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ABSTRACT Currently, renewable-energy-based power generation is rapidly developing to tackle climate
change; however, the use of renewable energy is limited owing to the uncertainty related to renewable
energy sources. In particular, energy storage systems (ESSs), which are critical for implementing wind
power generation (WPG), entail a wide uncertainty range. Herein, a reinforcement leaning (RL)-based
ESS operation strategy is investigated for managing the WPG forecast uncertainty. First, a WPG fore-
cast uncertainty minimization problem is formulated with respect to the ESS operation, subject to ESS
constraints, and then, the problem is presented as a Markov decision process (MDP) model, with the
state-action space limited by the ESS characteristics. To achieve the optimal solution of the MDP model,
an expected state–action–reward–state–action (SARSA)method, which is robust toward the dispersion of the
system environment, is employed. Further, frequency-domain data screening based on the k-mean clustering
method is implemented to improve learning performance by reducing the variance of the WPG forecast
uncertainty. Extensive simulations are conducted based on practical WPG generation data and forecasting.
Results indicate that the proposed clustered RL-based ESS operation strategy can manage the WPG forecast
uncertaintymore effectively than conventional Q-learning-basedmethods; additionally, the proposedmethod
demonstrates a near-optimal performance within a 1%-point analysis gap to the optimal solution, which
requires complete information, including future values.

INDEX TERMS Energy storage, forecasting, Markov decision process, mean absolute error, reinforcement
learning, reliability, renewable, uncertainty, wind power.

NOMENCLATURE
T Operation time horizon, i.e., T =

{1, · · · , t, · · · ,T }
1T Operation time interval [h]
gt Actual wind power generation at time t
ĝt Wind power generation forecasting at time t
et Forecast error at time t , i.e., et = ĝt − gt

ENERGY STORAGE SYSTEM
at Action at time t
qt Charge/discharge quantity at time t
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ct State of charge at time t
CPS Power subsystem (PS) capacity [kW]
CES Energy subsystem (ES) capacity [kWh]
ηPS Compensation factor for PS within (0, 1]
ηES Compensation factor for ES within (0, 1)

OPERATION STRATEGY
sti State i at stage t
St Available state set at stage t , i.e., sti ∈ St
atj Action j at stage t
At Feasible action set at stage t , i.e., atj ∈ At
rt Reward at stage t
Rt Return at stage t , i.e., Rt = rt + γRt+1
γ Discount factor within (0, 1]
α Learning rate within (0, 1]

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 20965

https://orcid.org/0000-0002-3161-8255
https://orcid.org/0000-0002-0672-7775
https://orcid.org/0000-0003-2332-8095


E. Oh, H. Wang: Reinforcement-Learning-Based Energy Storage System Operation Strategies

Q(st , at ) State-action
value function

K Number of data clusters
c Set of data clusters, i.e., c = {c1, · · · , ck ,

· · · , cK }

I. INTRODUCTION
In 2018, global primary energy consumption increased by
2.9%, which is the highest rate of primary energy con-
sumption over the last 10 years; in addition, the global
power demand increased by 3.7% [1]. On the supply side,
the increase in renewable-energy-based power generation
was 14.5%, which significantly contributed to the overall
increase in energy consumption. Owing to environmental
problems such as climate change, a continuous increase in
renewable-energy-based power generation is expected [2].
In particular, the globally produced wind energy corresponds
to approximately 20% of the electricity power generated
using renewable energies [3].

An increase in renewable-energy-based power generation
decreases the power grid stability [4], [5]. Although various
power forecasting methods such as curve modeling [6],
the multimodel combination approach [7], vector autoregres-
sive model [8], and neural networks [9] were researched,
uncertainty cannot be completely eliminated owing to the
intermittent and fluctuating nature of renewable energy
resources.

Energy storage systems (ESSs) are critical for the manage-
ment of wind power generation (WPG) forecast uncertain-
ties [10]. The fundamental role of an ESS is the charging
of chemical, physical, or electrical materials with surplus
energy and the discharging of energy according to the oper-
ational objective. Battery energy storage systems (BESSs)
were recently considered because of their convenient con-
trol and operational efficiency [11]. To better schedule the
ramping capacity of the ESS and a generation unit, a con-
tinuous time method based on coefficients of the Bernstein
polynomial is proposed herein that provides, compared to
existing approaches, a more accurate representation of the
sub-hourly ramping needs following fast sub-hourly ramp-
ing of WPG [12]. A systematic approach to evaluate the
level of flexibility of a power system by unequivocally con-
sidering fast-ramping units, hourly demand response and
energy storage is provided that is considered a flexibil-
ity index to evaluate the system’s technical aptitude [13].
A stochastic optimization framework to coordinate the flex-
ibility resources dealing with the uncertainty of WPGs and
equipment failures is formulated as mixed-integer linear
programming [14]. ESSs are implemented in various appli-
cations for wind power generation, such as frequency regu-
lation, peak shaving, and ancillary services [15]–[17]. To use
ESSs for the management of WPG forecast uncertainty, vari-
ous approaches have been researched in the literature—meta
heuristic-based approaches such as the genetic algorithm
(GA) [18], particle swarm optimization (PSO) [19], mixed

hybrid algorithm approaches [20], scenario-based stochastic
approaches [21], and discrete Fourier transform (DFT)-based
approaches [22]. However, owing to the recursion of the ESS
operation, a generalized methodology is required.

This study focuses on a reinforcement learning (RL)-based
ESS operation. RL is useful for generalization as it enables
the design of model-free approaches [23]. Hence, in recent
years, various studies have been conducted using RL for
energy management. For energy-efficient electric vehicle
management, an RL-based velocity predictive energy man-
agement strategy [24] and an RL-based real-time energy
management approach were employed to minimize the
energy loss of the ESS in a plug-in hybrid electric vehi-
cle [25]. For an adaptive demand response (DR), a fully
automated energy management scheduling was formulated
as an RL problem, and then solved by decomposing the
problem over device clusters [26]. Moreover, RL is used
as the decision-making framework for dynamic pricing-
based demand response programs [27]. Several RL-based
approaches for DR are summarized in [28]. In addi-
tion, RL-based energy management algorithms were imple-
mented in microgrid (MG) environments to maximize the
self-consumption of local photovoltaic production [29], sup-
plier and consumer profits [30], [31], the utilization of a
community ESS [32], [33], and energy trading among MG
to increase utilization [34]. Furthermore, RL-based man-
agement algorithms can be implemented in various appli-
cations such as smart building energy management [35],
power smoothing [36], prosumer energy trading [37], [38],
and electricity market trading [39] in addition to opera-
tions and the maintenance of power grids [40]. Majority
of the previous research was based on Q-learning. This is
because Q-learning-based algorithms that directly approxi-
mate a value function as the optimal action-value function
simplify algorithm implementation and enable early con-
vergence [41]. However, typically, these algorithms cannot
converge to optimal strategies because of the perturbation of
parameters [42].

Herein, an RL-based ESS operation strategy is proposed
for the management of WPG forecast uncertainty. The ESS
operation was modeled using a Markov Decision Process
(MDP), while considering its operational characteristics.
Using the model, an expected state–action–reward–state–
action (SARSA)-based ESS operation strategy was employed
for managing the WPG forecast uncertainty. An expected
SARSA is more robust to the dispersion of the system
environment rather than the Q-learning method; hence, it is
suitable for the management of WPG forecast uncertainty.
Moreover, to reduce the perturbation of parameters, the pro-
posed ESS operation strategy combines the expected SARSA
with frequency domain data clustering. The WPG forecast
uncertainty is related to the frequency domain characteristics
of WPG forecasting [22]. Screening data using frequency
domain forecasting data clustering improves the effectiveness
of the proposed ESS operation strategy by reducing learning
variability.
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FIGURE 1. Wind power generation (WPG) system model with an energy
storage system (ESS).

The remainder of this article is organized as follows.
Section II describes system models and problem formulation
of the ESS operation. Section III discusses the design of the
proposed strategy. Section IV presents measurement studies
using practical WPG generation, and its forecasting data is
applied to the proposed strategy. Finally, Section V presets
the study’s conclusion.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. UNCERTAINTY MODEL
In this study, a grid-connected WPG system was considered.
Under the assumption that gt and ĝt represent the actualWPG
and its forecasting at time t , respectively, the WPG forecast
uncertainty at time t is defined as

et = ĝt − gt . (1)

An ESS was added to reduce the uncertainty, as shown
in Figure 1. With the inclusion of the ESS operation, which
involves charging or discharging energy qt , the uncertainty
can be calculated as follows:

εt = et − qt . (2)

The objective of the ESS operation is to eliminate the uncer-
tainty in (2). Therefore, the positive action of qt expresses the
discharge operation to grid and vice versa.

B. ENERGY STORAGE SYSTEM MODEL
The ESS contains a power subsystem (PS) and an energy sub-
system (ES) [22]. The PS constructed as the power conversion
system (PCS) limits the maximum instantaneous charging
and discharging power, and the energy stored in the ES deter-
mines the ESS service time. Therefore, the ESS operation
should be performed within these two constraint regions.

First, the ESS charging or discharging action at each deci-
sion time at is constricted by the maximum PS capacity CPS ,

−CPS ≤ at ≤ CPS , ∀t ∈ T, (3)

where T is the ESS operation time horizon, i.e., T =

{1, · · · , t, · · · ,T }. Considering that the PS efficiency

ηPS ∈ (0, 1], the actual operation quantity of PS qt can be
measured as follows:

qt =

{
ηPSat , if at ≥ 0,
at/ηPS , if at < 0.

(4)

Second, ESS action is operated in the stored energy range,
which is referred to as the state-of-charge (SoC). The SoC at
time t , represented by ct , can be expressed as follows:

ct = ct−1 + qt1T , (5)

where 1T is the operation time interval.
The ES capacity CES limits the SoC, i.e., the accumulated

ESS action, as follows:

Cmin
ES ≤ ct≤C

max
ES . (6)

Here, Cmin
ES and Cmax

ES represent the minimum and maximum
operable ES capacity ranges, respectively, under the consid-
eration of the depth of discharge. Similar to the PS compen-
sation factor, Cmin

ES = 0 and Cmax
ES = ηESCES can be obtained

using the ES compensation factor (efficiency) ηES∈ (0, 1].

C. PROBLEM FORMULATION
The aim of this study was to determine ESS operation action
for WPG forecast uncertainty management. The mean abso-
lute error (MAE) was used as the uncertainty management
performance metric.

During the ESS operation time horizon, the MAE was
calculated as follows:

O(a) =
1
T

∑
t∈T
|et − qt | =

1
T

∑
t∈T
|εt |, (7)

where a = {a1, · · · , at , · · · , aT }.
With the ESS operation constraints, the WPG forecast

uncertainty management problem solved by the ESS opera-
tion can be expressed as follows:

min
a

O(a)

subject to (3) and(6). (8)

With complete information, including the WPG on forward
time, the problem in (8) can be solved using iteration-based
search algorithms such as the gradient descent method and
the Newton method [43]. However, this assumption is not in
accordance with causality; thus, it cannot be implemented in
the real world [44]. However, for the performance comparison
with the proposed ESS operation strategy, the solution of this
problem based on complete information was considered as
the optimal solution.

III. RL-BASED ESS OPERATION STRATEGY
A. MARKOV DECISION PROCESS
The ESS operation for the management of the WPG forecast
uncertainty is a sequential decision-making (SDM) problem,
as expressed in (8). The Markov decision process (MDP)
is a classical formalization of SDM, and it is an idealized
mathematical form of the RL problem [23]. To meet the
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FIGURE 2. A state–action space model for ESS operation. State and
action ranges are limited by the ESS condition, i.e., ES and PS constraints.

optimal criteria under an MDP model, a state–action space
and transaction probability among states are required. How-
ever, an RL approach reduces the constraint of the require-
ment of the transaction probability among states. Therefore,
a state–action space is discussed in this section.

The ESS is operated during the operation time horizon T

with T decision epochs. Therefore, the state–action space for
the ESS operation has T + 1 decision stages, which include
the initial stage, as shown in Figure 2. Moreover, stages and
actions express the ESS conditions, i.e., the SoC and the ESS
operation, respectively.

At each stage, the state indicates that the SoC at the stage
is limited by the ES capacity, and all available states at stage
t can be expressed as follows:

St = {st1, s
t
2, · · · , s

t
i , · · · , s

t
κs
}, (9)

where κs = b(Cmax
ES − Cmin

ES )/δc with respect to the ES
capacity constraint expressed by (6), and b·c and δ represent
the floor operation and unit action step of the ESS operation,
respectively. The MDP-based RL approach is only solved
under the discrete condition; thus, discrete ESS operation
is required. Discrete ESS operation generates quantization
error; however, the error is bound according to the step
size [45].

Similar to the state, all operable actions are restricted by
the PS capacity, as follows:

A0 =
{
a0−κa , · · · , a

0
j , · · · , a

0
κa

}
, (10)

where κa = bCPS/δc, in accordance with the PS capacity
constraint expressed by (3).Moreover, the action at each stage
should be determined within the state range expressed by (9).
The next state is then determined by the current state and the
current action set, as follows:

st+1l ←< sti , a
t
j > . (11)

Hence, the feasible action range at stage t can be expressed
as follows:

At = {atjmin
, · · · , atj , · · · , a

t
jmax
, (12)

where jmin = max(−κa, 1− i) and jmax = min(κa, κs − i).

Figure 2 presents an example of the state–action model
for ESS operation when κs = 7 and κa = 2. The state
at Stage 1 is s17(= s1κs ); thus, the feasible action range is
A1 = {a1−2, a

1
−1, a

1
0}. With a1 = a1

−1 selected as the action at
Stage 1, the state at Stage 2 is s26, and it can be expressed as
follows:

s2 = s26←< s1, a1 >=< s17, a
1
−1 > . (13)

B. RL-OPTIMAL POLICY
An RL-based ESS operation involves the decision-making
of the action at each stage, under the consideration of the
current state and the feasible action range, as presented by
the previous MDP model.

The goal of the ESS operation is the minimization of the
WPG forecast uncertainty, which is represented by the MAE
during the ESS operation time horizon, as shown in (7).
Therefore, the objective function at decision stage t can be
expressed as follows:

Ot (at |et ) =
1
T

∑T

i=t
|εt |

=
1
T
|εt | +

1
T

∑T

i=t+1
|ε̂i|

=
1
T
|εt | + Ot+1(ât+1|êt+1), (14)

where the values with hats represent the expected values.
In RL, the objective function is modeled as the reward and

return. The reward represents the instantaneous value from
the action at each decision stage according to the environ-
ment and current state, as shown in Figure 1; additionally,
the return represents the cumulative reward time t onward.
With the reward at decision stage t represented by rt , it can be
expressed as the forecast uncertainty with the ESS operation
at decision stage t:

rt =
1
T
|εt |. (15)

Moreover, the return Rt is defined using the reward rt , as
follows:

Rt = rt + γ rt+1 + · · · + γ T−trT
= rt + γRt+1, (16)

where γ is the discount factor in (0, 1], which reduces the
risk of the expected value from the onward decision time.
Subsequently, the return in (16) is the discounted objective
function in (14).

To design the decision-making of the action, the state–
action value function is defined, which expresses the perfor-
mance of a determined action at a given state, as follows:

Q(st , at ) = E[Rt |st , at ]
= E[rt + γQ(st+1, at+1)|st , at ]. (17)

A policy π is a decision-making strategy of the action. It is
expressed as the transaction probability of an action, given
the state at each decision stage, i.e., π = Pr(at |st ),∀t∈ T,
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st ∈ St , at∈At . The optimal policy is the strategy imple-
mented for the minimization of the state–action value of all
states, π∗ = argminπQ(st , at ),∀t∈ T, st ∈ St , at∈At . With
respect to the state–action value function, it can be expressed
as Q∗(st , at ) = minπQπ (st , at ),∀t∈ T, st ∈ St , at ∈ At ,
where Qπ (st , at ) expresses the state-action value when the
policy π is applied. Based on (17), the Bellman optimality
equation for the state–action function can be expressed as
follows [46]:

Q∗(st , at ) = E[rt + γ min
at+1∈At+1

Q(st+1, at+1)|st , at ]

= E[rt + γQ∗(st+1, at+1)|st , at ]. (18)

The optimal state–action value function in (18) indicates that
the optimal policy is based on the decision of the local optimal
action at each decision state t , given that the expected reward
from the onward decision time is taken care of the optimal
value. Therefore, the optimal action is determined as follows:

a∗t = argmin
at∈At

Q∗(st , at )

= argmin
at∈At

E[rt |st , at ]+ γQ∗(st+1, at+1). (19)

If the state–action probability at each decision stage is
known, the optimal action in (19) is determined based on
the calculation of the optimal state–action function in (18)
using dynamic programming [46]. However, an impractical
method can be employed. In this study, the optimal policy is
learned by estimating the optimal state–value function using
model-free RL methods.

Owing to its simplicity, the Q-learning-based RL method
is widely used [24]–[40]. In the Q-leaning-based RL method,
the optimal action is estimated as follows:

aQLt = argmin
at∈At

[
rt + γ min

at+1∈At+1
QQL(st+1, at+1)

]
. (20)

Moreover, the state–action value function is updated as
follows:

QQL(st , at )← (1−α)QQL(st , at )

+α

[
rt+γ min

at+1∈At+1
QQL(st+1, at+1)

]
, (21)

where α is a learning rate of convergence in (0, 1].
However, the WPG forecast uncertainty contains signifi-

cantly high variances, which increase throughout the decision
time horizon [22]. This reduces the reliability of the expected
value from the onward decision time, i.e., QQL(st+1, at+1).
Consequently, the wrong decision is made in (20), and
the convergence speed of the state-action value function is
reduced to the optimal function in (21).

The expected SARSA-based RL method is more robust
to the variance of the state-action value from the onward
decision time [23]. Considering the mean of the state–action
value, the method reduces the sensitivity of the expected
values. In the expected SARSA-based RL method, the action
is determined as follows:

aESt = argmin
at∈At

[
rt + γEAt+1

{
QES (st+1, at+1)

}]
. (22)

The state-action value function is updated as follows:

QES (st , at )← (1−α)QES (st , at )

+α
[
rt+γEAt+1

{
QES (st+1, at+1)

}]
. (23)

C. FREQUENCY DOMAIN DATA CLUSTERING
The expected SARSA is the approach employed for the
reduction of the risk due to the variance of the uncertainty
during the operation process. However, the data pre-process
is an effective technique that can be employed to increase the
learning performance [47].

The WPG forecasting accuracy, which determines the
WPG forecasting performance, is related to the gradient of
the time-series data [22]. This is because the WPG forecast-
ing algorithm cannot easily track the instantaneous changes
of the data. Therefore, the frequency-domain analysis is an
effective method for the characterization of the WPG fore-
cast uncertainty [48]. The time-series WPG forecasting data
is converted to a frequency-domain sequence using DFT,
as follows:

Gj=
∑T

t=1
ĝte−j2π(t−1)(j−1)/T , j={1, · · · , J} , (24)

where j is the frequency element with the same length as the
time-series WPG forecasting sequence, J = T , and G =
{G1, · · · ,Gj, · · · ,GJ }.

For the data pre-processing, a k-means clustering tech-
nique was employed. The k-mean clustering algorithm is
a vector quantization method for the classification of data
into K clusters [49]. Mathematically, it is formulated for the
determination of sets c = {c1, · · · , ck , · · · , cK },

argmin
c

∑K

k=1

∑
G∈ck
||G− µk ||2, (25)

where || · ||2 expresses the Euclidean norm operation, and
µk represents the mean points with T -dimensional space in
ck . The problem is a type of NP-hard problem [50]; however,
it can be solved using the Lloyd algorithm, which repetitively
determines the centroids of Voronoi diagrams [49].

D. CLUSTERED RL-BASED ESS OPERATION STRATEGY
The proposed strategy is an expected SARSA-based ESS
operation method that combines frequency-domain WPG
forecasting data clustering, i.e., a clustered RL-based ESS
operation strategy. Furthermore, it includes data preprocess-
ing and optimal policy learning, as follows:

In the proposed clustered RL-based ESS operation algo-
rithm, the WPG forecasting data is first clustered under
the consideration of the frequency-domain characteris-
tic (Steps 1–7). To apply the k-means clustering method,
the number of clusters and mean points of the clusters should
be determined. Given that the number of Q-tables is deter-
mined according to the number of clusters, the cluster number
is determined according to the memory condition of the sys-
tem in Step 2. In addition, the mean points of the clusters can
be determined using the historical WPG forecasting data in
Step 3. By converting the time-series WPG forecasting data
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Algorithm 1 A Clustered RL-Based ESS Operation Algo-
rithm
Datapreprocessing
1: Initialization
2: Set a number of clusters K .
3: Train mean points µk using historical WPG

forecasting data.
4: Data clustering
5: Convert to a frequency-domain sequence G using

(24).
6: Set cluster k as k = argmink ||G− µk ||2.
7: Update µk including G.
Optimal policy learning
8: Initialization
9: Set QES as Qk from Q = {Q1, · · · ,QK }.
10: Set s1← c0 and A1 using (12).
11: Policy learning
12: For t = {1, · · · ,T },
13: Set aESt in At using (22).
14: Update st+1, At+1, and QES using (11) and (23).
15: end for

to a frequency-domain sequence in Step 5, the data cluster
containing the minimum Euclidean distance with respect to
the mean points of the clusters in Step 6 is set. Thereafter,
the cluster selected on the basis of the mean point is updated
considering the data in Step 7.

In the optimal policy learning process, the k-th Q-table is
loaded according to the selected cluster k in Step 9. The initial
state s1 is considered as the current ESS condition c0, and the
ESS action range is determined based on the state and ESS
characteristic in Step 10. The policy learning is processed
during the ESS operation time horizon T (Steps 12–15). The
optimal action is selected to minimize the expected reward
(mean absolute error) in Step 13. The next state, which is
the action range of the next state and the Q-table, is updated
according to the selected optimal action in Step 14. When the
stage is the terminal stage, i.e., t = T ; the Q-value of the next
stage is set to zero in Steps 13 and 14.

The procedure of the proposed clustered RL-based ESS
operation algorithm is presented in Figure 3 as a flowchart.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL ENVIRONMENT
The results of this study were evaluated using WPG and its
forecasting data recorded by the Bonneville Power Admin-
istration (BPA), United States Department of Energy. The
BPA is a non-profit federal power marketing administra-
tion based in the Pacific Northwest [51]. The BPA territory
includes Idaho, Oregon, Washington, western Montana, and
small portions of eastern Montana, California, Nevada, Utah,
and Wyoming. The cumulative WPG capacity in the BPA
balancing authority area was 4782 MW from 2015–2017,
which decreased to 2764MW in July 2018. Therefore, herein,
the data obtained for 360 days in 2017 was used.

FIGURE 3. Flowchart of the proposed algorithm.

FIGURE 4. MAE of the BPA WPG forecasting with respect to forecasting
time horizon.

The MAE of the BPA WPG forecasting increased accord-
ing to the forecasting time horizon, as shown in Figure 4.
In particular, the variance of the forecasting error increased,
as indicated by the bar in the figure that presents the error
range from the 10%–90% quantiles of the total error range.
The error dispersion increases the difficulty of the ESS oper-
ation. Therefore, this study reveals the performance with
respect to the changes in the forecasting time horizon. For
a generic explanation, the results are presented as the value
related to the WPG capacity; thus, quantities are expressed in
per-unit (p.u.).

Lithium-ion battery systems are employed as the ESSs in
various applications [14]. The characteristics of the ESS were
set as ηPS = 0.95 and ηES = 0.9, under the assumption of a
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90% round trip efficiency and 10% depth of discharge (DoD)
margin. The ESS size was assumed as 1 per-unit (p.u.), and
the service time was 2 h, i.e., the charging rate (C-rate) was
0.5. However, a discussion on the performance with respect
to the size is presented here.

The WPG forecast uncertainty exhibited significant vari-
ance, and the MAE was calculated with equal priority over
the entire operation time duration. Therefore, for the policy
leaning process, the discount factor and learning rate were
set to γ = 0.95 and α = 0.1, respectively.

Simulations in this study were implemented on a 64-bit PC
with a 3 GHz 8-Core Intel Xeon E5 CPU and 64 GB RAM,
using MATLAB R2018a with an IBM CPLEX optimization
studio.

B. PERFORMANCE OF MAE
MAE performance was compared with that of the optimal
ESS operation method, which required complete information
on future values, as formulated in (8) in addition to the
Q-learning based algorithm presented in (20) and (21) that
was applied in majority of prior research. In the proposed
method, three clusters, i.e., K = 3, were considered.

Figure 5(a) presents the MAE with ESS operations. The
blue line with the diamond shapes, the red line with the square
shapes, and the black line with the circular shapes indicate the
results of the application of Q-learning, the proposed method,
and the optimal method, respectively. The MAE was found
to increase in accordance with an increase in the operation
time horizon. This is because the WPG forecasting error and
its variance increased when the operation time horizon was
long, as shown in Figure 4. The performance of the proposed
method was found to be superior to that of the Q-learning-
based method, and the same trend as the results of the optimal
method was observed. As shown in Figure 5(b), the opti-
mality gap between the MAE based on the Q-learning-based
method and the optimal method was approximately 2.4%-
point; however, the proposed method exhibited an optimality
gap of less than 0.8%-point optimality gap. This is because
the proposed method appropriately managed the dispersion
of the WPG forecasting error based on the expectation and
clustering.

C. EFFECT OF METHODOLOGY
Figure 6 presents a comparison of the MAE according to a
combination of methodologies. The blue lines with diamond
shapes and red lines with square shapes indicate the results of
the application of the Q-learning and expected SARSA-based
methods, respectively. The dashed and solid lines indicate the
results of the cases without and with clustering, respectively.
For the Q-learning method in the cases with and without
clustering (blue lines), the expected SARSA-based method
(dashed line with square shapes) exhibited a lower MAE
value, even when clustering was not applied in Figure 6(a).
The results indicated that the expected SARSA-basedmethod
was more efficient, in terms of managing the WPG forecast
uncertainty by the ESS operation, than the Q-learning-based

FIGURE 5. Mean absolute error (MAE) comparison between the
Q-learning, proposed, and optimal methods. The proposed method
exhibited an optimality gap of less than 0.8%-point optimality gap.

method. The difference between the results presented by
the dashed and solid lines indicates that MAE improve-
ment when clustering was applied. As shown in Figure 6(b),
MAE improvement is much higher in the Q-learning-based
method than the expected SARSA-based method. This indi-
cates that the Q-leaning-based method significantly depends
on the variance of the data, implying that the expected
SARSA-based method is more suitable for ESS operations
related to WPG with significant forecasting error variance.
However, only the proposed method yielded an optimality
gap within 1% of the optimal result, which requires complete
information, including future values.

D. EFFECT OF CLUSTER
Figure 7 presents the changes in the MAE with respect to the
number of clusters when using the proposed method. In most
cases, with increasing number of clusters, the MAE was
found to improve. The results indicate that clustering effec-
tively reduces the variance of the WPG forecast uncertainty,
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FIGURE 6. MAE comparison with respect to a combination of
methodologies. Only the proposed method yielded an optimality gap
within 1% of the optimal result.

thus improving the learning performance. When the ESS
operation time horizon was 12 h, 18 h, and 24 h, the MAE
exhibited a similar slope in accordance with an increase in
the number of clusters, as shown in Figure 7(a). This indicates
that the data sequenceswere sufficiently diverse for clustering
to be performed in these cases. However, with an operation
time horizon of 6 h, the MAE exhibited the minimum opti-
mality gap in the case wherein seven clusters were employed,
as shown in Figure 7(b). In this case, the length of the data
sequence was 6, which was the same as the operation time
horizon; and the variance of the data was slight during this
time period, as shown in Figure 4. With increasing number
of clusters, the data was not appropriately classified owing
to a low degree of diversity, as indicated by the black-dashed
ellipsis in Figure 7(b).

Figure 8 presents the effectiveness of clustering, which is
based on the improvement in the MAE in accordance with
an increase in the number of clusters related to the MAE

FIGURE 7. Changes in MAE with respect to the number of clusters K. The
results indicate that clustering effectively reduces the variance of the
WPG forecast uncertainty, thus improving the learning performance.
However, in the case, the length of the data sequence was 6, the data
was not appropriately classified owing to a low degree of diversity with
increasing number of clusters.

without clustering. In the figure, the case with an operation
time horizon of 18 h was found to be the most effective. This
indicates that the WPG forecasting has the highest degree
of diversity at an operation time horizon of 18 h, instead
of 24 h. Moreover, with increasing number of clusters, the
effectiveness decreased because of the decreased diversity
margin. However, the amount of memory required to imple-
ment the proposed method in the system linearly increased in
accordancewith the increasing number of clusters. Therefore,
the number of clusters should be determined considering the
target MAE performance in addition to the system memory
and the diversity of the data sequence.

E. EFFECT OF SIZE
Figure 9 presents changes in the MAE with respect to the
ESS size when the proposed method was applied with three
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FIGURE 8. Effectiveness of clustering. The case with an operation time
horizon of 18 h was found to be the most effective. This indicates that the
WPG forecasting has the highest degree of diversity at an operation time
horizon of 18 h, instead of 24 h in this case.

clusters. The results were obtained by changing the ESS size
at a fixed C-rate of 2. The MAE improved in accordance
with the increasing ESS size, as shown in Figure 9(a). This
is because the ESS operation available range increased in
accordance with the increasing ESS size. Similarly, the opti-
mality decreased in accordance with increasing ESS size,
as shown in Figure 9(b). This indicates that the proposed
method efficiently manages the WPG forecast uncertainty,
given a sufficient ESS operation size. For a small ESS size,
the proposed method exhibited poor performance, as indi-
cated by the results shown in Figures 9(a) and 9(b). Partic-
ularly, the optimality gap with 0.4 p.u. ESS size performed
worse than that with 0.2 p.u. ESS size when the ESS operation
time horizon was 12 h, 18 h, and 24 h in Figure 9(b). The
optimal method with the small ESS size effectively managed
the WPG uncertainty because it perfectly predicted future
values. However, the RL-based method that is a model-free
approach has less operation gain with a small operational
budget increment (i.e., small ESS size). Further, the uncer-
tainty variance affects the RL-based. Therefore, when the
uncertainty variance was small such as a 6-h ESS operation
time horizon, the optimality gap reduced with increasing ESS
size.

Figure 10 presents the effectiveness of ESS size based
on the improvement in the MAE with respect to the MAE
without ESS. As discussed above, in the cases wherein a
small-sized ESS was employed, a low effectiveness was
observed owing to the limitations of the model-free method.
The effectiveness was found to have a maximum value of
approximately 1 p.u. when the operation time exceeded 12 h,
and the maximum point moved to 0.6 p.u. when the operation
time horizon was 6 h. This is because the WPG forecast
uncertainty variance was slight in the case with an operation
time horizon of 6 h. Moreover, the effectiveness decreased
in the cases wherein large-sized ESSs were employed, irre-
spective of low MAE values and small optimality gaps.

FIGURE 9. Changes in MAE with respect to ESS size. The results show that
the proposed method efficiently manages the WPG forecast uncertainty,
given a sufficient ESS operation size, but the model-free approach based
proposed method has less operation gain with a small operational
budget increment.

The ESS size determines the ESS installation cost; thus,
it should be determined under the consideration of the target
MAE performance, and the effectiveness should be deter-
mined with respect to the ESS size.

F. SUMMARY OF EFFECTIVENESS
With more resources, i.e., an increased number of clusters
and ESS size, highly significant MAE improvement can
be achieved. However, this increases the implementa-
tion cost. Therefore, the proposed method should be
implemented effectively. Moreover, the data presented
in Figures 8 and 10 can be considered a critical indicator of
effectiveness. Figure 11 presents the expectedMAE improve-
ment with the application of the factor, and an operation
time horizon of 24 h. The effectiveness of the ESS sizing
was found to be greater than that of the clustering; thus,
it was concluded that the MAE improvement depends more
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FIGURE 10. Effectiveness of ESS sizing. In the cases wherein a small-sized
ESS was employed, a low effectiveness was observed owing to the
limitations of the model-free method.

FIGURE 11. Expected MAE improvement with respect to the number of
clusters and ESS size, with an operation time horizon of 24 h. For an
improvement of the MAE from the point indicated by the ‘‘x’’ symbol,
A direction is to increase the ESS size, and B direction is to increase the
number of clusters.

significantly on ESS size. However, considering the memory
cost required for an increase in the number of clusters in addi-
tion to the ESS capacity cost for ESS sizing, an increase in the
ESS size may not be a cost-effective method. For example,
with reference to Figure 9; for an improvement of the MAE
from the point indicated by the ‘‘x’’ symbol to 3, the operator
can increase the ESS size (A direction) or increase the number
of clusters (B direction). If the cost of increasing four clusters
is lower than the cost of growing the ESS size by 0.2 p.u., then
increasing the cluster is a cost-effective way. Consequently,
the effectiveness of resources can be used to determine system
implementation with the target performance.

G. SUMMARY OF RESULTS
All results are summarized in Table 1 and 2. Table 1 shows
performance summary according to methods. The
Q-learning-based method has the lowest MAE improvement,

TABLE 1. Results according to methods.

TABLE 2. Results according to resources.

and the clustering enhances the MAE improvement of the
Q-learning-based method. However, the expected SARSA-
based method shows the more MAE improvement. The pro-
posed expected SARSA-basedmethodwith clustering has the
highest MAE improvement. Table 2 shows results summary
according to resources such as clustering and ESS size. The
ESS size increment enhances the MAE improvement more
effectively than the clustering. However, the ESS is more
expensive resource than the memory and computation cost
for the clustering.

V. CONCLUSION
This study has focused on the RL-based ESS operation
strategy for WPG forecast uncertainty management. First,
the ESS operation problem has been presented as the MDP
model. The state–action space of the model has been com-
posed considering the ES and PS constraints of the ESS.
The optimal leaning policy based on the MDP model has
been suggested to solve theMAEminimization problem. The
expected SARSA-basedmethods have been applied for learn-
ing because that method is more robust toward the uncertainty
environment compared to the conventional Q-learning-based
method. Furthermore, k-mean clustering has been combined
as the frequency-domain data preprocessing. It has improved
the effectiveness of the proposed RL-based strategy by reduc-
ing the WPG forecast uncertainty variance. The empirical
study using the actual WPG generation and its forecasting
data have indicated that the proposed strategy has yielded
less than a 1%-point gap for managing the MAE to the opti-
mal solution, which requires complete information, including
future values. In addition, the effects of various parameters
such as the number of clusters and ESS size have been dis-
cussed. Results have shown that the expected SARSA-based
method improved the MAE about 1.5%-point compared to
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the Q-learning-based method and the MAE performance has
additionally improved about 0.5%-point by combining the
clustering. By increasing the number of clusters, the MAE
enhancement has been converged, but thisMAE enhancement
has continuously reduced with increasing ESS size. However,
in terms of effectiveness, three clusters and 0.4 p.u. ESS size
are the best effectiveness points. Utilizing the effectiveness of
resources, this study serves as a basis for the implementation
of the proposed method.

In future works, this study will be extended to various per-
spectives. From a technical perspective, the proposed method
has been used as an expected SARSA algorithm. Consider-
ing the deep learning model, a deep Q-learning algorithm
can be applied. Moreover, the results have shown that data
preprocessing significantly impacts performance. Therefore,
various data preprocessing methods such as singular value
decomposition can be considered. From the system perspec-
tive, this work only considers a WPG system model. The
systemmodel can be practically extended further considering
grid environments. In this model, the problem can be for-
mulated by including addition units such as thermal gener-
ation units and demands and grid parameters such as power
flow constraints, and be implemented in IEEE standard bus
systems.
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