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ABSTRACT Most of existing compression artifacts reduction methods focused on the application for
low-quality images and usually assumed a known compression quality factor. However, images compressed
with high quality should also be manipulated because even small artifacts become noticeable when we
enhance the compressed image. Also, the use of quality factor from the decoder is not practical because
there are too many recompressed or transcoded images whose quality factor are not reliable and spatially
varying. To address these issues, we propose a quality-adaptive artifacts removal network based on the gating
scheme, with a quality estimator that works for a wide range of quality factor. Specifically, the estimator gives
a pixel-wise quality factor, and our gating scheme generates gate-weights from the quality factor. Then,
the gate-weights control the magnitudes of feature maps in our artifacts removal network. Thus, our gating
scheme guarantees the proposed network to perform adaptively without changing the parameters according
to the change of quality factor. Moreover, we exploit the Discrete Cosine Transform (DCT) scheme with
3D convolution for capturing both spatial and frequency dependencies of images. Experiments show that the
proposed network provides better performance than the state-of-the-art methods over a wide range of quality
factor. Also, the proposed method provides robust results in real-world scenarios such as the manipulation
of transcoded images and videos.

INDEX TERMS Compression artifacts removal, recompression, adaptive network, convolutional neural
network (CNN), DCT network, 3D convolution.

I. INTRODUCTION
There have been many deep convolutional neural networks
(CNNs) [1]–[3] for reducing various kinds of noise in images
and videos [4]–[12]. Specifically, many researchers trained
various kinds of CNNs for the reduction of additive white
Gaussian noise and also showed that the networks can be
trained for other kinds of noise including the compression
artifacts.

There are also some researches that focused on the com-
pression artifacts in images and videos [13]–[20]. Most
of these methods focused on the experiments for severe
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compression artifacts, for example, quality factors (Q) from
10 to 40 in the case of JPEG images. Both blind and
non-blind approaches are considered in many works, where
the non-blind approaches (assuming Q is known) usually
show better performances than the blind (training a single net-
work for the images with unknown Q). However, non-blind
methods have a strong disadvantage that they need multiple
networks that are specifically trained to different noise levels
to cope with various compression quality factors. Hence, they
generally require large memory, and there can be redundancy
between the models for similar Qs.

Meanwhile, we need to consider the properties of
real-world compressed images for their enhancement and
denoising. First of all, the photos from our smartphones
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and digital cameras are now over the quality factors 501

whereas the existing works studied the training on very
low-quality factors as stated above. Moreover, when we
upload our photos to SNS or send them to our friends through
message applications, they are always transcoded or recom-
pressed to different quality factors, possibly with resizing,
retouching, and/or cropping. Hence, the quality factors from
the decoders are not credible because the photo that we
receive or see on the Internet is almost always a recompressed
one. In addition, the decoder does not provide region-wise
image quality. For example, when an image is compressed
with a designated Q, the quality actually changes over the
regions according to the texture complexity. Also, when an
image is a capture of a video frame, the quality is different
from region to region due to the nature of adaptive quantiza-
tion in video compression methods.

In summary, we think that the problems with conventional
works are as follows:
• High-quality compression factors are not considered in
many works, i.e. most of the conventional researches
are focused on the experiments on JPEG compression
quality factor Q = 10 to 40.

• Most works employed compression quality factor from
the decoder, which is not reliable and does not reflect the
region-wise quality.

FIGURE 1. The first column shows JPEG compressed images with Q = 80
(high quality with 34.81 dB and 37.66 dB). The second shows their ×2
super-resolution using EDSR [21]. The third shows the results of ×2
super-resolution after the images are preprocessed by the proposed
artifacts removal method.

Maybe, the high Qs are neglected in the existing works
because the photos are considered good enough when Q is
over 50. However, Fig. 1 shows that we still need to remove
the noise resulting from the higher Q when we enhance or
super-resolve the images. Specifically, small artifacts still
remain even with high Q, as shown in the first column of
the figure. The second column shows the super-resolution of
compressed images, where we can find that the small artifacts
are boosted and become noticeable. Therefore, high-quality
images should also be manipulated when we enhance their
contrast, resolution, and/or dynamic ranges. The third column
shows that the noise is not noticeable when we preprocess the
images before the super-resolution.

1We checked default JPEG compression quality factors of several smart-
phones and digital cameras and found that they range from 92 to 98.

The blind approach or having a credible Q-estimator can
be a solution to cope with the unreliable Q in real-world
environments. The blind approach is to train a single network
with the images from differentQs altogether. Hence, it has the
advantage that it works quite robustly with uncertainQ, but it
tends to produce blurry results. Assuming that Q is correctly
estimated, applying a bundle of non-blind models can have
better performance [22]. However, the bundle of non-blind
models has a critical problem with memory and redundancy
issues as stated above. In addition to the disadvantages of each
approach, both blind and non-blind approaches cannot cope
with spatially varying quality, because they apply the same
filter to overall regions. Recently, there have been flexible
methods [23]–[26] for region-adaptive enhancement, but they
mostly focused on Gaussian denoising or super-resolution,
which deal with a less complicated degradationmodel (linear)
than the compression.

To address the above-stated problems of existing
researches in real-world environments, we propose an adap-
tive noise removing system based on the gating scheme.
Besides, we design a Q-estimator that generates a pixel-wise
quality factor Qmap. Precisely, our network consists of a
Q-estimator and two adaptive networks where one oper-
ates in the pixel-domain and the other in the DCT-domain
(see Fig. 2). Each of the adaptive networks is a combina-
tion of a reconstruction network and a gate-weight gener-
ation network. In our method, the ‘‘gating scheme’’ means
to control the magnitudes of feature maps of the recon-
struction networks by multiplying the learned weights of
the gate-weight generating network, for the given quality.
The adaptive network is trained with the Qmap such that the
gate-weight generating network produces the weights using
the Qmap as the input. Then, the weights control the magni-
tudes of feature maps in the reconstruction networks. Thus,
our gating scheme enables the reconstruction network towork
adaptively without changing the parameters according to the
change of Q. Moreover, we adopt 3-dimensional convolution
in the DCT-domain reconstruction network, considering the
spatial and frequency dependencies of images. In summary,
the main contributions of our work are as follows:
• We propose a deep network that removes compression
artifacts over a wide range of Q.

• We design a Q-estimator, which finds the spatially vari-
ant quality-levelmap for the given input. This is essential
for dealing with compressed images and videos in the
real world.

• We apply a gating scheme for the removal of the arti-
facts, which enables us to use a single network for a wide
range ofQ by controlling themagnitudes of featuremaps
depending on Q.

• The image reconstruction is processed in the dual-
domain (pixel-domain and DCT-domain), where we
adopt the 3D-convolution in the DCT-domain.

• The 3D-convolution in the DCT-domain reconstruction
network enables the combination of frequency-wise and
feature-wise attention according to the change of Q.
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FIGURE 2. Overview of proposed system, where K is the 3D kernel size, k is the 2D kernel size, and n is the number of features. Some repetitive
blocks are represented with ‘×’ notation above/below each block such as ×5 and ×10. The total number of 3DG-ResBlock is 8 and that of
Gate-ResBlock in 1/4 scale is 20. The final output is obtained as the weighted sum of X , Ŷidct and Ŷpix . The weight factor α is trained along with
the network parameters in the training phase and fixed at the test. It is found that α converges to 0.23 for our training dataset. The proposed
system requires 10.3 M training parameters in total; precisely Fdct , Fpix , GdctT , GdctQ, Gpix , and QEST need 526K, 9104K, 11K, 8K, 15K, and 702K
respectively.

• The proposed method is shown to provide better perfor-
mance than the conventional ones, and also works well
for the recompressed images.

II. PROPOSED ARCHITECTURE
The image compression can be modeled as

X = C(Y ,Q), (1)

where Y is the original (uncompressed) image, and X is the
output of a compression method C with the quality factor Q.
There have beenmany specifically or blindly trainedmethods
to reduce the compression artifacts, which can be written as

Ŷ = FQ(X ), (2)

Ŷ = F(X ), (3)

respectively. For removing the noise in a compressed image,
the specifically trained method estimates or extracts Q from
the compressed data, and then switches the model among
several FQs that are trained for the Qs. On the other hand,
the blindly trainedmethod does not takeQ as an input because
it assumes that input image implicitly includes the informa-
tion of Q. As mentioned in the introduction, we think that
both schemes have certain limitations, and thus we propose a
flexible network named as adaptively gated artifact removal
network (AGARNet). Specifically, the proposed method is
to design a single network that adaptively works for a wide
range of Q. The proposed model can be described as

Ŷ = F(X ,Q), (4)

where F adaptively processes compressed image depending
on Q. The proposed model F can take Q when it is known
and there was no recompression, or it can also take Q̂ that
is estimated by a Q-estimator when we do not know the

actual image quality due to recompression. We design a
noise-removing system including this function, which con-
sists of three elements:Q-estimator (QEST ), gate-weight gen-
erating network (G), and reconstruction network (F). The
QEST estimates the pixel-wise Q (Q̂map ∈ RH×W×1 where
H × W is the spatial dimension of the input image). The G
takes Q̂map as the input and generates gate-weights, which
adaptively control the activation of feature maps in F . Then,
the F takes a compressed image and the output of G as input
and produces the noise-reduced image.

Fig. 2 shows the details of our noise removing system,
which shows that the input (compressed image) is branched
into two domains, i.e., DCT and pixel-domains. For this,
we design two Fs (Fpix for the pixel-domain and Fdct for
the DCT-domain), and three Gs (Gpix for the pixel-domain
and {GdctQ, GdctT } for the DCT-domain). The figure also
shows that the Q-estimator produces the quality map (Q̂map)
from the input. Then, the Q̂map is fed to the Gs which gen-
erate the weights that control the Fs. After the reconstruc-
tions, the results of Fs and input are linearly combined to
produce the noise-reduced image. In the rest of this section,
we explain the details of these networks.

A. QUALITY ESTIMATOR
We design a Q-estimator (QEST ) that estimates the spatially
varying compression quality factors, as shown in Table 1. The
fundamental block size is 64× 64, and we regard the Conv9
as a block-wise estimation result. Thus, spatially variant Q̂map
can be generated by rescaling the Conv9 to input image size
using the bilinear interpolation method. Also, a single Q is
achieved by spatially averaging the block-wise estimation
result (Conv9). Then, the obtained single Q is tiled to input
image size and fed to reconstruction networks.
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TABLE 1. Proposed Estimator.

B. GATE-WEIGHT GENERATING NETWORK
We propose three gate-weight generating networks (Gpix ,
GdctQ, GdctT ), which take Q̂map as the input and generate
gate-weights for pixel-domain reconstruction network (Fpix)
and DCT-domain reconstruction network (Fdct ). First, Gpix
generates three different-scales of gate-weight which can be
written as

[g4pix , g
2
pix , g

1
pix] = Gpix(Q̂map), (5)

where gspix ∈ R
H/s×W/s×32s is the pixel-domain gate-weight

that will be applied to 1/s-scale feature map in Fpix . Second,
to apply Q̂map in the proposed DCT-domain, it is spatially
8× 8 average pooled to be Q̂′map ∈R

1×H/8×W/8×1, because
the values in 8×8 pixel-domain block are decomposed to the
frequency dimension at the DCT-domain. Then, GdctQ takes
Q̂′map as an input and generates gdctQ. Lastly, we suppose that
the quantization table (T ) achieved from the correspondingQ
is another important factor for image quality. Hence, we also
feed the pixel-wise T (T ′map) converted from Q̂′map to GdctT ,
which generates the output gdctT . Formally, generation of
these gate-weights is written as

gdctQ = GdctQ(Q̂′map), (6)

gdctT = GdctT (T ′map), (7)

where gdctQ ∈ RH/8×W/8×32 and gdctT ∈ RH/8×W/8×64 are
DCT-domain gate-weights that will be applied to Fdct .

C. DCT-DOMAIN RECONSTRUCTION NETWORK
The proposed DCT-domain reconstruction network con-
sists of the DCT/IDCT converter, 3D Convolution, and 3D
gate-residual blocks (3DG-ResBlock). The DCT transforms
X into Xdct ∈ R64×H/8×W/8×1 where the first number 64
means the frequency dimension, which consists of 1 DC and
63 AC coefficients. The last number 1 represents the feature
dimension. Then, Xdct is fed to the DCT-domain reconstruc-
tion network that is composed of 3D convolutions and pro-
posed 3DG-ResBlock. Lastly, the output of the DCT-domain
reconstruction network is transformed to the pixel-domain by
applying Inverse Discrete Cosine Transform (IDCT).

1) DCT CONVERTER AND 3D CONVOLUTION
The DCT-domain methods have long been researched in
image processing, and have accomplished certain improve-
ments. Inspired by this, we propose a new DCT-domain
reconstruction scheme by exploiting the 2D DCT with 3D
convolutions. Our idea is to use the fact that the JPEG encoder
processes the 8 × 8 pixels in a unit, where the 64 DCT
coefficients are zigzag-ordered according to the energy com-
paction property of DCT. Specifically, we propose DCT and
IDCT converters based on this fact, where the DCT converter
generates Xdct , which is the 64 coefficients in the zigzag
order. In addition to this, we employ a 3D convolution in order
to preserve the coefficients order in the frequency dimen-
sion. Thus, 3D convolution can generate spatio-frequency
feature maps in the DCT-domain. Precisely, we perform the
3D convolution by sliding the 3 × 3 × 3 kernel into the
frequency and spatial dimensions. It needs to be noted that
the 3 × 3 × 3 kernel in the DCT-domain has larger spatial
receptive field than in the pixel-domain, because the recep-
tive field of DCT-domain includes eight adjacent blocks.
We suppose that generated spatio-frequency feature maps,
which consider frequency-domain receptive field as well
as spatial-domain, has the effect of providing distinct fea-
ture representations that are different from pixel-domain.
The last output of the DCT-domain reconstruction network
is Ŷdct ∈ RH/8×W/8×64, and Ŷdct is converted to the
pixel-domain as Ŷidct ∈RH×W×1 using the IDCT converter.

FIGURE 3. (a) Proposed 3DG-ResBlock in the DCT-domain and
(b) Gate-ResBlock at 1/s scale in the pixel-domain. The number of
features and size of inputs (σ (gs

pix ) and xs) are different depending on the
scale factor (s) in (b). The symbol × denotes element-wise multiplication.

2) 3D GATE RESIDUAL BLOCK
We propose a 3DG-ResBlock that enables the reconstruc-
tion network to be adaptive to the variation of Q by
gating the magnitude of feature map pixel-wisely. The illus-
tration of 3DG-ResBlock is presented in Fig. 3(a), which
indicates that the output feature is updated with input and
newly represented feature. In this process, the gate-weight
determines the update scale of newly represented feature.
We compose the gate-weight as the combination of gdctQ
and gdctT that are dependently generated from Q. Precisely,
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the input feature (x) is recalibrated frequency-wisely and
feature-wisely from gdctT and gdctQ respectively. Before the
recalibration, gdctQ and gdctT are applied with corresponding
transposition and sigmoid function as σ (gdctQ) ∈R64×H×W×1

and σ (gdctT ) ∈ R1×H×W×N where N is the number of fea-
tures that is set to 32. Then, the overall weight combination
process of 3DG-ResBlock, which is illustrated in the left part
in Fig. 3(a), can be written as

w = C1(x ⊗ σ (gdctQ))⊗ C1(x ⊗ σ (gdctT )), (8)

where C1 is the 1 × 1 × 1 convolution that slides in
the frequency and spatial dimensions, and ⊗ means the
element-wise multiplication. σ (gdctQ) and σ (gdctT ) are tiled
to have the same dimension with x before the element-wise
multiplication. We omit the sigmoid function σ (·) in the left
part of Fig. 3(a) for simplicity.
Then, w adjusts the update amount of the newly repre-

sented feature that is generated from consecutive convolution.
Formally, the update process of z ∈ R64×H×W×N , which is
illustrated in the right part in Fig. 3(a), can be written as

z = x + σ (w)⊗ C3(C3(x)), (9)

where C3 is a 3× 3× 3 convolution and the ReLU is omitted
here for simplicity.

The proposed 3DG-ResBlock makes the network adap-
tive to the variation of Q and also has the effect of fea-
ture dimension attention [27], [28] that recalibrates the
feature-wise response to boost the representation power.
Since 3DG-ResBlocks are frequency-wisely and feature-
wisely recalibrated according to Q, the feature response can
be boosted more abundantly.

D. PIXEL-DOMAIN RECONSTRUCTION NETWORK
The proposed pixel-domain reconstruction network takes X
as an input and generates pixel-domain Ŷpix . We adopt
an hourglass architecture as Fpix , because it can con-
sider inter-block correlations efficiently with a large recep-
tive field. For this, downsampling and upsampling are
operated twice using the 2 × 2 average pooling and
2 × 2 bilinear interpolation respectively. Thus, over-
all Fpix consists of down/upsampling module, residual
block [21] and gate-residual block (Gate-ResBlock) that is
presented in Fig. 3(b). Before the second average pooling
(encoder part), we employ a ResBlock, which is similar to
Gate-ResBlock excluding the gate process, to represent inte-
grated features regardless of Q as a backbone network. After
the second average pooling (decoder part), Gate-ResBlocks
are stacked to represent Q-adaptive feature maps. The update
process of Gate-ResBlock is gspix controlling the magnitude
of scale 1/s feature maps, which can be written

zs = xs + β tanh(C∗3 (C
∗

3 (xs))⊗ σ (g
s
pix)), (10)

where β and C∗3 are update parameter (1 × 10−1) and
3 × 3 convolution sliding in spatial dimensions respectively,
and ReLU operation is omitted for simplicity.

III. TRAINING DETAILS
The proposed network is trained with 128× 128 compressed
patches Xi and corresponding original patches Yi extracted
from DIV2K [29] images. We select Qi, which generates a
uniform Qmap from 10 to 80 with the steps of 10. The overall
loss functions are IDCT reconstruction loss, pixel reconstruc-
tion loss, and Q-estimator loss, which can be written as

L(2) =
1
M

M∑
i=1

[γ ‖Yi − Fdct (Xi,Qi)‖11

+ (1− γ )‖Yi − F(Xi,Qi)‖22]

+
1
M

M∑
i=1

‖Qmap − QEST (Xi)‖22, (11)

where M , F(·), and QEST (·) are the number of patches,
reconstruction networks including gate-weight generating
networks, and estimator. γ is a reconstruction balance param-
eter, which is empirically decided to 0.05. We empirically
decide the loss function of IDCT reconstruction as L1 loss,
because it converges more stably than L2.
We pre-train QEST with estimator loss and freeze the

weights when training the reconstruction network. The main
reason is that the quantization table converter, which gener-
ates input of the reconstruction network, can cause unstable
training. Specifically, the quantization table converter con-
tains operations such as floor, clip, division, and condition
that can hinder training stability even if we employ relax-
ations. Both estimator and reconstruction loss are minimized
usingADAM [30] optimizer, and the learning rate is 1×10−4.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
The proposed AGARNet can employ QEST when Q is
not provided or unreliable. Hence, we show the results
of AGARNet/AGARNet-EST according to absence/presence
of QEST . These proposed methods are compared with
ARCNN [6], REDNet [34], CAS-CNN [14], DnCNN [5],
OTM [13], MemNet [35], Galteri et al. [15], Yoo et al. [16],
and DURR [31] with classic5 (baboon, Barbara, boats, Lena,
and peppers), LIVE1 [32], and Urban100 [33] test sets.
Specifically, we apply the published trained models for
ARCNN, REDNet, DnCNN-3, andMemNet, and we directly
refer to the results from CAS-CNN, Galteri et al. [15],
Yoo et al. [16], and DURR [31].

OTM [13] that has shown to provide comparable per-
formance with [36] is retrained by us, because the code
is not available and the results of above test sets are not
reported. We do not directly compare proposed methods with
DMCNN [37], because we could not access the code and
the model cannot be recalled (retrained) due to the lack
of architecture details such as the depth of layers and the
number of channels. Since there have been few works that
experimented for a wide range of Q, we train DnCNN archi-
tecture named as DnCNN-B with Q from 10 to 80 in a single
network using DIV2K [29], and we also train DnCNN-BW,
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TABLE 2. Average PSNR / SSIM of the JPEG and restored images, where the inputs are compressed with Q from 10 to 80 with the steps of 10 (Red: the
best result, Blue: the second best). The number of training parameters is also notated in right part. Since the QEST provides quite accurate estimates,
AGARNet-EST can have the same results with AGARNet. * denotes that the corresponding Q is not included in the training phase. DURR [31] applies the
network for the unseen quality factors by ‘‘modulation parameters,’’ and it is fair to note that these quality factors are not in the training data.

which amounts similar training parameters compared to pro-
posed method, by building more convolutions for each depth
and deeper architecture. Moreover, we show the results of
some baselines, where 3DG-ResBlock and Gate-ResBlocks
are replaced to plain resblocks, and the gate-weight gener-
ating networks are omitted, such as Baseline-S (Q specif-
ically trained network) and Baseline-B (trained with all Q
in a single network). Lastly, we also show the results using
uniform Q̂map (AGARNet-EST) and using spatially variant
Q̂map (AGARNet-ESP).

B. EXPERIMENTAL RESULTS
1) EXPERIMENTS ON SINGLE JPEG COMPRESSION
Table 2 presents the average PSNR/SSIM of proposed and
compared methods. We first observe that the proposed DCT
with 3D convolution and hourglass architecture is proper for
training a wide range of Q by observing that the perfor-
mance of Baseline-B surpasses DnCNN-BW and most of
conventional specifically trained methods. Moreover,
we observe that AGARNet always has better performance
(especially at high Q) than Baseline-B, which has a similar
training parameter. Therefore, AGARNet always shows the
best performance among the compared methods, including
Baselines-Bwhich gives significant margin at highQ. We can
see that AGARNet can also have better or comparable results
than Baseline-S that needsmultipleQ trainingmodels. Lastly,

FIGURE 4. PSNR gain obtained by applying the artifacts reduction
methods on LIVE1. The x-axis is the JPEG Q of input and y-axis is the
PSNR gain where Baseline-S-K (K = 20, 40, 60, and 80) means specifically
trained model with Q = K .

proposed estimator’s results are presented in the last row of
the table where the quantization step is 1. It can be seen the
proposedmethod shows quite accurate estimation results, and
thus the results of AGARNet and AGARNet-EST can have
similar performance.

We also present the improvement curves of average PSNR
for 1 < Q < 95 with step size 1 which includes untrained
regions (Q < 10, Q > 80, and all the Qs between the
trainedQs) in Fig. 4. It is noticeable that proposed AGARNet
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FIGURE 5. The ‘bikes’ image from the LIVE1 dataset compressed in Q 20, and the comparison of the results post-processed by various methods.

FIGURE 6. The 90th image from the Urban100 dataset compressed in Q 10, and the comparison of the results post-processed by various methods.

FIGURE 7. (a) A photo taken by iPad 6th generation camera. (b) The output of the proposed AGARNet. (c) The ×2 super-resolution output from (a).
(d) The ×2 super-resolution output from (b).

shows better performance than Baseline-S for most of Q
and also AGARNet can be generalized to unseen Qs more
robustly at the Q < 10 and Q > 80. On the other hand,
Baseline-S provides full potential improvement when the
model is matched with corresponding Q, otherwise, it even
degrades the input images. Thus, applying the non-blind
approach, which requires lots of multiple networks to cover a
wide range, is unrealistic. From these objective comparisons,

we believe that proposed AGARNet can replace the bundle
of Baseline-Ss, which saves lots of memory.

We provide the visualized comparison in Fig. 5 and 6. We
observe that proposed methods (including Baselines) recon-
struct patterns without pattern distortion. We also provide the
result of AGARNet in Fig. 7(a) and (b) where the input is
taken by iPad 6th generation. The photo is compressed in
Q 93, but it still has some compression artifacts at the edges
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FIGURE 8. (a) Recompressed photos where the inputs are firstly taken (compressed) by Galaxy 9th generation, and then their outputs are
recompressed in the Facebook site. (b) The outputs of the proposed AGARNet-EST where the input images are the recompressed images. (c) The ×2
super-resolution outputs from (a). (d) The ×2 super-resolution outputs from (b).

of characters. As shown in the figure, AGARNet can remove
artifacts, although it is trained for Q from 10 to 80. We also
visualize the super-resolved images using ×2 EDSR [21]
in Fig. 7(c) and (d). It can be seen that the artifacts are
boosted and become more noticeable in Fig. 7(c) and pro-
posed method alleviates these artifacts in (d).

2) EXPERIMENTS ON JPEG RECOMPRESSION
As mentioned in the introduction, there are many
recompressed images in the real-environments. Hence,
we conduct experiments on the synthetic and real-world
recompressed images. For experiments on synthetically
recompressed images, we divide the Q range [10,80] into
four parts as [10,30), [30,50), [50,70), [70,80] and name

TABLE 3. Comparison of average PSNR/SSIM on the recompressed
images (Red: the best result). The evaluation is conducted on LIVE1.

them as low, mid, high, ulthigh (ultra-high) image quality
respectively. Then, we assume some practical recompression
cases as in the first column of Table 3. We randomly select
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FIGURE 9. (a) A recompressed photo where the input is firstly taken (compressed) by Galaxy 9th generation, and then its output is recompressed in
the Facebook site. (b) The output of the proposed AGARNet-EST where the input image is the recompressed image. (c) The HDR output from (a).
(d) The HDR output from (b).

three pairs of the first and second Q because different pairs
of Qs result in quite different images. The averaged results
of three pairs for each case are presented in the table. We
can see that proposed AGARNet-EST outperforms other
methods in most of the cases. We believe that proposed QEST
works robustly for the recompressed images, by estimating
the appropriate Q that represents the actual degradation of
consecutive compression. On the other hand, baseline-S does
not present stable results because it relies only on the last
Q and thus cannot reflect the actual degradation. Baseline-B
also shows stable results, but it has inferior PSNR compared
to the AGARNet-EST.

For experiments on real-world recompressed images,
the input images are downloaded from Facebook [38]2 that
mostly recompresses photos when uploading. Since the Qs
are different from cameras and uploaded materials, the pro-
posed AGARNet-EST, which has shown to provide actual
degradation, is employed for reducing the recompression arti-
facts.Moreover, we present the visualized results of the image
enhancement tasks such as super-resolution [21] and high
dynamic range (HDR) [39] where the inputs of each task are
recompressed images (downloaded from Facebook) and the
preprocessed images using the proposed AGARNet-EST. It
can be seen from Fig. 8 that the recompressed images contain
unpleasant compression artifacts, which are boosted when the
images are super-resolved with×2 EDSR. On the other hand,
AGARNet-EST can remove compression artifacts, and the
results of super-resolution are more pleasant. We also present
figures when the recompressed image is processed with HDR
imaging [39] in Fig. 9. As shown in the figure, the artifacts are
more salient when the artifacts regions are extended to HDR.
The proposed AGARNet-EST can suppress the prominent
artifacts in the recompressed image.

2Specifically, the images are the recompressed ones, as we had uploaded
them (recompressed at this time) on a private account, and later downloaded
them.

FIGURE 10. (a) A 21st frame of ShakeNDry compressed with MPEG-2.
(b) The output of corresponding frame using proposed estimator.

TABLE 4. Comparison of average PSNR/SSIM on the MPEG-2 to JPEG
transcoded frames (Red: the best result). The evaluation is conducted on
ShakNDry 30 frames. CBR and Q are constant bit rate of MPEG-2 and
quality factor of JPEG respectively.

3) EXPERIMENTS ON VIDEO TO JPEG RECOMPRESSION
In this paragraph, we assume that compressed video frames
are recompressed to JPEG images (transcoded), which is
the case that we capture a frame from YouTube or other
video streaming services. For generating the transcoded
datasets, we first compress raw videos with MPEG-2 [40]
and recompress video frames with JPEG. Precisely, we set
two constant bitrates (CBR) for MPEG-2 as 1 Mbps and
4 Mbps, and two Qs for JPEG as 60 and 80. The test
video is ShakeNDry where most of the frames show a dog
shaking his/her body to get rid of water as in Fig. 10(a).
The image quality of compressed ShakeNDry is quite dif-
ferent from region to region because the dog region con-
tains severe artifacts due to the large motion. The average
results of transcoded frames are listed in Table 4, where
we can see that the proposed methods show robust results
even though they are trained for the single compression
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case. Moreover, the proposed AGARNet-ESP can reduce
the MPEG-2 compression artifacts by comparing the result
of AGARNet-ESP with MPEG-2 (not transcoded images).
Since spatially variant Q̂map provides the region-wise actual
degradations, the AGARNet-ESP exceeds AGARNet-EST
and other methods. Lastly, the estimated spatially variant
Q̂map is provided in Fig 10(b), which shows a plausible result
that the dog regions have lower-qualities.

TABLE 5. Comparison of average PSNR for varying the architectures
(Red: the best result). The evaluations are conducted on
LIVE1 compressed in Q 20 without applying any gate process.

4) ABLATION STUDY
In this paragraph, we conduct ablation study about the archi-
tecture of reconstruction network and gate process. First,
we investigate the effect of dual-domain process and 3D
convolution as in Table 5. The detail description of each
method is listed as:
• w/o Pixel: the network does not include the Fpix net-
work, i.e., it processes only in the DCT-domain and
allocates more training parameters to Fdct .

• w/oDCT: the network does not include theFdct network,
i.e., it processes only in the pixel-domain and allocates
more training parameters to Fpix .

• w/ Group Conv: the network is dual-domain network,
but the 3D convolution is replaced to group convolution
where the generated feature maps areH/8×W/8×64N
tensors and the group is a set of 64 DCT coefficients.

• w/ 1 × 1 Conv: the network is dual-domain network,
but the 3D convolution is replaced to 1× 1 convolution
where the generated feature maps areH/8×W/8×64N
tensors.

• w/o IDCT Loss: the network is dual-domain network
with 3D convolution, but it does not include IDCT loss.

We find that processing in the dual-domain with the IDCT
loss and 3D convolution provides the best architecture for
compression artifacts removal. Although ‘‘w/ 1×1Conv’’ has
comparable performance to the proposed method, it requires
lots of parameters about 150 times larger than 3D convolu-
tion. Specifically ‘‘w/ 1 × 1 Conv’’ requires 64N × 64N
training parameter for each convolution between featuremaps
where 3D convolution needs N × 3× 3× 3× N .

We also investigate the effects of the proposed gating
scheme and its variations in Table 6. The detail explanation
of each method is described as:
• Gate1: the Gate-ResBlock is only applied to the ×1/4
scaled feature maps in Fpix , and Fdct does not include
any gate-process.

TABLE 6. Comparison of average PSNR for varying the method of
providing conditional input (Q) (Red: the best result, Blue: the second
best). The evaluations are conducted on LIVE1.

FIGURE 11. (a) and (b) are the proposed 3D Gate-ResBlocks for the
ablation study with corresponding 3D kernel size (K ), and number of
features (n). The symbol × denotes element-wise multiplication.

• Gate2: the Gate-ResBlock is applied to all Fpix network,
and Fdct does not include any gate-process.

• Gate3: the Gate-ResBlock is applied to all Fpix net-
work and the 3DG-ResBlock is replaced to Fig. 11(a)
in Fdct , which is an extended 3D gating scheme of Gate-
ResBlock.

• Gate4: the Gate-ResBlock is applied to all Fpix network,
and the 3DG-ResBlock is replaced to Fig. 11(b) in Fdct .

• Gate5: the sliding dimensions of the right C1 in equa-
tion 8, which are spatial and frequency dimensions,
change to the spatial and feature dimensions.

It can be seen that the conventional concatenation
method [23], [24] cannot work for JPEG artifacts removal
with the proposed scheme by comparing to the Baseline-B.
Moreover, we observe that the proposed gate process apply-
ing to the part of the decoder (‘‘Gate1’’) can provide certain
improvement. It is notable that the proposed gating scheme
achieves the best performance for most of Qs.

V. CONCLUSION
We have proposed a new adaptively gated compression arti-
facts removal network which robustly works for a wide range
of quality factor. Unlike conventional methods, the proposed
method trains a single network whose parameters are not
changed according to the variation of compression qualities,
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but the learned features are adaptively scaled instead. Specif-
ically, proposed (3D) Gate-ResBlock, which gates the feature
map and acts as an attention module according to quality
factor, makes the reconstruction network pixel-wise adaptive.
We have tested the proposed method on single compressed
and recompressed images, and the results show that our
method yields the best performance among state-of-the-art
methods. We believe that the proposed method is practical in
that it works for a wide range of compression rates and also
for the recompressed/transcoded images with unknown qual-
ities. We will make our codes and datasets publicly available
at https://github.com/terryoo/AGARNet for further research
and comparisons.

REFERENCES
[1] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: https://arxiv.org/abs/1409.1556

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[3] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[4] H. C. Burger, C. J. Schuler, and S. Harmeling, ‘‘Image denoising: Can plain
neural networks compete with BM3D?’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 2392–2399.

[5] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, ‘‘Beyond a Gaussian
Denoiser: Residual learning of deep CNN for image denoising,’’ IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[6] C. Dong, Y. Deng, C. C. Loy, and X. Tang, ‘‘Compression artifacts reduc-
tion by a deep convolutional network,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Dec. 2015, pp. 576–584.

[7] S. Lefkimmiatis, ‘‘Universal denoising networks: A novel CNN archi-
tecture for image denoising,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 3204–3213.

[8] B. Mildenhall, J. T. Barron, J. Chen, D. Sharlet, R. Ng, and R. Carroll,
‘‘Burst denoising with kernel prediction networks,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018.

[9] J. W. Soh, J. Park, Y. Kim, B. Ahn, H.-S. Lee, Y.-S. Moon, and
N. I. Cho, ‘‘Reduction of video compression artifacts based on deep
temporal networks,’’ IEEE Access, vol. 6, pp. 63094–63106, 2018.

[10] X. Liu, W. Lu, W. Liu, S. Luo, Y. Liang, and M. Li, ‘‘Image deblocking
detection based on a convolutional neural network,’’ IEEE Access, vol. 7,
pp. 26432–26439, 2019.

[11] J. Guan, R. Lai, and A. Xiong, ‘‘Learning spatiotemporal fea-
tures for single image stripe noise removal,’’ IEEE Access, vol. 7,
pp. 144489–144499, 2019.

[12] J. Chen, G. Zhang, S. Xu, and H. Yu, ‘‘A blind CNN denoising model for
random-valued impulse noise,’’ IEEE Access, vol. 7, pp. 124647–124661,
2019.

[13] J. Guo and H. Chao, ‘‘One-to-many network for visually pleasing com-
pression artifacts reduction,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 4867–4876.

[14] L. Cavigelli, P. Hager, and L. Benini, ‘‘CAS-CNN: A deep con-
volutional neural network for image compression artifact suppres-
sion,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017,
pp. 752–759.

[15] L. Galteri, L. Seidenari, M. Bertini, and A. D. Bimbo, ‘‘Deep generative
adversarial compression artifact removal,’’ in Proc. IEEE Int. Conf. Com-
put. Vis. (ICCV), Oct. 2017, pp. 4826–4835.

[16] N. Kwak, J. Yoo, and S.-H. Lee, ‘‘Image restoration by
estimating frequency distribution of local patches,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6684–6692.

[17] R. Yang, M. Xu, Z. Wang, and T. Li, ‘‘Multi-frame quality enhancement
for compressed video,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 6664–6673.

[18] G. Lu, W. Ouyang, D. Xu, X. Zhang, Z. Gao, and M.-T. Sun, ‘‘Deep
Kalman filtering network for video compression artifact reduction,’’ in
Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 568–584.

[19] P. Liu, H. Zhang, W. Lian, andW. Zuo, ‘‘Multi-level wavelet convolutional
neural networks,’’ IEEE Access, vol. 7, pp. 74973–74985, 2019.

[20] S. Yu and J. Jeong, ‘‘Local excitation network for restoring a JPEG-
compressed image,’’ IEEE Access, vol. 7, pp. 138032–138042, 2019.

[21] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, ‘‘Enhanced deep residual
networks for single image super-resolution,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017.

[22] Y. Kim, J. W. Soh, J. Park, B. Ahn, H.-S. Lee, Y.-S. Moon, and
N. I. Cho, ‘‘A pseudo-blind convolutional neural network for the reduction
of compression artifacts,’’ IEEE Trans. Circuits Syst. Video Technol., to be
published.

[23] K. Zhang, W. Zuo, S. Gu, and L. Zhang, ‘‘Learning deep CNN denoiser
prior for image restoration,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 3929–3938.

[24] K. Zhang, W. Zuo, and L. Zhang, ‘‘FFDNet: Toward a fast and flexible
solution for CNN-based image denoising,’’ IEEE Trans. Image Process.,
vol. 27, no. 9, pp. 4608–4622, Sep. 2018.

[25] Y. Kim, J. W. Soh, and N. I. Cho, ‘‘Adaptively tuning a convolutional
neural network by gate process for image denoising,’’ IEEE Access, vol. 7,
pp. 63447–63456, 2019.

[26] K. Zhang, W. Zuo, and L. Zhang, ‘‘Learning a single convolutional super-
resolution network for multiple degradations,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3262–3271.

[27] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7132–7141.

[28] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, ‘‘Image super-
resolution using very deep residual channel attention networks,’’ in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 286–301.

[29] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, B. Lim,
S. Son, H. Kim, S. Nah, and K. M. Lee, ‘‘Ntire 2017 challenge on
single image super-resolution: Methods and results,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jul. 2017, pp. 1110–1121.

[30] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–41.

[31] X. Zhang, Y. Lu, J. Liu, and B. Dong, ‘‘Dynamically unfolding recurrent
restorer: A moving endpoint control method for image restoration,’’ in
Proc. Int. Conf. Learn. Represent. (ICLR), 2019.

[32] H. Sheikh, M. Sabir, and A. Bovik, ‘‘A statistical evaluation of recent
full reference image quality assessment algorithms,’’ IEEE Trans. Image
Process., vol. 15, no. 11, pp. 3440–3451, Nov. 2006.

[33] J.-B. Huang, A. Singh, and N. Ahuja, ‘‘Single image super-resolution from
transformed self-exemplars,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 5197–5206.

[34] X.-J. Mao, C. Shen, and Y.-B. Yang, ‘‘Image restoration using
very deep convolutional encoder-decoder networks with symmetric
skip connections,’’ 2016, arXiv:1603.09056. [Online]. Available:
https://arxiv.org/abs/1603.09056

[35] Y. Tai, J. Yang, X. Liu, andC.Xu, ‘‘MemNet: A persistentmemory network
for image restoration,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4539–4547.

[36] J. Guo and H. Chao, ‘‘Building dual-domain representations for com-
pression artifacts reduction,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2016, pp. 628–644.

[37] X. Zhang, W. Yang, Y. Hu, and J. Liu, ‘‘Dmcnn: Dual-domain multi-scale
convolutional neural network for compression artifacts removal,’’ in Proc.
25th IEEE Int. Conf. Image Process. (ICIP), Oct. 2018, pp. 390–394.

[38] Facebook. Accessed: Jan. 27, 2020. [Online]. Available: https://www.
facebook.com

[39] R. P. Kovaleski and M. M. Oliveira, ‘‘High-quality reverse tone mapping
for a wide range of exposures,’’ in Proc. 27th SIBGRAPI Conf. Graph.,
Patterns Images, Aug. 2014, pp. 49–56.

[40] Generic Coding of Moving Pictures and Associated Audio Information—
Part 2: Video, document International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC) JTC 1, Rec.
H. 262 and ISO/IEC 13 818-2 (MPEG-2 Video), Union-
Telecommunication, International Telecommunication, 1994.

20170 VOLUME 8, 2020


