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ABSTRACT Triangulation is an important task in the 3D reconstruction of computer vision. It seems simple
to find the position of a point in 3D space when its 2D perspective projections in multi-view images are
given and the corresponding camera projection matrices are known. However, in practice, multiple lines
in 3D space do not intersect at one point because of noise. Then how to calculate the optimal 3D point of
intersection becomes difficult. While there have been multiple methods trying to solve this problem, there
is no systematic comparison between them. In this paper, we reviewed various currently existing variants of
triangulation method and compared them through extensive experiments. The speed and accuracy of these
methods have been compared using both synthetic and real datasets. We presented the results of experi-ments
and summarized the advantages, limitations, and applicability of these methods so that to provide a guide for
users when they need to choose an appropriate triangulation method for their given applications. Moreover,
based on above analysis we proposed an improved method which shows better performance.

INDEX TERMS Triangulation, perspective projection, multiple views, 3D reconstruction.

I. INTRODUCTION

Triangulation is an important task in the 3D reconstruction
of computer vision [1], [2]. It is usually based on non-rigid
structure from motion (NRSFM) [3], [4] or multiple cam-
era systems (MCSs) [5], [6] to obtain the matching points
and corresponding projection matrices. For a point X in 3D
space, it is imprinted on the image by the camera, satisfying
x = PX, where x is the image point and P is the camera
matrix. Obviously, we can obtain x if P and X are known.
While for triangulation, x and P of this projection equation
are known and we need to find the 3D point X. In theory,
two lines intersect at a point, so we only need two of these
equations to figure out the coordinates of a 3D point for
the ideal case. That is triangulation. However, the actual
situation is not the case. In real life, due to the presence of
noise [7], the two lines may not have an intersection, or the
intersection may deviate from the true value. For multi-views,
this problem is more complicated because multiple lines may
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have multiple intersections. Then it becomes a complicated
problem to determine the optimal estimation of the real 3D
spatial point X.

Triangulation is a crucial step of the 3D reconstruction
and it affects the accuracy of the whole reconstruction result.
In addition, triangulation also plays an important role in
simultaneous localization and mapping (SLAM) [8], [9].
Therefore, many researchers have studied this issue.
Hartley et al. [7] proposed the Polynomial method which
is aimed at the case when polar line constraint is not satisfied
due to noise in the two views. The Polynomial method,
also known as the optimal triangulation method, can find
the global optimal solution without iteration. This method
has good performance, and some researchers [10], [11] have
applied this method to 3-view triangulation. However, the
Polynomial method is difficult to generalize to multi-view
since it is complex to implement and the computational cost
is considerable [12].

For multiple views, the simplest method is the Linear
method or the Midpoint method [7], [13], [14] that can
directly solve the problem. However, these methods usually
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lead to a large error. Bundle Adjustment (BA) is the most
commonly used method at present [15], [16], which first
determines the cost function, and then to find the optimal
value to minimize the cost function. The definition of the
cost function is closely related to the measurement of error.
Normally, the measurement of error distance is selected as
the L norm, which represents the geometric distance of
Euclidean space. However, it is complex and prone to local
minimum even in the 2-view case where there could be multi-
ple local minima. Hence, some researchers have explored the
application of Lo, norm. It shows that Lo, optimization comes
down to minimizing a cost function with a single minimum
(local or global) on a convex domain [17]. Donné et al. [18]
proposed the Polyhedron collapse method based on the Ly
norm. It adopts the Lo, norm to quantify both the single
view reprojection error and the aggregated reprojection error,
and it is simpler and faster than previous methods [19], [20].
While taking outliers into account, Zhang et al. [21] used the
least median squares (LMS) to propose the Q-Sweep method,
which improves the robustness of the algorithm.

In this paper, the general methods of triangulation are
reviewed, and these methods are compared using synthetic
datasets and real datasets. Sections 2 discusses these trian-
gulation methods, Section 3 presents the evaluation metrics
and datasets used in the experiments, Section 4 compares the
experiments and proposes an improved method, and the final
section reaches the conclusion.

Il. METHODS

In this section, we will introduce triangulation methods from
the following four aspects: linear method, midpoint method,
L, triangulation method and L, triangulation method.

A. LINEAR METHOD

First, suppose that x; = P;X, where x; is the corresponding
point of the 3D space point X on the i-th image and P; is its
camera matrix. In order to simplify the calculation, we adopt
the homogeneous coordinates

X; = wu;, vi, 1)T (1)
pT

P, = | p (P,- e IR{3X4) )
P’

where w is the scale factor so that it does not affect the actual
coordinates of the image points.
For the equation x; = P;X, we can write

wu; = pllTX
wy; = p%TX
w=p;TX 3)

Since w is a scaling factor, we can eliminate it and then
equation (3) can be reformed as

up;TX — piTX = 0
vip] X —p;’X =0 “
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Since X is a homogeneous representation of 3D coor-
dinates, we only need to know the values of the two sets
x; and P; to solve it. For multiple views, more than four
groups of equations are obtained, and these equations are not
equivalent due to the influence of noise. That is to say, there is
no exact solution. Instead of finding the exact solution, we can
only try to find an approximate solution close to it [15].

Therefore, this problem is equivalent to a least squares
problem for solving homogeneous linear equations AX = 0,
ie.

min [|AX]
st [IX]| =1 ©)

In other words, the problem turns into a unit singular vector
for finding the minimum singular value of A [22]. We call this
method the Linear-Eigen method [7].

However, there is a big error in solving the least square
solution of the equation directly. The major reason is that
minimizing | AX || does not make any geometric sense and it
is not an error function that minimizes the effect of noise. So,
some researchers added a factor measuring the contribution of
each equation on this basis and optimized the solution using
the iterative method [7]. This method is called the Iterative-
Eigen method. However, the Iterative-Eigen method often
works longer than the maximum number of iterations, and
cannot converge to the optimal solution.

B. MIDPOINT METHOD

In the case of two views, the idea of the midpoint method is
to find a common vertical line segment perpendicular to the
two rays if two rays have no intersection point in 3D space.
Then we can take the midpoint of this line segment as the
optimal estimate value of the spatial point X [7]. However,
when extending to multiple views, it is not desirable to look
for common perpendicular lines for all rays. So the midpoint
method for multiple views is to determine the location of the
spatial point X by minimizing the sum of the squares of the
distance from that point to all the light rays [23].

The MVMP (Multiple View Midpoint) method is
des-cribed in detail in a recent work [24]. Suppose the optical
center of the camera is O;, and the ray (unit vector) formed
by the image point x; and the optical center O; is b;, then the
distance from the spatial point X to ray b; can be expressed
as

d; = I —bb;H(X - 0y) (©6)

Therefore, in the case of multiple views, the objective
function that minimizes the sum of the squares of the distance
from the spatial point X to all the rays is

min d(X) = min Zjvzl H(I —bbH(X - 0)) ’

)

Since the minimum value of d(X) is 0, we can make
dX) =0, i.e.
2

S Ja-vphx -0y =0 ®)
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This equation is equivalent to

" a-bbHHX =3 a-bbNHO)  ©)

In this equation, O; and b; are known, and X is unknown.
It is equivalent to solving a system of triadic equations, which
can be easily solved by mathematical methods.

The midpoint method is fast, but when the camera is paral-
lel, the error of this method is too large to be considered as a
good method. Therefore, some scholars have improved it on
this basis. They believe that the error of the midpoint method
mainly comes from the distance from the space point to the
camera [24]. Therefore, a penalty factor w can be added to the
objective function, so that the objective function becomes

min e(X) = min Zi] ||w,~(X)d(X)||2 (10)

where, w; = 1/ || X — O;||. This method is called the IRMP
(Itera-tively Reweighted MidPoint) method [24].

C. L, TRIANGULATION METHOD

In addition to directly figuring out the location of spatial
points, more scholars adopt the iterative optimization method
based on the Linear-Eigen method. Due to the influence of
noise, there is a certain error between the position of the
image point and the real position. However, the real value
of the image point cannot be known. What we know is
that the assumed real image point coordinates can only be
obtained through the projection matrix after the spatial point
coordinates are known. This is the reprojection error in 3D
reconstruction, which is usually defined as

Zd (xi, f(l-)

where X; is the coordinate of the measured image point, X; is
the coordinate of the image point calculated by the quadratic
projection of the spatial point and d(e) is the distance between
the two points.

Our goal is to find the point X that minimizes this cost
function, i.e.,

(11)

min > _ lIxi - PiX| (12)
1
which can be further expressed as
1:2
, p;°X
mxmz X; — l?’X (13)
i i

wherex; = | ' |, |- llp is the p norm of a matrix, usually the

value of pis 1, 2 or oco.

Normally, the measurement of error distance is selected as
the L, norm because it represents the geometric distance of
Euclidean space. If we are dealing with the L, norm, then (13)
can be written as

(14)
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Obviously, it is a problem of nonlinear optimization.
The commonly used methods include the gradient descent
method, the Newton method, the Levenberg-Marquardt (LM)
method, among which the Levenberg-Marquardt method is
the most commonly used [25].

D. L., TRIANGULATION METHOD

It exists certain difficulties when take the L, norm to
define the objective function since it usually gets into the
local minimum and the global optimal solution cannot be
found. In recent years some scholars explore other methods.
Research work [17] by Hartley et al. has inspired many schol-
ars to use Lo, norm to solve the various geometric problems.
This work shows the Lo, norm can make the cost function
significantly easier than the L, norm.

When the L, norm is used for triangulation, then two
aspects are involved: the single view reprojection error and
camera aggregation error. If the Lo, norm is taken in the
single-view reprojection error, i.e.

& éIllaX(|I/ti—I:ti , V,‘—ﬁ,‘|) (15)
The value of equation (15) can be converted into
& £ max(u; — i, ity — wj, vi — Vi, Vi — v;) (16)

If the camera aggregation error also takes the Lo, norm,
then the problem is converted to

7)

mXin ||X, — f(i”m = rrgnm?xei
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FIGURE 1. The view distribution of the spatial points in each dataset.
(a) The Door dataset. (b) The Drinking Fountain dataset. (c) The Gustav
Vasa dataset. (d) The Linkoping Cathedral dataset. (e) The UWO dataset.

(f) The Notre Dame dataset.

21019



IEEE Access

J. Chen et al.: Multi-View Triangulation: Systematic Comparison and an Improved Method

4—Linear-Eigen
140

LM
Polyhedron collapse
120 y P
Q-Sweep
—#%—IRMP
100
< 80
w
=
5 e
2
z
40
20
0 * * * * * ¥ ¥ ¥ ¥ —$—
100 200 300 400 500 600 700 800 900 1000
INPUT SIZE (N)
(a)
—— Linear-Eigen
6000 LM
Polyhedron collapse
5000 Q-Sweep
—%— IRMP
4000
)
= 3000
o

2000

1000

o L e — k3 X
100 200 300 400 500 600 700 800 900 1000

INPUT SIZE (N)
()

#— Linear-Eigen
LM
Polyhedron collapse

Q-Sweep
38 —#— IRMP
36
34
5 32
[+
[
z
< 28
2
S 26
24
22
2
100 200 300 400 500 600 700 800 900 1000
INPUT SIZE  (N)
(b)
30
—&— Linear-Eigen
25 LM
Polyhedron collapse
20 Q-Sweep
—¥— IRMP

15

REAL ERROR

10

0 —F—F—F—F—F——F——F——F———F——— R —
100 200 300 400 500 600 700 800 900 1000

INPUT SIZE (N)

(d)

FIGURE 2. Results on synthetic dataset plotted against input size N which is the number of space points. Each point is visible in exactly 36 views.
(a) Runtime for discussed methods. (b) Median error for all methods. (c) Root Mean Squared Error for all methods. (d) Real error for all methods.

Some research works [19], [26], [27] used the Lo, norm
on the single view reprojection error while the L, norm on
the aggregation error. However, more recent works used the
Lo norm in both aspects. The polyhedron collapse method
proposed by Donne et al. used the Lo, norm in both the
reprojection error and the aggregation error [18]. Its pro-
cess only involves unary quadratic equations and some basic
algebraic geometry, which is very simple and fast. However,
considering the influence of noise, Zhang et al. [21] used the
method of least median squares (LMS). They proposed the
Q-Sweep method which is based on the Lo, norm and mini-
mizes the median of the reprojection error since the Lo, norm
is easily affected by the outliers. It is

rrgn mecl_lian ”X,’ — ii“oo = ngn me(ilian & (18)

This minimum median method can tolerate 50% of out-
liers. The Q-Sweep method can effectively deduce the local
update step size, and the obtained solution is more accurate.

Ill. EVALUATION METRICS AND DATASETS

A. EVALUATION METRICS

The classic criterion for evaluating triangulation is to
calculate the RMSE (Root Mean Squared Error) of the
reprojection error, that is, to calculate the root mean
square of the Euclidean distance between the estimated
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two-dimensional coordinates of the spatial point reprojection
and the two-dimensional coordinates of the image point.

However, the triangulation methods based on the L, norm
usually are compared by the convergence error. And due
to the difference of the cost functions, it leads to different
comparison methods. Here, we uniformly measure the mean
value of the median error of the reprojection error, which is
consistent with the work [21].

In the synthetic experiment, since the ground truth is
known, we take the RMSE of the error compared with ground
truth, which is the difference between the results obtained by
each method and ground truth. Thereby we estimate whether
it can be applied to SLAM or not. The unit for measuring
reprojection error in all experiments is pixel.

B. DATASETS

We used six different datasets to compare these methods.
The datasets are from [28]-[30] and contain 3 small scenes
and 3 large scenes. The small scene datasets include: (1)
The Door dataset, which reconstructs 17650 spatial points
from 12 images; (2) The Drinking Fountain dataset, which
reconstructs 5302 spatial points from 14 images; (3) The
Gustav Vasa dataset, which reconstructs 4249 spatial points
from 18 images. The large scene datasets include: (1) The
Linkoping Cathedral dataset, which reconstructs 202,737
spatial points from 538 images; (2) The UWO dataset, which

VOLUME 8, 2020



J. Chen et al.: Multi-View Triangulation: Systematic Comparison and an Improved Method

IEEE Access

reconstructs 97,326 spatial points from 692 images; (3) The
Notre Dame dataset, which reconstructs 53,857 spatial points
from 761 images.

These datasets were created for 3D reconstruction, so the
authors provided relevant parameters for the datasets. In this
paper, we use the matching points and camera parameters
provided by the datasets. Because each spatial point in the
dataset is not captured by all cameras, to better compare
the differences in the dataset, we count the view distribution
of the spatial points in each dataset. The results are shown
in Fig. 1.

IV. EXPERIMENTS

In this paper, we conduct an experimental comparison of
the Linear-Eigen method, the LM method, the Polyhedron
collapse method, the Q-Sweep method, and the IRMP method
by using both synthetic and real datasets. We will compare
each method from different aspects: running time (runtime),
median error, RMSE and the error with the gro-und truth.
All the experiments were done using MATLAB on a single
thread.

A. SYNTHETIC DATASETS EXPERIMENTS
We generate synthetic datasets for triangulation as follows: N

space points and M cameras are generated randomly, and all
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space points are located in front of the cameras. We obtained
the image points through space points and cameras, and then
Gaussian noise with a variance of 3 was added to evaluate
robustness. For outliers, we add Gaussian noise with a vari-
ance of 9 to some image points.

1) NUMBER OF SPACE POINTS

We used 36 cameras and then increased the number of points
in space to compare different methods. Fig. 2(a) shows the
runtime of the five methods in different numbers of space
points. It can be seen that among the five methods, the order
of running speed does not change. The Linear-Eigen method
is the fastest, followed by the IRMP method, and the Poly-
hedron collapse method is the slowest. As the number of
spatial points increases, the increase of runtime for Q-Sweep
method is faster than that for the LM method, and the runtime
of Polyhedron collapse method fluctuates greatly. Fig. 2(b)
shows the median error of all the methods. The Q-Sweep
method committed to minimizing the median error is the best
and the Polyhedron collapse method is the worst. All the
methods remain basically stable as the number of space points
increases. For RMSE of all methods, the LM method works
best (see Fig. 2(c)). And Linear-Eigen method and IRMP
method work well while the performance of Polyhedron col-
lapse and Q-Sweep method are not stable. When compared
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FIGURE 3. Results on synthetic dataset plotted against input size M which is the number of cameras. 1000 space points are visible in
all views. Enlarge the detail on the small figures. (a) Runtime for discussed methods. (b) Median error for all methods. (c) Root Mean

Squared Error for all methods. (d) Real error for all methods.
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with the ground truths, Linear-Eigen, IRMP and LM method
have the best effect in Fig. 2(d). And Polyhedron collapse and
Q-Sweep method could reduce the gap with the ground truths
as the number of points increases.

2) NUMBER OF CAMERAS

We used 1000 space points and then increased the num-
ber of cameras one by one to compare different methods.
In Fig. 3(a), the Linear-Eigen method is the fastest, and
almost not affected by the increasing number of cameras.
The LM method has less influence by the number of cameras
and maintains a flat growth. The Q-Sweep method is greatly
affected by the number of cameras, and as the number of cam-
eras increases, the runtime becomes longer and longer. The
Polyhedron collapse method is also affected, but slightly bet-
ter than the Q-Sweep method. Fig. 3(b) shows the relationship
between the median error of the five methods and the number
of cameras. As the number of cameras increases, the median
error decreases. The most effective method is Q-Sweep.
While the Polyhedron collapse method has the worst effect.
For RMSE, the Polyhedron collapse and Q-Sweep method
are much larger than the others, and the Q-Sweep method
has experienced great fluctuations. Compared with the
ground truths, the IRMP method works best. The LM
method is superior to the Polyhedron collapse method
and relatively stable, while the Q-Sweep method fluctuates
greatly.

250
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3) OUTLIER RATIO

As the proportion of outliers increases, the runtime remains
basically stable except for the IRMP method, while the
median error of all methods will increase (see Fig. 4). For the
Q-Sweep method, its effect is close to that of LM when the
outlier ratio is lower than 50%. However, when the outlier
ratio exceeds 50%, its error will increase sharply. In com-
parison with the ground truths, LM, IRMP and Linear-Eigen
method are better, while the fluctuation of Q-Sweep method
is very large. And the RMSE of Q-Sweep method is the worst.

B. REAL DATASETS EXPERIMENTS

We used six different datasets described in Section 3.2. Since
the ground truth is not always available we compared these
methods from the runtime, RMSE, and median error.

Table 1 shows the experimental results. Fig. 5 shows the
reconstruction effect of the four methods without the Linear-
Eigen method. We do not present the Linear-Eigen method
because both RMSE and median error of the Linear-Eigen
method are large and the obtained reconstruction effect is bad.

From the perspective of runtime, the fastest way to rebuild
a small scene is the Linear-Eigen method, followed by the
IRMP method, and the slowest is the LM method. However,
when the number of views is large, the Linear-Eigen method
is sometimes not the fastest, because the coefficient matrix
becomes larger as the number of views increases, and the
calculation of singular value decomposition becomes more
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FIGURE 4. Results on synthetic dataset plotted against input size P which is the proportion of outliers. 1000 space
points are visible in 100 views. (a) Runtime for discussed methods. (b) Median error for all methods. (c) Root Mean

Squared Error for all methods. (d) Real error for all methods.
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TABLE 1. Results on the real datasets.

Dataset Algorithm Time(s) RMSE Median Error
Linear-Eigen 1.0533 217.6700 228.2720
LM 242.4006 15.3282 14.8434
Door
IRMP 8.7919 0.2451 0.3805
(12, 17650) Polyhedron collapse 34.8080 556.7969 0.440
Q-Sweep 26.101 556.8225 0.187
Linear-Eigen 0.2105 1465.2 1971.6
o . LM 66.1285 58.9165 111.3934
Drinking Fountain
IRMP 1.4926 1782.9 3565.2
(14, 5302) Polyhedron collapse 8.738 494.1296 0.339
Q-Sweep 5.419 494.1442 0.182
Linear-Eigen 0.1688 479.2903 625.6212
LM 50.6944 0.5089 1.6799
Gustav Vasa
IRMP 1.2332 4.6972 9.9186
(18, 4249) Polyhedron collapse 8.189 474.5662 0.747
Q-Sweep 4.181 474.5965 0.348
Linear-Eigen 97.3 1715.0 1543.3
. . LM 3652.4 17.5360 167.8164
Linkoping Cathedral
IRMP 899.2213 0.5358 1.8961
(538,202737) Polyhedron collapse 519.5880 14400 0.9440
Q-Sweep 528.8 18392 0.384
Linear-Eigen 1016.7 1160.3 3359.4
LM 2409.0 470.1729 1256.2
Uwo
IRMP 173.0558 0.6693 2.0964
(692, 97326) Polyhedron collapse 328.797 9835 1.252
Q-Sweep 603.425 10357 0.481
Linear-Eigen 643.0999 392.9571 616.8394
LM 1225.10 0.909 2.1446
Notre Dame
IRMP 113.9279 0.6621 1.8175
(761, 53857) Polyhedron collapse 242.436 828.4576 1.387
Q-Sweep 669.336 798.5755 0.496

(b)

FIGURE 5. From left to right, reconstruction effect by the LM method, IRMP method, Polyhedron collapse method and Q-Sweep
method. (a) Using the Drinking Fountain dataset. (b) Using the UWO dataset.

complex. However, the slowest is still the LM method, which
takes a longer time as the number of views increases. It should
be noted that although these datasets contain many views,

VOLUME 8, 2020

not every point is visible to all cameras. From the view
distribution of Fig. 1, the view distribution of the Linkoping
Cathedral dataset is mainly concentrated within 10 views,
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TABLE 2. Experimental results of MPLP on the real datasets.

Dataset Algorithm Time(s) RMSE Median Error
b MPLM 201.8039 0.2415 0.3864
001
LM 242.4006 15.3282 14.8434
(12, 17650) IRMP 8.7919 0.2451 0.3805
o ] MPLM 54.7102 2.0297 4.3257
Drinking Fountain
LM 66.1285 58.9165 111.3934
(14, 5302) IRMP 1.4926 1782.9 3565.2
MPLM 43.7908 0.5089 1.6798
Gustav Vasa
LM 50.6944 0.5089 1.6799
(18, 4249) IRMP 1.2332 4.6972 9.9186
) ) MPLM 4621.1 0.5350 1.8839
Linkoping Cathedral
LM 3652.4 17.5360 167.8164
(538, 202737) IRMP 899.2213 0.5358 1.8961
MPLM 22112 0.6683 2.0929
UwWO
LM 2409.0 470.1729 1256.2
(692, 97326) IRMP 173.0558 0.6693 2.0964
MPLM 529.8683 0.6611 1.8056
Notre Dame
LM 1225.10 0.909 2.1446
(761, 53857) IRMP 113.9279 0.6621 1.8175
) MPLM 49.3433 0.2869 1.6871
Dinosaur
LM 51.1171 0.2869 1.6898
(36, 4983) IRMP 1.5021 0.287 1.6871
MPLM 48.9213 0.5089 1.6798
Gustav Vasa
LM 54.1507 0.5089 1.6799
(18, 4249) IRMP 1.6275 4.6972 9.9186
MPLM 380.0843 0.5663 1.5116
Skansen Kronan
LM 404.4972 0.5663 1.5114
(131, 28371) IRMP 28.2940 0.5672 1.5190
MPLM 159.1302 0.4487 2.1622
Water Tower
LM 188.7838 17.0662 152.496
(173, 53857) IRMP 13.4299 6.4592 12.4606
MPLM 1850.6 0.6835 2.1788
Ystad Monestary
LM 2010.2 253.6541 2577.9
(290, 139951) IRMP 131.6134 1.6042 3.9911
MPLM 1322.7 0.4582 2.7826
Buddah Statue
LM 2052.40 0.4585 2.7825
(322, 156356) IRMP 109.8185 4.7300 10.6026

while the view distribution of the other two datasets is con-
centrated within 10-40 views, so the Linear-Eigen method is
still the fastest on the Linkoping Cathedral dataset. Compared
with the Q-Sweep method, the Polyhedron collapse method is
faster than Q-Sweep when the number of views is small, but
the Q-Sweep method takes a longer time when the number of
views is large.

From the perspective of RMSE, the best method is the
IRMP method. But as seen in Table 1, the experimental
results show this method is sometimes not as good as the LM
method, and even in the reconstruction of the small scene of
the Drinking Fountain dataset, a large error is generated. The
RMSE of the LM method is also small, but when it falls into
a local minimum, a large error is generated, and LM cannot
make the median error as small as the IRMP method. For the
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median error, the Q-Sweep method is the best, followed by
the Polyhedron collapse method, but the RMSE of the two
methods is relatively large. From the reconstruction effect,
the Q-Sweep method can reduce the noise outside the target
and converge on the reconstructed object compared with the
Polyhedron collapse method.

V. DISCUSSION AND IMPROVEMENT

A. DISCUSSION

From the experimental results of the synthetic datasets,
we can draw some conclusions. In the experiments, the LM
method is the slowest, and the Linear-Eigen method is the
fastest. When more than 20 views, the time consumption of
the Q-Sweep method increases the fastest. When the number
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FIGURE 6. The reconstruction effect of the MPLM method on six datasets. (a) The Door dataset. (b) The Drinking Fountain dataset. (c) The Gustav
Vasa dataset. (d) The Linkoping Cathedral dataset. (e) The UWO dataset. (f) The Notre Dame dataset.

of views exceeds 70, the time consumption of the Polyhedron
collapse method increases dramatically. The proportion of
outliers has a significant impact on the IRMP method and
has little influence on other methods. For median errors, the
Q-Sweep method always maintains the best results.

With regard to RMSE and error with ground truths,
the errors of the Q-Sweep method and the Polyhedron col-
lapse method are always much larger than other methods.
So they are not suitable for tasks that need to take into account
the real position of the object, such as SLAM.

From the experimental results of the real scene datasets,
the IRMP method performs well for speed, RMSE, and
median error, but there are large errors in individual cases.
The LM method takes a long time, and the accuracy is
lower than IRMP because it is susceptible to the initial value
and falls into the local minimum. The median error of the
Q-Sweep method is always the smallest, followed by the
Polyhedron collapse method, but their RMSEs are still large.

B. IMPROVEMENT

Based on the above experiments, we find that each method
has its own advantages and disadvantages, and cannot always
maintain good results. Since there are large differences
between the results obtained by using the Lo, norm method
and the ground truths, we mainly study other methods. The
L, norm method is easy to fall into local minimum due to the
non-convexity of the function. The result of the LM method
in the experiment reflects this characteristic. The distance
representation of the IRMP method also takes the Euclidean
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distance, so this is also the case. However, we find that
the results of LM and IRMP are not consistent. In the
experiments, the LM method on the UWO dataset per-
forms poorly, while IRMP performs poorly on the Drinking
Fountain dataset. This is due to the different cost function
constructions and the different initial values.

The cost function of IRMP is to minimize the deviation
angle between the estimated point and the optical center and
the image point and the optical center in the space, and the
cost function of LM is to minimize the distance between the
image point and the 2D point which is the re-projection of
the estimated point. The cost function is completely different,
and their initial values are also different. The initial value
of IRMP is obtained by the MVMP method, which is an
improvement on the MVMP method, while the initial value
of LM is obtained by the linear method. Both The initial
values and the cost functions are different, so they behave
differently when they fall into a local extreme value. For the
poor performance of IRMP on Drinking Fountain dataset,
we analyze the reason that IRMP and MVMP have similar
cost functions. Although the MVMP can get a better initial
value, the initial value obtained by it will more easily cause
the IRMP to fall into a local extreme value and cannot escape.
If this initial value is placed in another cost function that is
completely different from the MVMP, it may iterate normally.

Inspired by this discovery, we can combine the advantages
of the LM method and the IRMP method. Considering that
the LM method is susceptible to the initial value, we use
the initial value taken by the IRMP method. We use MVMP
to select the initial value and then use LM to conduct
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follow up optimization. We call this new method MPLM.
The parame-ters used by the LM method are the projec-
tion matrix P and the image point x, while the parameters
used by the MVMP method are the optical center O and
the image point x. We can obtain the optical center O
from the projection matrix P. Assuming a projection matrix
P = [p1 P2 P3 p4] (p; represents the i-th column of the
matrix P), the homo-geneous coordinates of the optical cen-
ter O are expressed as O = (X, y, z, t)T, then there is

x = det ([p2, p3, p4])

—det ([p1, p3, P4])

det ([p1, p2, p4))

= —det([p1, p2, p3D (19)

In addition, since the MVMP method only involves solv-
ing a system of equations containing three linear equations,
the complexity is not increased as the number of views
increases. So the initial value is also solved very quickly.

The experimental results are shown in Table 2. To bet-
ter measure the proposed approach, we add some datasets
(Dinosaur, Gustav Vasa, Skansen Kronan, Water Tower,
Ystad Monestary, Buddah Statue) [28]-[31]. The experi-
mental results show that compared with the LM method,
the MPLM method can shorten the calculation time and jump
out of the local minimum. Although IRMP takes a shorter
time than MPLM, MPLM is more accurate than IRMP. The
reconstruction effect is shown in Fig. 6.

- N <
Il

VI. CONCLUSION

In this paper, we have compared various currently existing
variants of triangulation method using both synthetic datasets
and real datasets. The Linear-Eigen method and the LM
method are conventional methods. The Polyhedron collapse
method, the Q-Sweep method, and the IRMP method are
proposed in recent years. We have evaluated these meth-
ods with RMSE and median error. It can be seen from the
experimental results that the performance of IRMP method
is better with regard to RMSE, while the Q-Sweep method
is better with regard to median error. From the synthetic
experiment, we find that the results of the Q-Sweep method
and the Polyhedron collapse method have large errors with
the ground truth, although these two methods perform bet-
ter in the median error. Between the Q-Sweep method and
the Polyhedron collapse method, the Q-Sweep method has
better robustness and accuracy. However, when the number
of views is large, it takes a longer time than the Polyhedron
collapse method, especially it takes much longer time than
the LM method when most points are captured by more than
40 cameras. However, most datasets contain many views, and
most of them are distributed within 20 views, so the Q-Sweep
method is worth choosing.

Through experiments, we have some other discoveries.
The Linear-Eigen method is simple and easy to use and is
often used as an initial estimate for other methods, but when
the number of views is large, it is even slower than the
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IRMP method. Through experimental exploration, we pre-
sented an improved method (MPLM) which uses MVMP to
select the initial value and then uses LM to conduct follow
up opti-mization. Experimental results show that the effect
of this combination is better. Compared with the previous
LM method, runtime and accuracy of the MPLM method are
improved. Compared with the IRMP method, although the
IRMP method is faster, the MPLM method is more accurate.
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