, malware, detection, machine learning, features.

I. INTRODUCTION
Cyber attacks targeting individuals, businesses, and organi-
zations have increased in recent years. Infosecurity maga-
zine declared that cyber attacks doubled in 2017.1 Cyber
attacks usually include harmful activities such as stealing
confidential information, spying, or monitoring, and cause
harm (sometimes significant) to the victim. Attackers may be
motivated by ideology, criminal intent, a desire for publicity,
etc.

Attackers are constantly searching for new and effective
ways to launch attacks and deliver a malicious payload to

The associate editor coordinating the review of this manuscript and

approving it for publication was Inês Domingues .
1https://www.infosecurity-magazine.com/news/cyberattacks-doubled-in-

2017/

victims. Files sent via the Internet have often served as a
means of accomplishing this. Since executable files (i.e.,
∗.exe) are known to be dangerous, attackers are increasingly
using non-executable files (e.g., ∗.pdf, ∗.docx, etc.) which
are mistakenly considered to be safe for use by most users.
Some non-executable files allow an attacker to run arbitrary
malicious code on the targeted victim machine when the file
is opened.

JPEG (Joint Photographic Experts Group) is the most pop-
ular image format,2 mainly because of its lossy compression.
JPEG images are used by almost everyone, from individuals
to large enterprises, and on various platforms. JPEG images
can be found on computers (personal images, documents),
devices (smartphones, digital cameras, etc.), and in cyber

2https://1stwebdesigner.com/image-file-types/
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space (emails, social media, websites, etc.). Due to their
harmless reputation, massive use, and high potential for mis-
use, cyber criminals use JPEG images as an attack vector in
order to deliver their malicious payload to the victim device.

At the 2015 Black Hat conference, Saumil Shah demon-
strated3 how to create malicious JPEG images that can be
loaded in a browser in order to execute malicious code
automatically.4,5 In November 2016, it was reported that
attackers used Facebook Messenger to spread the infamous
Locky ransomware via JPEG images.6 The malware authors
discovered security vulnerabilities in Facebook and LinkedIn
that allow them to forcibly download a malicious image on
the victim’s computer. In August 2017, it was reported that
SyncCrypt ransomware was spread using JPEG images.7 In
December 2018, Trend Micro,8 an enterprise cyber security
company, reported that cyber criminals used memes on Twit-
ter(JPEG images) in order to convey commands to malware.9

Recently, in December 2019, researchers from the Sophos
security company published a comprehensive report10 on the
MyKings cryptomining botnet that lurks behind a seemingly
innocuous JPEG of Taylor Swift.

The ability to detect malicious JPEG images has great
importance as JPEG images are widely used by individuals
and businesses. Existing endpoint defense solutions which
are based on signatures (e.g., antivirus), can only detect
known malware based on their signature database. When a
new malware, or new variant of existing malware appears,
there is a time lag until these defense solutions update their
clients with the new signature—a time in which the clients are
vulnerable to the new malware. In contrast, in recent years,
machine learning (ML) algorithms have demonstrated their
ability to detect both known and unknownmalware in various
domains, particularly for the detection of malware in various
types of files [1]–[7]. However, to the best of our knowledge,
machine learning methods have not been employed for the
detection of malicious JPEG images.

In this paper, we present MalJPEG, a machine learning-
based solution for efficient detection of unknown malicious
JPEG images. MalJPEG extracts 10 simple but discrimina-
tive features from the JPEG file structure and leverages them
with a machine learning classifier, in order to discriminate
between benign and malicious JPEG images. We evaluate
MalJPEG extensively on a real-world representative collec-

3https://www.blackhat.com/docs/eu-15/materials/eu-15-Shah-
Stegosploit-Exploit-Delivery-With-Steganography-And-Polyglots.pdf

4https://www.opswat.com/blog/hacking-pictures-stegosploit-and-how-
stop-it

5https://www.opswat.com/blog/image-borne-malware-how-viewing-
image-can-infect-device

6https://thehackernews.com/2016/11/facebook-locky-ransomware.html
7https://www.bleepingcomputer.com/news/security/synccrypt-

ransomware-hides-inside-jpg-files-appends-kk-extension/
8https://www.trendmicro.com
9https://blog.trendmicro.com/trendlabs-security-

intelligence/cybercriminals-use-malicious-memes-that-communicate-
with-malware/

10https://www.sophos.com/en-us/medialibrary/pdfs/technical-
papers/sophoslabs-uncut-mykings-report.pdf

tion of benign and malicious JPEG images. We also compare
MalJPEG features to features extracted using several existing
generic feature extraction methods.

The paper’s contributions are as follows:
1) MalJPEG – a machine learning based solution for effi-

cient detection of known and unknown malicious JPEG
images.

2) MalJPEG features – a compact set of 10 simple yet dis-
criminative features for the efficient detection of mali-
cious JPEG images using machine learning techniques.

3) The creation of a large and representative labeled collec-
tion of benign and malicious JPEG images that can be
used for further research by the scientific community.

We provide background information related to the JPEG
file format in Section II and discuss related work in Section
III. Section IV describes themethods used in this research and
the MalJPEG features. We evaluate our method and present
the results in Section V. We discuss the results and various
aspects of security and present our conclusions in Section VI.

II. BACKGROUND
In this section, we provide background material related to
our research, as well as technical information regarding the
structure of a JPEG image. Since the JPEG file structure is
complicated, we only present the basic information needed to
enable the reader to comprehend the paper and understand the
proposed MalJPEG solution presented in this research. The
format of JPEG images is comprehensively described in
the JPEG File Interchange Format (JFIF) specification.11

A. JPEG FILE STRUCTURE
JPEG stands for Joint Photographic Experts Group, which has
become the most popular image format on the Web. In 1992,
JPEG became an international standard for compressing dig-
ital still images. JPEG files usually have a filename extension
of ∗.jpg or ∗.jpeg.

A JPEG image file is a binary file which consists of a
sequence o segments. Segments can be contained in other
segments hierarchically. Each segment begins with a two-
byte indicator called a ‘‘marker.’’ The markers help divide
the file into different segments. A marke’s first byte is 0xFF
(hexadecimal representation; the second byte may have any
value except 0x00 and 0xFF. The marker indicates the type of
data stored in the segment. Segment types are assigned names
based on their definition or purpose; for example, the name of
0xFFD9 is OI, and the name of 0xFFFE is COM. Segment
types 0xFF01 and 0xFF0@hyphe0xFF9 consist entirely of
the two-byte marker; all other markers are followed by a two-
byte integer indicating the size of the segment, followed by
the payload data contained in the segment. Table 1 presents
the possible markers, their hexadecimal code, and their defi-
nition/purpose.

A JPEG image begins with the 0xFFD8 maker (SOI– start
of image) which is followed immediately by the 0xFFE0

11https://www.w3.org/Graphics/JPEG/jfif.txt
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TABLE 1. Possible JPEG markers.

FIGURE 1. JPEG file structure in hexadecimal view; the bold bytes are
markers.

marker (APP0). A JPEG image ends with 0xFFD9 (EOI– end
of image). Figure 1 presents the hexadecimal view of a sample
JPEG image file; the bold bytes are the markers.

FIGURE 2. The structure of a simple JPEG image and the hierarchy of the
markers and their division into frames and scans. The markers in bold are
mandatory or the most common markers.

JPEG image files primarily use two classes of segments:
marker segments and entropy-coded segments. Marker seg-
ments contain general information (metadata) such as header
information and tables (quantization tables, entropy-coding
tables, etc.) required to interpret and decode the compressed
image data. Entropy-coded segments contain the entropy-
coded data (follows the SOS marker). The compressed con-
tent inside a JPEG image is placed inside a sequence of
units called a frame. A frame is a collection of one or more
scanunits. Ascan contains a complete encoding of one or
more image components.12

Figure 2 presents the structure of a simple JPEG image file
and the hierarchy of themarkers and their division into frames
and scans. The markers in bold are mandatory or the most
common markers.

B. EMBEDDING MALICIOUS PAYLOAD IN JPEG IMAGES
Vulnerability Exploitation – No software is ever completely
protected, and it is almost impossible to prevent the presence
of vulnerabilities during the development of a large-scale
software project. Such vulnerabilities, when exploited, can
allow an adversary to obtain higher privileges or divert
the normal execution flow to an arbitrary malicious code.

12https://www.w3.org/Graphics/JPEG/itu-t81.pdf
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In addition, in order to view/parse a JPEG image,
a viewer/parser program is required, and these programs
may have some vulnerabilities. Many vulnerabilities related
to JPEG images have been discovered since it was first
published, and there are currently 303 known vulnerabili-
ties13 (CVE – Common Vulnerabilities and Exposures), and
5,520 known related security issues14 associated with JPEG
images. For example, a recently discovered vulnerability
(CVE-2018-6612) may allow a remote attacker to cause
a denial-of-service when the victim processes a malicious
JPEG file.15

Steganography (steganos – covered, graphie – writing) –
Steganography,16 a technique used for disguising informa-
tion (e.g., text or malicious code) inside the image without
affecting its appearance (invisible to the human eye) is very
difficult to detect. Steganography can be used to exfiltrate
sensitive information from the victim’s host or network via
JPEG images and can even be used for delivering pieces of
code into the victim’s host or network under the guise of a
simple benign JPEG image.

It is important to emphasize that malicious JPEG images
do not necessarily use steganography methods to conceal
the embedded payload; thus, we discriminate between JPEG
images that carry hidden information using steganography
and JPEG images that carry a malicious payload. In this
research, we focus only on the later and the detection of
malicious JPEG images, and not on steganography detection.

III. RELATED WORK
The main domain of this research is malware detection
using machine learning. Many studies have already been
performed on malware detection in various operating sys-
tems and file types for both executable and non-executable
files. For example, [6], [5], [8]–[12] proposed solutions for
the detection of malware in executable files using machine
learning. In 2019, [13] presented a survey of machine learn-
ing techniques for malware analysis in Windows portable
executables (PEs). They reviewed previous work considering
the objective of the analysis, the feature extraction technique
used (static, dynamic, or hybrid analysis), the type of features
extracted from samples, and the machine learning models
used. In 2019, [14] presented a comprehensive, state-of-the-
art survey of existing methods for the dynamic malware
analysis of PE files, including machine learning-based meth-
ods. With regard to non-executable files, [4], [7], [15]–[18]
proposed ML-based solutions for the detection of malicious
PDF documents; [1], [2], [19] proposed ML-based solutions
for the detection of malicious Office documents; [20] pro-
posed an ML-based solution for the detection of malicious
SWF (Flash) files; and [3] proposed an ML-based solution
for the detection of malicious emails.

13https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=JPEG
14https://www.cvedetails.com/google-search-

results.php?q=JPEG&sa=Search
15https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6612
16https://searchsecurity.techtarget.com/definition/steganography

In the course of this research we sought out related work
aimed at the detection of malicious images, and JPEG images
in particular, using machine learning. However, we were
unable to find any papers that apply machine learning for
the detection of malicious JPEG images. It is important to
emphasize that we only refer to images that contain malware
ormalicious code asmalicious images. Therefore, the domain
of adversarial image detection (e.g., [21]–[25]) is different
than this paper’s domain. The difference between adversarial
images and malicious images lies in the part of the images
that is altered to transform an original image into an adver-
sarial or malicious image. Adversarial images are created by
intentionally designing the pixels of the original image in
such a way that the image will be misclassified by a machine
learning model. In contrast, malicious JPEG images store
the malicious mechanism in some metadata fields which are
outside the pixels section; usually in this case, the pixels are
not changed in order to maintain the image’s authenticity.

Kunwar et al. [26], proposed a theoretical framework that
is aimed to detect the presence of data or code in JPEG images
(without the use of machine learning). Their framework has
three phases: 1) steganography analysis, 2) extraction of the
embedded file, and 3) uploading the extracted file to an online
scanning tool such as VirusTotal17 orMetascan.18 The paper
does not, however, describe any experiments performed in
order to evaluate the framework or present any detection
results on a real-world dataset. In addition, we identified
a study [27], which proposed an authentication method for
JPEG images that can distinguish legitimate operations (e.g.,
compression) from malicious operations. However, ‘‘mali-
cious’’ in the context of this paper does not mean that that
image carries malicious code as a payload, but rather that
the image is not authentic and that it has been manipulated.
In addition, the paper does not apply machine learning meth-
ods.

Most of the papers we found on JPEG images focused
on steganography methods [28]–[31], steganography analy-
sis (steganalysis) methods [32]–[36], or adversarial images
[37]–[41]. However, this paper focuses on the detection
of malicious JPEG images. To the best of our knowledge,
machine learning methods have not been used for the detec-
tion of malicious JPEG images, and thus we are the first to
propose a machine learning-based solution tailored specifi-
cally for the detection of malicious JPEG images.

IV. METHODS
In this section, we describe the methods used in this research.
We begin by presenting MalJPEG’s features as well as the
existing generic feature extractionmethods.We then compare
the features extracted by the existing generic feature extrac-
tion methods and the features extracted by the MalJPEG
feature extractor. Finally, we describe the machine learning
algorithms we used in this research.

17https://www.virustotal.com/
18https://www.opswat.com/blog/tag/metascan-online
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A. MalJPEG SOLUTION
In this section, we present the core contribution of our paper,
theMalJPEG machine learning-based solution for the detec-
tion of malicious JPEG images. MalJPEG receives a JPEG
image as input {1}. The MalJPEG feature extractor {2}
extracts the proposed features into a vector of features {3}.
The MalJPEG feature extractor inspects the file statically,
without actually viewing the image (which requires executing
image viewer software that itself might have a vulnerability),
and traverses through the JPEG image file structure in order
to extract the features. The features are then transferred to a
pretrained machine learning-based model {4} which outputs
a classification (benign/malicious) {5} for the input image.
We implemented MalJPEG and its inner modules, the fea-
ture extractor {3} and machine learning model, {4} in Java
programming language. The next section provides a detailed
description of the features that are extracted usingMalJPEG.

1) MalJPEG FEATURES
In this section, we present the compact set of discriminative
features extracted byMalJPEG.We engineered these features
after manually examining the structure of many benign and
malicious JPEG images. We gained an understanding of how
attackers use JPEG images in order to launch attacks and how
it affects the JPEG file structure. We also found how mali-
cious JPEG images differ from regular benign JPEG images
in terms of file structure. For example, some malicious JPEG
files contain data (usually code) after the end-of-file (EOI)
marker. In addition, we statistically analyzed the distribution
for JPEG markers’ frequency and size in both malicious
and benign JPEG images and define features that primarily
discriminate between benign and malicious JPEG images.

The features are very simple, and most of them are based
on the presence and size of specific markers within the JPEG
image file structure. In addition, the features are relatively
easy to extract statically (without actually presenting the
image) when parsing the JPEG image file. Table 2 contains
the set of MalJPEG features; the features are sorted by their
Information Gain [42] rank so that the first feature is the most
prominent. Note that, all of the features are numeric.

Information Gain ranks a feature (attribute) by measuring
the reduction in entropy of a given set after dividing it based
on a specific feature; this results in the gain of information
as a result of using the feature. Specifically, it subtracts the
weighted entropies of each subset from the original entropy
of the entire set. The entropy characterizes the disorder in
an arbitrary set of instances. If the set is completely homo-
geneous, the entropy is zero; if the set is equally divided,
then it has entropy of one. Information Gain assigns a higher
rank to features that contribute significantly to discrimination
between malicious and benign classes. IV-B presents the for-
mula of the entropy of a set of items S divided into C subsets
(classes). pi represents the probability of class C in a set of
items. Equation 1 presents the Information Gain formula for
feature F in a set of items S where V is the set of possible

TABLE 2. MalJPEG features, sorted by their prominence according to their
information gain rank.

FIGURE 3. The MalJPEG solution.

values of A.

IG (S,F) = E(S)−
∑
vεV (F)

|Sv|
|S|
· E(Sv) (1)

E (S) =
∑
cεC

−pi · log2 (pi) (2)

A malicious JPEG image carries the malicious payload
within itself in some way. Therefore, some of the proposed
features are indicative of the maximal size of specificmarkers
(e.g., DHT, DQT, COM, APP1, APP12) that are used by
attackers to store the malicious payload. The injection of a
payload into a marker increases its size beyond the typical
size. In some cases, the malicious payload is spread across
multiple markers. Therefore, the reset of the features are
indicative of the frequency of specific markers in the file.

An attempt to make a benign file malicious will affect the
structure of the image file and thus will be reflected in the
selected features. It is important to mention that it is possi-
ble that future attack techniques applied on malicious JPEG
images will use markers that are not covered by MalJPEG
features. Such attackswill likely still affect the structure of the
image file and therefore be reflected in the existing selected
features which cover the most important markers. In any case,
the MalJPEG feature extractor is extendable and can easily
be updated to extract new features representative of any other
marker in the image file that may be found to be important in
the future.

Figure 4 presents a histogram of the values of the
‘Marker_DQT_num’ feature (numeric) among the benign and
malicious classes. The x-axis represents the number of DQT
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FIGURE 4. A histogram of the DQT marker values among benign and
malicious images.

markers (bin size= 10) in an image, and the y-axis represents
the percentage of images from the class (benign or malicious)
that fall in that bin. It can be seen that the distribution is
completely different for benign and malicious classes, and
this is most noticeable when looking at the range of the val-
ues. In addition, 99.21% of the benign images have between
zero and nine DQT markers, whereas only 13.74% of the
malicious images have between zero and nine DQT markers,
and 38.49% of them have between 10,200 and 10,209 DQT
markers. In Figure 4 we can see that the DQT marker is
much more prevalent in malicious images than in benign
images. The DQTmarker is, in fact, used by attackers to store
the malicious payload. Therefore, the ‘Marker_DQT_num’
feature is prominent and assists in differentiating between
benign and malicious images.

Figure 5 presents a heat map of the Pearson corre-
lation matrix of MalJPEG features; low correlation is
cooler, and high correlation is warmer. Each cell inside
the matrix represents the correlation between two fea-
tures; a correlation is a number between zero and one.
One can see that there are no redundant features and
that in general, the features are not highly correlated
with each other. Although the features (Marker_DHT_num,
File_marker_num, and Marker_DQT_num) have correlation
scores between 0.76 and 0.78, each of them still hold addi-
tional valuable information that benefits the machine learning
classifier; thus, they are all necessary. The average correlation
between the features (the lower triangle under the diagonal)
is 0.267.

B. GENERIC FEATURE EXTRACTION METHODS
In this section, we present generic and static feature extrac-
tion methods that were used in previous academic work in
conjunction with machine learning for malware detection.
The advantage of generic feature extraction methods is that
they model the contents of a file in a file-format agnostic
way. Generic feature extraction methods can be applied on
any file format, in contrast to the MalJPEG feature extractor
which is tailored to JPEG images. Generic feature extraction

FIGURE 5. Heat map of the Pearson correlation matrix of the MalJPEG
features.

methods work on the file’s building blocks (byte or character
representation) in order to extract features that represent the
file. It is important to clarify that we did not apply the generic
methods on pixel values (although it is possible to do so),
because the pixels only hold the image’s visual properties
of the file but lack the file’s metadata. In general, malicious
content that is injected into an image by an attacker is stored
in the file’s metadata; thus, it is important to inspect the JPEG
file as a whole, and not only part of it.

1) HISTOGRAM
A histogram feature extractor creates a fixed-size histogram,
built according to the file’s content; the histogram values
can be used as features for machine learning algorithms.
In this research, we use two types of histograms: a simple
histogram and an advanced byte entropy histogram.

Two simple histogram configurations are used: 1) a his-
togram on byte values (256 options), and 2) a histogram on
character values (128 options, for basic ASCII encoding). The
histogram actually counts the frequency of byte or char values
in the file. In order to be able to compare files of different
sizes, we normalize the histogram values between zero and
one.

We also use the byte entropy histogram technique which
was used for malware detection in prior research [43], [44].
In order to extract the byte entropy histogram, we slide a
K -size byte window, with a stride of S bytes, over the byte
array representation of a file. For each window, we compute
the base 2 entropy of the window. We store each individual
byte value in the window (K non-unique values) with the
entropy value of the whole window (as a pair) in a list; in
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total, there are K pairs for each window. Finally, we compute
a two-dimensional histogram over the pair list, where the
histogram entropy axis has E evenly sized bins over the range
[0,E], and the byte axis hasB evenly sized bins over the range
[0, B]. To obtain a feature vector (rather than the matrix),
we concatenate each row vector in this histogram into a single
E ∗B sized feature vector. Usually, B is set to 256 (the number
of unique byte values), and E is set to 8, 16, or 256. The
intuition behind the byte entropy histogram approach is that
it represents byte values in the entropy context.

2) MIN-HASH
Min-Hash [45] is a technique for quickly estimating how
similar two items are. The Min-Hash method generates an
N -size signature for a given file based onN simple hash func-
tions (fuzzy hashing). The similarity of two items can be eas-
ily computed by calculating the Hamming distance between
their signatures; the more matched signatures, the lower the
Hamming distance. The signature created by the Min-Hash
technique can be used as an input feature for lazy machine
learning algorithms which are based on a distance function
(e.g., K-Nearest Neighbors).
Min-Hash signs a file (generates a signature) based on

shingles extracted from the file. A shingle is a fixed length
sequence of basic units in the file (e.g., byte, char, etc.).
A basic way of extracting shingles is to slide a W -size win-
dow, with a stride of S, over the file. N hash functions are
applied on each shingle extracted from a file, and the hash
results (Long type) are stored on an N -size array. The signa-
ture of the file is actually an N -size vector of Long numbers,
which contains only theminimal hash value produced by each
hash function, across all shingles. Min-Hash is initialized
with the following parameters: the shingle size W , stride S,
and number of hash functions N .
The Min-Hash method is very efficient in terms of time

and space. Any file, of any size, can be easily converted to an
N -size signature. The Min-Hash method has previously been
used for malware detection [46]–[49] and malware cluster-
ing [50].

C. MACHINE LEARNING ALGORITHMS
We applied machine learning classification algorithms on the
datasets described in the previous section. In our experiments,
we utilized the following commonly used, high performing
classic and nonlinear machine learning classifiers: Decision
Tree, Random Forest, and Gradient Boosting on Decision
Trees (XGBoost and LightGBM). We chose these classifiers
as they perform well on highly imbalanced datasets. In is
important to mention that in our preliminary experiments we
examined classifiers from families other than the decision
tree family, such as Logistic Regression and Naïve Bayes,
however they did not provide reasonable results; therefore,
we did not include them in our evaluation.

In addition, we used the K-Nearest Neighbors classifier
(K= 5) onMin-Hash datasets, because it is the only classifier

that can actually compare Min-Hash signatures using the
Hamming distance function. We chose to u.
We applied the abovementioned machine learning clas-

sifiers with Python using the following packages: scikit-
learn,19 XGBoost,20 and LightGBM.21 We used the default
configuration for all classifiers.

V. EVALUATION
In this section, we evaluate MalJPEG. We begin by present-
ing our data collection which we used for evaluation, and then
describe the dataset creation process. Then, we present our
research questions, evaluation metrics, experimental design,
and results.

A. DATA COLLECTION
We obtained a large collection of unique benign and mali-
cious JPEG images. The benign images were collected from
social media (Facebook, Instagram, WhatsApp, etc.); we
focus on viral images of different file sizes and on different
topics (memes, food, personal photos from social media,
etc.).We verified that the images are benign by scanning them
using VirusTotal. We make the assumption that these images
do not contain unknown threats. The malicious images were
collected from VirusTotal. We only used JPEG images that
were labeled as malicious by at least five (out of 69) antivirus
engines. We set our threshold at five, a level that we feel
is sufficient for determining whether a file is malicious for
the following reasons. 1) Antivirus engines primarily rely on
known signatures of malware and have zero false positives; if
a malware signature is found in a file, the file almost certainly
contains malware. When combining five different reliable
antivirus engines, the certainty increases. 2) A threshold of
five was also used in previous research in the field of malware
detection [51]– [53]. The query we used to retrieve mali-
cious JPEG images from VirusTotal is: ’p:5+ and (type:jpeg)
fs:2016-01-01+’. This query searches VirusTotal for JPEG
files uploaded since the beginning of 2016 that were labeled
as malicious by at least five antivirus engines. Additional
information on VirusTotal search modifiers can be found on
their website. 22

We verified that all of the files in our collection were actual
images using an automated code that we wrote which verifies
that a file has JPEG characteristics. Our collection includes
156,818 images in total: 155,013 (98.9%) benign and 1,805
(1.15%) malicious, which were collected between 2016 and
2018.

Note that the percentage of malicious images in our col-
lection is extremely low (1.15%). We prepared our collection
that way intentionally, so that the collection reflects (as much
as possible) the ratio between malicious and benign JPEG
images in the real world. According to Moskovitch [54] who

19http://scikit-learn.org/stable/
20https://xgboost.readthedocs.io/en/latest/
21https://lightgbm.readthedocs.io/en/latest/
22https://www.virustotal.com/intelligence/help/file-search/
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FIGURE 6. Distribution of threats in our malicious collection.

dealt with the issue of imbalanced collections in the cyber
security domain, the most realistic detection performance
is achieved when the percentage of malicious files in the
training set is equal to the percentage in the real world.
Note also that the extremely low percentage of malicious
instances (positive) in the collection makes the detection of
malicious images extremely difficult.
Figure 6 presents the distribution of threats in our mali-

cious JPEG image collection, in a pie chart, sorted from the
most common threat included in the collection to the most
uncommon threat. We derived the specific type of threat for
each malicious file by inspecting the identification provided
by different antivirus engines from the VirusTotal report for
each file. As can be seen, our malicious JPEG dataset contain
a diverse range of threats. 36% of the images use an Iframe
HTML tag for malicious purposes, 26% contain malicious
PHP code, 10% contain a Trojan, 6% use JavaScript code, 6%
exploit some vulnerability in the system, 5% contain a virus,
4% contain HTML code for malicious purposes, 4% contain
some malicious script, 2% contain a cryptocurrency miner,
and 1% contain ransomware. One percent of the malicious
files target the Android OS.

B. DATASET CREATION
We wrote a Java program which creates a dataset (i.e., a
dataset creator program). The input for the program is a Java
implementation of a feature extraction method. The dataset
creator applies the feature extractor (with the desired config-
uration) on all of the files in a given collection and combines
the feature vectors into a final ∗.CSV dataset. We imple-
mented all of the abovementioned generic feature extraction
methods, as well as a feature extractor which extracts the
MalJPEG features.

In order to compare the MalJPEG features with fea-
tures extracted using generic feature extraction methods,
we created various datasets. Each dataset represents a spe-
cific feature extraction method with a specific configuration.

To accomplish this, we applied our dataset creator program
with all of the abovementioned feature extractors and various
configurations, on our JPEG image collection, in order to
create a collection of datasets.

C. RESEARCH QUESTIONS
In order to evaluate the effectiveness ofMalJPEG in detecting
malicious JPEG images, we designed experiments to answer
the following research questions:

1. Can machine learning-based classifiers that have
been trained on MalJPEG features efficiently detect
unknown malicious JPEG images?

2. Do machine learning classifiers that have been trained
on MalJPEG features provide better detection results
than machine learning classifiers that have been trained
on features extracted using histogram and Min-Hash
generic feature extraction methods?

3. How does the MalJPEG feature extractor perform in
comparison to the generic feature extraction methods
in terms of time complexity?

4. Which classifier provides the best detection results
with MalJPEG features: Decision Tree, Random For-
est, LightGBM, XGBoost or K-Nearest Neighbors

5. How does the MalJPEG feature extractor perform in
comparison to the generic feature extraction methods
in terms of time complexity?

6. DoesMalJPEG,when used with the classifier that pro-
vides the best detection results, provide better detection
results than existing widely used antivirus engines?

D. EVALUATION METRICS
For evaluation purposes, we calculated the true positive rate
(TPR) and the false positive rate (FPR) of each classifier.
The TPR and FPR are the most important metrics in our
domain of malware detection; a viable detection system must
maintain a high TPR (representing the system’s ability to
successfully detect positive samples – malicious) and a low
FPR (the system’s capability of avoiding false alarms for
negative samples – benign). Note that since our dataset is
highly imbalanced, it is extremely important to use the TPR
and FPR metrics instead of the well-known accuracy metric,
as they represent the classifier’s accuracy and false positives
for the minority class only, i.e., malicious. Note also that the
TPR and FPR are complementary to the true negative rate
(TNR) and false negative rate (FNR).
In addition, we measured the area under the receiver oper-

ating characteristic (ROC) curve, or the AUC, of the machine
learning classifiers presented in Section IV-C, trained and
tested on different datasets. The ROC curve is created by
plotting the true positive rate (TPR) against the false positive
rate (FPR) at various threshold settings. In order to achieve
a high AUC, a high TPR and low FPR are needed at each
threshold. The AUC is a preferred metric (over the accuracy
metric) for comparing machine learning algorithms applied
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on datasets (balanced or imbalanced, binary or multiclass) as
suggested by [55], [56].

In order to calibrate the threshold (a value between zero
and one) that optimizes the classifier’s detection results,
we needed a metric that integrates the TPR and FPR. Thus,
we used the integrated detection rate (IDR) proposed by [3].
IDR = TPR ·(1−FPR) = TPR ·TNR. As can be seen, theIDR
integrates theTPR andFPRmetrics.Since there is a trade-off
between the TPR and FPR values, the IDR metric will have
a maximum point at which the trade-off between the TPR
and the FPR is optimal. The IDR measure makes it easier
to identify the optimal point at which the TPR and TNR (1-
FPR) are the highest. The well-known F-measure (or F1)
metric is not adequate for our purpose of threshold calibration
as it lacks the FPR metric. The F-measure is the harmonic
mean of the Precision and Recall metrics; Recall is the same
as the TPR metric, however Precision is not equal to the
FPRmetric. The FPR is a very important metric for malware
detection systems as it represents the percentage of false
alarms. A viable malware detection system must maintain a
high TPR with a low FPR. The difference between using the
IDR and F-measure for threshold calibration becomes very
significant when coping with imbalanced datasets [3], such
as the dataset used in this research.

E. EXPERIMENTAL DESIGN
Our experimental design is aimed at providing clear and
practical answers to the abovementioned research questions.

The experiments were performed using the 10-fold cross-
validation configuration (unless otherwise stated), and the
fold results were grouped using average function. The cross-
validation setup divides the dataset into training and test
sets 10 times; each time the machine learning classifiers are
trained on nine folds of the dataset and tested on the remain-
ing fold. That ensures that the results reflect the detection of
unknown malicious JPEG images.

Recall that since our collection is extremely imbalanced
(just 1.15% malicious instances), the classification problem
is much more difficult. In addition, classifiers which are
susceptible to imbalanced datasets must be configured, and
their threshold must be adjusted in order to achieve their
optimal results in terms of TPR and FPR. We evaluated the
classifiers with different threshold configurations and only
present the results of the threshold which maximizes the IDR
(combination of TPR and FPR).

1) EXPERIMENT 1 – COMPARISON OF FEATURES USING
MACHINE LEARNING CLASSIFIERS
In this experiment, we compare the detection results of the
machine learning classifiers leveraging both MalJPEG fea-
tures and features extracted using generic feature extraction
methods.

First, we apply machine learning classifiers on datasets
created using theMalJPEG feature extractor (which extracts
the features described in Section IV-A) and different generic
feature extraction methods with various configurations.

TABLE 3. Generic feature extraction methods used and their
configurations.

Table 3 presents the configurations that we used for each
of the feature extractors. With regard to the generic feature
extraction methods, the specific configurations were chosen
because previous studies indicated that they were well-suited
for use with machine learning for malware detection. For
example, the Min-Hash method was found to be effective
when using 200 hash functions. We chose to examine differ-
ent window sizes for different basic units (byte, char). The
histogrammethod was found to work best with a window size
= 1024 and stride= 256. Each unique configurationwas used
to produce a single dataset.

2) EXPERIMENT 2 – COMPARISON OF FEATURE
EXTRACTION TIME COMPLEXITY
In this experiment, we compare theMalJPEG feature extrac-
tor against the generic feature extraction methods in terms of
time complexity. In order make this comparison, we applied
all of the feature extractors on each file in our JPEG image
collection (156,818) and measured the time it takes for the
extractor to extract features from a single image. We compare
the average time it takes for each extractor to extract features
from files of different sizes.

In order to establish a fair benchmark, we warm up the Java
virtual machine (JVM) so that all of the relevant classes are
loaded in the cache, and thus can be accessed faster during
runtime, equally for all feature extractors. We repeated this
experiment five times and average the results.

3) EXPERIMENT 3 – COMPARISON WITH ANTIVIRUS
ENGINES
In this experiment, we compare the TPR of leading antivirus
engines with the TPR of the classifier that provided the best
AUC in Experiment 1. We used the VirusTotal online Web
service to obtain a comprehensive analysis of our malicious
JPEG image collection, which contains 1,805 images, and
their classification based onVirusTotal’s 69 antivirus engines.
We analyzed the report produced byVirusTotal and calculated
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the TPR for each engine by dividing the number of images
that were recognized correctly as malicious by the total num-
ber of malicious images (1,805).

4) EXPERIMENT 4 – REAL-LIFE UNKNOWN MALWARE
DETECTION
In this experiment, we testedMalJPEG in a real-life scenario
in which the machine learning classifiers are tested only on
more recently created files, i.e., instances that come later in
time than the instances that the model was trained on.

The rationale behind this experiment is that in real-life,
malicious files are created regularly, some of which are
new and unknown in terms of the type of threat they pose,
the vulnerability they exploit, their malicious way of action,
etc. In this experiment, we want to demonstrate MalJPEG’s
detection capabilities on a dataset that represents this real-life
scenario involving unknown instances.

We created a dataset with MalJPEG features and sorted
the malicious instances based on the ‘‘First Seen’’ field of the
VirusTotal report which denotes when the example was first
introduced to VirusTotal. The First Seen field is our best indi-
cator of the length of time a malicious JPEG image has been
in the wild (i.e., the age of themalicious JPEG image). For the
experiment, we derived five different datasets from the orig-
inal sorted dataset, each of which uses a different percentage
of instances to train the model: 50%, 66.6%, 75%, 80%, and
90%. For example, we trained machine learning classifiers
on the first X% of the malicious and benign instances, and
tested the model on the remaining instances. The lower the
training percentage, the more difficult the experiment. In this
experiment, we did not use the 10-fold cross-validation setup.

It is important to mention that it is likely that some of
the ‘‘newer’’ files used to test the model are variants of
‘‘older’’ files used to train the model. Since variants of the
same malware are assumed to be similar, is it possible that
our model was already trained on samples that are similar to
‘‘newer’’ samples; thus, the ‘‘newer’’ samples are not always
completely different from ‘‘older’’ ones, and there usually is
some similarity between them. Therefore, the first experiment
which applied 10-fold cross-validation is still relevant, and
the fourth experiment adds a different perspective.

F. RESULTS
1) EXPERIMENT 1
Figure 7 presents a comparison between the detection results
of the Random Forest classifier, evaluated on datasets created
using the histogram methods presented in Table 3; we only
provide the detection results of the Random Forest classifier,
because it outperforms all of the other classifiers used in our
experiments on all of the datasets created using the histogram
methods.We set the Random Forest threshold to 0.05 (instead
of the default of 0.5) to achieve the best results. The results
are sorted from the highest to the lowest according to the
AUC metric. As can be seen, the best results were achieved

FIGURE 7. Detection results for the Random Forest classifier on datasets
created using different histogram feature extraction methods.

FIGURE 8. Detection results for the K-Nearest Neighbors classifier on
datasets created using Min-Hash feature extraction methods with
different configurations.

using the byte entropy histogram: TPR= 0.805, FPR = 0.05,
IDR= 0.765, and AUC = 0.893.
Figure 8 presents a comparison between the detection

results of the K-Nearest Neighbors classifier evaluated on
datasets created using the Min-Hash methods. It is important
to mention that the K-Nearest Neighbors classifier is the
only classifier to use with Min-Hash datasets, since it is the
only classifier that can actually compareMin-Hash signatures
using a distance function (see Section IV-B.2; there is no
actual order between the Min-Hash signature’s numbers, thus
regular machine learning algorithms are not effective on it.
We used the K-Nearest Neighbors classifier with K = 5
and distance function = Hamming. We set the K-Nearest
Neighbors classifier threshold to 0.05 (instead of the default
of 0.5) to achieve the highest results. The results are sorted
from the highest to the lowest according to the AUC metric.
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FIGURE 9. Detection results of the machine learning classifiers on a
dataset containing MalJPEG features.

TABLE 4. Summary of the configurations that provide the best results for
both histogram and Min-Hash methods.

As can be seen, the best results were achieved on the dataset
created usingMin-Hash based on ten-size byte shingles (TPR
= 0.807, FPR = 0.064, IDR = 0.755, and AUC = 0.891),
or on ten-size char shingles (TPR= 0.810, FPR= 0.054, IDR
= 0.766, and AUC = 0.895).

Figure 9 presents the detection results of the machine
learning classifiers applied on a dataset containingMalJPEG
features. The optimal threshold (the one that maximizes the
IDR) for the classifiers is 0.05. The results are sorted from
the highest to the lowest according to the AUCmetric. As can
be seen, the LightGBM classifier achieved the highest AUC
= 0.997, with TPR = 0.951, FPR = 0.04, and IDR =
0.948.These results answer the first and the second research
questions and show that machine learning-based classifiers
that have been trained on MalJPEG features can efficiently
detect unknown malicious JPEG images.

Table 4 presents a summary of the configurations that pro-
vide the best results for all of the abovementioned methods,
both generic feature extraction methods and the MalJPEG
feature extractor. As can be seen, the best configurations
for the histogram and Min-Hash methods provide nearly
the same results. However, the LightGBM classifier trained
on MalJPEG features provides significantly better detection

FIGURE 10. The average time required for each feature extractor to
extract features from JPEG images in our image collection based on the
file size.

results in terms of the TPR, FPR, and AUC, with significantly
less features required. It is important to clarify that the best
detection results of the entropy histogram and Min-Hash
methods (presented in Table 4) are not bad when considering
that our dataset is extremely imbalanced and contains just
1.15% malicious instances. This also emphasizes the supe-
rior results obtained with MalJPEG features in comparison
to features extracted using the best of the abovementioned
generic feature extraction methods.

2) EXPERIMENT 2
Figure 10 presents the average time (inmilliseconds) required
for each feature extractor to extract features from images in
our collection (the y-axis presents the time in milliseconds,
and the x-axis presents the file size in KB). As can be seen,
as the file size grows, it takes more time for all of the feature
extractors to extract the features. One can also see that 1) the
slowest feature extractor is Min-Hash (dark blue); 2) the
byte entropy histograms behave almost the same (gray and
yellow); and 3) the MalJPEG feature extractor (green) is the
fastest, and it behaves similarly to the byte and char histogram
methods (orange and light blue). Table 5 contains the values
presented in Figure 10 for the following file size ranges: 0-
1000KB and 7500-9600KB.

3) EXPERIMENT 3
Figure 11 presents a comparison between the TPR achieved
by the LightGBM classifier (achieved the best results in
Experiment 1) trained on MalJPEG features and the top
12 antivirus engines out of VirusTotal’s 69 antivirus engines.
As can be seen, our method significantly outperforms all of
the leading antivirus engines. Our method achieved a TPR
of 0.951, while the most accurate antivirus, Fortinet, had a
TPR of 0.823; therefore, our method is ∼15.5% better at
the task of malicious JPEG image detection than Fortinet.
It is important to mention that the average TPR of the top
12 antivirus engines (0.73) is relatively low in comparison to
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TABLE 5. The average time required for each feature extractor to extract
features from JPEG images in our collection based on the file size.

FIGURE 11. The TPR for the LightGBM classifier obtained in Experiment 1
compared to 12 top antivirus engines.

the average TPR of the classifiers we used in the previous
experiment (0.929).

4) EXPERIMENT 4
Figure 12 presents the detection results of the LightGBM
classifier which provided the best detection results on the five
real-world datasets used in this experiment. The results are
sorted from the lowest to the highest according to the AUC
metric. The LightGBM classifier achieved AUCs between
0.975 and 0.996, TPRs between 0.865 and 0.911, FPRs
between 0.001 and 0.09, and IDRsbetween 0.864 and 0.903.
As in the first experiment, the optimal threshold for the
LightGBM classifier is 0.05. In general, the detection results
achieved by each of the classifiers, and LightGBM in particu-
lar, are slightly lower (in terms of the AUC and TPR) than the
corresponding results of the same classifiers in Experiment
1. Yet, these results still demonstrate that machine learning-
based classifiers trained onMalJPEG features can efficiently
detect unknownmalicious JPEG images in a real-life scenario

FIGURE 12. Detection results of the LightGBM classifiers on five real-life
datasets (%train-%test) containing MalJPEG features.

in which the classifier is tested only on future unknown
instances.

To further analyze the results, we examined the prop-
erties of misclassified malicious samples (false negatives),
which totaled 16, in order to understand why they were
misclassified. We tried to determine whether they have com-
monalities and if they differ from the samples which were
classified correctly (true positives). We found that 13 of the
16 samples contain a Trojan with a backdoor labeled as
‘PHP/Agent.VD!tr.bd’, two contain an exploit (CVE-2010-
0028 and CVE-2012-0897), and one contain a ransomware
labeled as ‘W32/Ransom.AAN!tr’ (the labels and CVEs pro-
vided by the Fortinet antivirus engine). However, only the
samples which contain exploits are unique to the misclassi-
fied samples; the remaining 14 samples contain threats that
are also found in the true positive samples. In addition, we did
not find any characteristics in the features of the 16 misclas-
sified samples which differentiate them from the true positive
samples and could cause the classifier to misclassify them.

VI. DISCUSSION AND CONCLUSION
In this paper, we present MalJPEG, a machine learning-
based solution for efficient detection of unknown malicious
JPEG images. To the best of our knowledge, we are the
first to present a machine learning-based solution tailored
specifically for the detection of malicious JPEG images.
MalJPEG extracts 10 simple but discriminative features from
the JPEG file structure and leverages them with a machine
learning classifier, in order to discriminate between benign
and malicious JPEG images.
MalJPEG features are extracted based on the structure of

the JPEG image. MalJPEG features were defined based on
an understanding of how attackers use JPEG images in order
to launch attacks and how it affects the JPEG file structure
in comparison to regular benign JPEG images. The features
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are simple and relatively easy to extract statically (without
actually viewing the image) when parsing the JPEG image
file.

We evaluateMalJPEG in four experiments. For our evalua-
tion, we used a very large collection of 156,818 JPEG images:
155,013 (98.9%) benign and 1,805 (1.15%) malicious, col-
lected between 2016 and 2018 from social media (benign
images) andVirusTotal(malicious images). Note that the per-
centage of malicious images in our collection is extremely
low (1.15%). We intentionally prepared our collection that
way so the collection reflects, as much as possible, the low
percentage of malicious images (compared to benign images)
in the real world. Note also that the extremely low percentage
of malicious instances (positive) in the collection makes the
detection of malicious images in our experiments extremely
difficult.

In the first experiment, we compared the detection results
of machine learning classifiers evaluated on datasets created
using two generic feature extractionmethods proposed in pre-
vious studies, (histogram and Min-Hash), with various con-
figurations, against MalJPEG features. The results showed
that the best configurations of the histogram (byte entropy
histogram) and Min-Hash methods provide roughly the same
results using the Random Forest classifier: TPR = 0.810,
FPR = 0.054, and AUC = 0.895. However, the results of
this experiment also showed that the LightGBM classifier
trained onMalJPEG features provides improved results: TPR
= 0.951, FPR = 0.004, and AUC = 0.997. It is important
to emphasize that MalJPEG is capable of providing these
significantly better detection results using only 10 features,
in comparison to the Min-Hash and histogram methods,
which used 200 and 2048 features respectively. These results
also prove that MalJPEG features are discriminative, thus
allowing machine learning classifiers to distinguish between
malicious and benign JPEG images, although the dataset is
highly imbalanced.

In the second experiment, we compared the time complex-
ity of the MalJPEG feature extractor to the generic feature
extraction methods, for all of the files in our image collection.
The results showed that the MalJPEG feature extractor is
the fastest (24ms for an average file of 200-300KB) and
outperforms all of the other feature extractors.

In the third experiment, we compared MalJPEG based on
the LightGBM classifier (which achieved the best detection
results in Experiment 1), to 12 leading antivirus engines.
The results showed that the TPR of the LightGBM classifier
significantly outperforms all of the top 12 antivirus engines in
the task of malicious JPEG image detection. The LightGBM
classifier is 15.5% better than the most successful antivirus
engine in this experiment, Fortinet, which achieved a TPR
of 0.823. Bearing in mind that our malicious JPEG collection
only contains known threats collected from VirusTotal, this
experiment clearly demonstrates the inability of even the
leading antivirus engines to detect malicious JPEG images
containing known threats. Antivirus engines which are based
solely on signatures can only detect known threats if they are

constantly and quickly updated with their signatures. In con-
trast, MalJPEG which is machine learning-based, is able to
effectively detect both known and unknown malicious JPEG
images.

In the fourth experiment, we tested MalJPEG on
five datasets which represent a real-life scenario in
which we trained the machine learning model on prior
instances (chronologically) and tested the model only on
unknown future instances. The datasets differ from each other
by the percentage of instances used for model training (50%,
66.6%, 75%, 80%, and 90%); the lower the training percent-
age, the harder the experiment. The best detection results
were achieved by the LightGBM classifier, which obtained
AUCs between 0.975 and 0.996, TPRs between 0.865 and
0.911, FPRs between 0.001 and 0.09, and IDRs between
0.864 and 0.903. These detection results are slightly worse
than the corresponding results obtained in Experiment 1,
yet they still demonstrate that a machine learning-based
classifier trained on MalJPEG features can also efficiently
detect unknownmalicious JPEG images in a real-life scenario
in which the classifier is tested on future unknown instances.

Given the threats posed against individuals, businesses,
and organizations by cyber attackers using malicious
JPEG images, a comprehensive detection method is clearly
required.MalJPEG provides efficient detection of known and
unknownmalicious JPEG images.MalJPEGworks relatively
fast, thus supporting real-time performance requirements for
the detection of large image streams. In addition, MalJPEG
can be parallelized easily and scaled to cope with the massive
amount of images in the large-scale systems of enterprises.
Based on the results of our experiments, it would be valuable
to implement MalJPEG, in order to protect organizations,
cloud services (e.g., Microsoft Office 365, Google Drive,
etc.), social media (Facebook, Instagram, etc.), and their
users from malicious JPEG images.
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