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ABSTRACT The photoplethysmography (PPG) method for continuous noninvasive measurements of blood
pressure (BP) offers a more comfortable solution than conventional methods. The main challenge in using
the PPG method is that its accuracy is greatly influenced by motion artifacts. In addition, the characteristics
of PPG vary depending on physiological conditions; hence, the system must be calibrated to adjust for
such changes. We attempt to address these limitations and propose a novel method for the classification
of BP using a bidirectional long short-term memory (BLSTM) network with time-frequency (TF) analysis
based on PPG signals. The TF analysis extracts information from PPG signals using a short-time Fourier
transform (STFT) in the time domain to produce two features, namely, the instantaneous frequency and
spectral entropy. Training the BLSTM network using TF features significantly improves the classification
performance and decreases the training time. We classify 900 PPG waveform segment samples from
219 adult subjects into three classification levels: normotension (NT), prehypertension (PHT) and hyperten-
sion (HT). The results show that the proposed method is successful in the classification of BP with accuracy,
sensitivity, and speciticity values of 97.33%, 100%, and 94.87%, respectively. The F1 scores of three BP
classifications were 97.29%, 97.39%, and 93.93%, respectively. A comparison of current and previous
approaches to the classification of BP is accomplished. Our proposed method achieves a higher accuracy
than convolutional neural networks (CNNs), k-nearest neighbors (KNN), bagged tree, logistic regression,

and AdaBoost tree methods.

INDEX TERMS Blood pressure, BLSTM, LSTM, photoplethysmography, PPG, time-frequency analysis.

I. INTRODUCTION

Blood pressure (BP) is an important parameter for the early
detection of heart disease because it is associated with symp-
toms of hypertension or hypotension [1]. BP measures the
power from the heart pump that is provided to artery walls
when circulating throughout the body [2], [3]. The result
of a BP measurement consists of three parameters, namely,
the diastolic BP (DBP), systolic BP (SBP), and mean arterial
pressure (MAP), in millimeters of mercury (mmHg) [4].
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There are two types of methods for measuring BP: invasive
and noninvasive methods. Although invasive methods have
been known to be able to measure BP accurately and contin-
uously, these methods are not very convenient to apply and
trigger infections in patients [5]. The noninvasive methods
that are currently implemented using a cuff cause discomfort,
especially for wounded people, overweight people, and new-
borns [6], [7].

To simplify the measurement process and to make it more
comfortable, noninvasive methods of measuring BP with-
out cuffs, such as ballistocardiography (BCG), electronic
bioimpedance (EBI), tonometry, and photoplethysmogra-
phy (PPG), have been introduced [8].
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FIGURE 1. DC and AC components of the PPG signal due to variation in
light absorption [23].

We currently focus on discussing the measurement of BP
through PPG signals. A single PPG-based BP estimation
study was conducted to make users more comfortable. The
features of PPG are also known to carry important informa-
tion that can be used as physiological parameters [9]. Our
previous work has shown statistically that the features of PPG
can be used to estimate BP [10]. The generation of PPG
signals requires some optoelectronic components, namely,
a light-emitting diode (LED) and a photodetector. An LED
is a light source that can be used to illuminate blood vessels
so that small perfusion changes can be monitored in the pho-
todetector. Perfusion is measured as the rate at which blood
is delivered to tissue. This mechanism is illustrated in Fig. 1.
Despite the simplicity of this measurement technique, several
potential sources of error exist in BP estimation methods
based on PPG as follows:

1. The feature points of each PPG waveform need to be
extracted precisely. The problem is that using too many
features increases the computational complexity, and
overfitting occurs [11].

2. The quality of the PPG signal is easily degraded
by poor blood circulation, and the PPG waveform
characteristics vary with changes in peripheral vascu-
lar resistance, blood vessel wall elasticity, and blood
viscosity [12], [13]. The system must be calibrated
to adjust for varying PPG waveform characteris-
tics [13]-[15]. Therefore, the system requires frequent
recalibrations for each person.

3. The PPG signal is easily affected by motion artifacts,
leading to errors in the measurement. Most motion
artifacts correlate with the sensor motion relative to the
skin; therefore, optimized filtering is needed [16]-[18].

In this paper, we propose a novel classification method
for BP based on PPG using bidirectional long short-term
memory (BLSTM) with time-frequency (TF) analysis. Our
main contributions are as follows:

1. Most previous studies have focused on the esti-
mation of BP values. However, for these meth-
ods [19]-[21], a clinical reference is needed. We focus
on a BP classification based on the Joint National
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FIGURE 2. A map of research works for BP measurement methods. There
are two types of methods for measuring BP: invasive methods and
noninvasive methods. BP measurement methods based on PPG are
divided into three groups: pulse transit time (PTT), pulse wave

velocity (PWV) and pulse wave analysis (PWA) methods [8].

Committee (JNC 7). With our proposed method, users
can immediately know the condition of their BP.

2. There are two main problems in deep learning classifi-
cation methods: classification accuracy and time con-
sumption during training. Our proposed method uses
BLSTM combined with TF analysis to achieve a faster
training time. Training the BLSTM network using TF
features significantly improves the classification per-
formance and decreases the training time.

3. We use a method based on TF analysis to compensate
for motion artifacts. With our proposed method, a spe-
cial process is not needed to ensure the PPG signal
quality.

4. We use BLSTM to compensate for BP instability,
which eliminates the need for a calibration process.

This paper is organized as follows. Section II describes the
related work using different methods. Section III describes
the methodology. The experimental results are given in
section IV. Section V discusses the results. The conclusion
is presented in section VI.

Il. RELATED WORK

In this section, we discuss some of the studies and frame-
works related to BP measurements based on PPG signals.
A categorization of the current methods is shown in Fig. 2 [8].

A. BP ESTIMATION BASED ON PPG WITH A CUFF

The volume clamp method is still partly occlusive because
it uses a small cuff around the finger. The device uses an
inflatable finger cuff with a built-in PPG sensor, as illustrated
in Fig. 3 [22]. A continuous measurement of BP is possible
with the volume clamp but is still uncomfortable for patients.
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FIGURE 3. The feedback system assembled based on a microprocessor or
computer is supplied with photoplethysmography signals A1 and A2 from
inflatable finger cuffs 1 and 2. The latter compares the input signals and
forms corresponding output signals as time intervals during which

pump 1 (for increasing the pressure) or pump 2 (for decreasing the
pressure) is active. To obtain the maxima of the shifted oscillometric
envelopes, the constant airflow pump 3 is used to create a small pressure
difference AP of a controlled value (approximately 30 mm Hg) between
the cuffs. Thus, the counterpressures in cuffs 1 and 2 are kept equal to
MAP + 0.5 AP and MAP — 0.5 AP, respectively. The pressure in the central
point of the pneumatic circuit (in the pressure chamber) is equal to the
MAP [22].

Variations in the finger positioning within the cuff influence
the BP measurement, reducing its precision [8].

B. BP ESTIMATION BASED ON PPG WITHOUT A CUFF
The motivation behind this approach is to avoid fre-
quent cuff-based BP measurements, which cause signif-
icant discomfort to the patient. The methods are as
follows:

1) PULSE WAVE VELOCITY METHODS

Pulse wave velocity (PWV) methods use signals from two
PPG sensors at a known distance apart along the same arterial
branch to calculate the velocity of the pulse wave, as shown
in Fig. 4. The pressure is measured by the difference between
the pulse transit time (PTT) of the previous sensor and the
pulse time at the leading sensor [8]. The peripheral PWV can
then be determined from the transit time and transit distance.
Unfortunately, finding an arterial location requires a trained
medical expert. The distance between the two PPG signals
used to determine the arrival time must be measured precisely
and manually and requires calibration. The accuracy is sig-
nificantly affected by motion during the BP measurement.
The PWYV has become an important parameter in BP anal-
ysis [23]-[25]. The evaluation of the BP value from the PWV
can be described by Equation (1). The relationship between
the vessel elasticity and the wave speed of a pressure pulse in
a thin-walled vessel can be described by the Moens-Kortweg
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FIGURE 4. PWV method uses signals from two PPG sensors separated by
a known distance (D) along the same arterial branch and Ay (PTT) to
calculate the velocity of the pulse wave [8].

Equation [23]:

D hEgexp¢P)
PWV = = (1)
PIT? oR

where PWV is the pulse wave velocity, D is the length of the
vessel, PTT is the pulse transit time, h is the thickness of
the vessel wall, R is the radius of the vessel, ¢ is the blood
density, Eg is the zero-pressure modulus in mmHg, and p
is a constant that depends on the particular vessel (typically
0.016 mmHg ™! to 0.018 mmHg ™).

2) PULSE TRANSIT TIME METHODS
The most common approach for noninvasive, cuffless BP
measurements is PTT-based techniques. PTT-based tech-
niques involve measurement of the transit time of blood
between two points in the body [26]. PTT-based techniques
use signals from electrocardiography (ECG) and PPG. The
PTT is the time delay associated with the pressure wave
traveling between two arterial sites, as shown in Fig. 5. The
evaluation of the BP value from the PTT can be described by
Equation (2) [27].
;

‘%PzAthﬁ3+B 2
SBP is the systolic BP, PTT is the pulse transit time, and r is
the diameter of the blood vessels. The values of the constants
A and B depend on the elasticity of the arteries.

3) PULSE WAVE ANALYSIS METHODS

Currently, there are two ways to achieve BP estimation
using only PPG. The first approach is a parametric model
that attempts to extract certain parameters such as the sys-
tolic, heart rate, and diastolic periods from each PPG signal.
BP estimation can be achieved using these parameters [23].
Some examples of parametric methods include regression
of long-term and short-term features [28], the pulse trans-
port theory-based model [29], linear regression [23], and
the Windkessel model [30]. The second element of the
Windkessel model estimates the total peripheral resistance
and determines the value of the body’s arterial capacitance
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FIGURE 5. PTT-based techniques measure the transit time of blood
between two points inside the body. PTT-based techniques use signals
from ECG (a) and PPG (b). PTT features: PTT values are obtained by
measuring the time interval between the ECG R-peak and three points on
the PPG signal: the PPG maximum (PPGp), the PPG minimum (PPGm),
and the point at which the maximum slope of the PPG waveform occurs
(PPGs) [26].
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FIGURE 6. BP simulation using a 2-element Windkessel model for
SBP/DBP = 160/100 mmHg and HR = 90 bpm parametric models [30].

through the PPG signal, as shown in Fig. 6. Parametric models
can achieve good prediction results for an individual, but
the accuracy decreases over time. Moreover, these models
require an initial calibration and frequent recalibrations for
each person.

The second approach involves nonparametric models,
which try to extract specific features in the frequency
domain or time domain, as shown in Fig. 7 [24]. The
limitations of pulse wave analysis (PWA) methods are as
follows:

1. PWA methods reduce the hardware complexity for
cuffless BP estimation, but the accuracy is sig-
nificantly affected by motion artifacts during the
BP measurement.

2. The feature points of each PPG waveform need to be
extracted correctly, and the PPG signals must be of
high quality [31]. A comparison of the existing BP
estimation methods is shown in Table 1.
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FIGURE 7. The PPG features commonly used in prior studies related to BP
are the cycle duration (Tc), systolic time (Ts), diastolic time (Td), trough to
notch time (Ttn), notch to trough time (Tnt), peak to notch time (Tpn), and
the sum of the systolic and diastolic widths at 25% (B25), 33% (B33), 50%
(B50) and 75% (B75) of the signal amplitude in each cycle [24].

C. BP CLASSIFICATION BASED ON PPG

Blood pressure classification methods can automatically
diagnose BP symptoms. Users can immediately know their
BP condition, which provides an early warning system for
potential patients. Visvanathan et al. [32] used a support vec-
tor machine (SVM) to classify BP values. The classification
process was performed using the radial basis function (RBF)
kernel. They divided the BP value range into bins consisting
of hypotension, desired, prehypertension stage 1 hyperten-
sion stage 2 hypertension, and hypertensive. Their proposed
method with frequency domain features was first tested with
The University of Queensland vital signs dataset, which cov-
ers a wide range of BP values, recorded from 32 surgical cases
ranging in duration from 13 minutes to 5 hours over a period
of 4 weeks at the Royal Adelaide Hospital.

In recent years, deep learning techniques have shown their
outstanding performance in pattern recognition applications.
Liang et al. [33] examined in-depth learning methods for
classifying BP based on PPG signals using a continuous
wavelet transform (CWT) and convolutional neural networks
(CNNs). To classify BP based on PPG signals, three classifi-
cation experiments were conducted. The study used 80% of
the dataset for training and the remaining 20% for testing. The
F1 scores for the normotension (NT) group vs prehyperten-
sion (PHT) group, NT and PHT groups vs hypertension (HT)
group, and NT group vs HT group were 72.97%, 81.82%, and
92.31%, respectively.

ill. METHODOLOGY

We propose a novel method for classifying BP using BLSTM
networks with TF analysis based on a PPG signal, as shown
in Fig. 8. Original PPG signals were shared from the PPG-BP
figshare database [34]. We divided the data into signal and
label groups. The signals were a cell array consisting of a
collection of PPG signals. The labels were an array of cate-
gories that contained the ground-truth labels from the signals.
Then, we split the signal group into a training set to train the
classifier and a test set to test the accuracy of the classifier.

VOLUME 8, 2020
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TABLE 1. Comparison of PPG methods with existing BP measurement methods.

No. Methods Measurem Accuracy Sensors Medical Calibration
ent Used Supervision
1 Auscultatory [5] Discrete Gold standard for Cuff Yes Never
time clinical applications
2 Oscillometric [2] Discrete Gold standard for Cuff Yes Never
time automatic mode
3 Volume clamp Discrete Controversial Finger Cuff Yes Never
[29] time +PPG
4 PWV [24] Continuous Controversial PPG (wrist) Yes Yes
+ PPG
(finger)
5 PTT [27] Continuous Controversial ECG + PPG Yes Yes
(finger)
6 PWA [30] Continuous Controversial PPG (finger) Yes Yes
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FIGURE 8. Detailed block diagram of the proposed BP classiiAcation technique. The four blocks represent the processing steps: pre-processing (data
segmentation), feature extraction, training of the network and the results of classification. During the data segmentation phase, the skewness signal
quality index (SSQI) value is recorded for each PPG segment for a particular subject. In this phase, to prevent bias, dataset balancing is used by
duplicating signal data at each level of classification so that each group has the same number of datasets, namely 300 normotensive subjects,

300 prehypertensive subjects, and 300 hypertensive subjects. Each PPG waveform was subsequently transformed into the instantaneous frequency and
spectral entropy using a short-time Fourier transform (STFT) with 63 windows. In this study, the dataset includes 786 subjects in the training set and
114 subjects in the testing set. Each time frequency moment can be used as a one-dimensional feature as input to BLSTM. Finally, BLSTM classiiAers are

used to classify the BP.

The input one-dimensional PPG time domain was divided
into BP levels for adults in three main categories, normoten-
sion (NT), prehypertension (PHT), and hypertension (HT),
according to the BP levels in the JNC 7 report. Waveforms
of the PPG signals are shown in Fig. 9. In this phase, to pre-
vent bias, dataset balancing (hold up methods) was used by
duplicating signal data at each level of classification until
each group had the same number of datasets (300 normal
subjects, 300 PHT subjects, and 300 HT subjects). In this
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study, the dataset has 786 subjects for the training set and
114 subjects for the testing set. There are five processing
steps: pre-processing (data segmentation), feature extraction
using time frequency analysis, training of the network and
the results of classification.Each moment Time frequency
moment can be used as a one-dimensional feature as input
to the BLSTM networks. In this study, a confusion matrix is
used to visualize classifier performance for a set of data where
the true values are known. To comprehensively evaluate the
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FIGURE 9. Three different BP classifications. Each segment consists
of 2100 sampling points, corresponding to 2.1 s of data.

testing models, various evaluation indices were used, includ-
ing accuracy (Ac), recall (Re), specificity (Sp), precision (Pr),
sensitivity (Se), and the F1 score.

A. DATA ACQUISITION

The dataset was collected from 219 adult subjects aged
21-86 years. Males accounted for 48% of the participants.
We collected 900 recorded data values from the PPG-BP
figshare database [34]. A dataset collection program was
written to obtain information about individual basic physi-
ology and collected PPG waveform signals and detected the
arterial BP at the same time. The dataset includes PPG and
BP information from subjects who were diagnosed with NT,
PHT, and HT, as detailed in Fig. 10. The records include an
identification number, sex, age, and disease. The total dura-
tion of the experiment was approximately 15 min. The data
collected from the PPG signals and BP took approximately
3 min. Each data segment consisted of 2100 sampling points,
which corresponded to 2.1 s of data. The waveform was
sampled at a frequency of 1 kHz during the signal acquisition,
with a 12-bit analog-to-digital conversion precision.

Each individual was asked to sit in an office chair in their
most comfortable posture and to relax their arms on an empty
desk. Each individual had 10 min to adapt to the environment
and adjust their breathing after entering the data collection
room [34]. The specific collection settings were as follows:
The PPG signal was collected at the fingertip of the left
index finger, and the arterial BP was collected from the right
forearm. The arterial BP measurement was performed by a
hospital nurse.

Before the participant record was archived, a data integrity
screening, data availability screening and signal quality
evaluation (to remove abnormal and high-noise data) were
required to be conducted to form a high-quality dataset. The
detailed process of inclusion and exclusion is described as
follows [34]:

1. Data integrity screening: This procedure incorporates
the screening of absent and unusual qualities of essen-
tial physiological data, disease information, BP, heart
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rate, and 3 sections of waveform information. If one or
more items were missing or if there was an abnormal
value, the participant record was removed.

2. Data availability screening: This dataset is designed
to focus on clinical information for cardiac vascu-
lar diseases (CVDs) and other closely related dis-
eases, such as diabetes. Data from CVD patients who
were diagnosed with non-CVD diseases (except dia-
betes) were excluded during the screening process
to ensure that the dataset only contains data from
participants who were diagnosed with the disease of
interest.

3. Waveform signal quality evaluation: All 3 sections for
each participant underwent a signal quality evaluation
and a robust signal quality index (SQI) method was
applied to achieve this step. If the SQIs of the 3 sections
for one subject were lower than the mean SQI calcu-
lated from the sections of all subjects, the subject data
were removed.

The waveform signal quality evaluation method adopted
the skewness signal quality index (SSQI) [34].
Orphanidou [35] found that skewness is associated with
corrupted PPG signals and has a certain connection with the
quality of PPG signals. Liang et al. [36] found skewness to
be the optimal method for assessing the SQI in PPG signals.
Skewness characterizes the degree of asymmetry of a given
distribution around its mean. If the distribution of the data
is symmetric, then the skewness will be close to 0. Positive
skewness indicates a distribution with an asymmetric tail
extending toward more positive values. Negative skewness
indicates a distribution with an asymmetric tail extending
toward more negative values, as shown in Fig. 11 [37]. Each
segment of the PPG signal was evaluated by classification
thresholds as an excellent, acceptable, or unfit PPG wave-
form to determine whether it should be saved, as detailed
in Fig. 12 [38]. This step was developed to reduce the PPG
segments with high noise and motion artifacts. Skewness is
used to measure the probability distributions of symmetric
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G1 contains beats with clear systolic and diastolic waveforms with
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waveforms and without dicrotic notches; and G3 contains noisy
waveforms [38].

signals. Mathematicians discuss skewness in terms of the
third moment around the mean. The specific definition is as
follows [37]:

YL (A — A
(N —-1) %03
where Ssqr is the skewness signal quality index, N is the
number of variables in the distribution, o is the standard
distribution, A; is a random variable, and A is the mean of

the distribution.

Ssor = (3)

B. PPG DATA PREPROCESSING

A PPG signal is a nonstationary signal similar to other
biomedical signals. This means that the frequency and band-
width can vary with time. To overcome the disadvantages
of nonstationary signals, nonstationary methods such as fre-
quency analysis are needed [39]. TF analysis is an effective
tool for understanding the nonstationary and nonlinear nature
of a signal [40]. In this phase, data exploration is carried out
using a spectrogram to visually determine the shape of the
PPG signal according to its BP classification as well as to
observe the amount of noise contained in the PPG signal.
As shown in Fig. 13, the data exploration process is not
included in the main process; therefore, this process is not
included in the methodology block diagram that refers to
Fig. 8.
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C. FEATURE EXTRACTION

The process of extracting features from data can help improve
the accuracy of training and testing of the classifier. The TF
moment extracts information from the PPG signals using a
STFT into two TF moments in the time domain, instantaneous
frequency and spectral entropy, as shown in Fig. 14.

The instantaneous frequency function estimates the
time-dependent frequency of a signal at the first moment
of the power spectrogram. The instantaneous frequency of a
real-time signal is defined as [41]:

1 d
FI(@) = EE%) 4)

where FI is the instantaneous frequency and () is the instan-
taneous phase of the analytic signal associated with the real-
time signal.

Subtle changes in the characteristics of PPG signals in
the time domain cannot be observed by the human eye.
Therefore, it is necessary to use methods to extract time- or
frequency-domain features [42]. One such feature of interest
is entropy. Spectral entropy can provide detailed information
about the signal complexity based on the spectrum width.
A high entropy is associated with a wider spectrum, such as
in the case of white noise, and a narrow spectrum reflects a
low entropy, such as in the case of a sum of sinusoids. In fact,
the spectral entropy calculates information that is included in
the various frequency components. The following equation is
used to compute the spectral entropy:

P(w) = %|X(wi)|2 )
P(wy)

Pp= — 6

Zi (1) ©

PSE=-%"" PInP @)

where P(w;) is the power spectral density, X (wj) is the spec-
trum of the signal, N is the number of points in the spec-
trum, P; is the probability density function, and PSE is the
power spectral entropy. In this study, the spectral entropy uses
63 time windows to compute the spectrogram. The entropy
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FIGURE 14. Instantaneous frequency and spectral entropy from each PPG
signal.

for each time window is computed from x by [43]:

H=— Zivzl )

where x; is the probability mass function spectrum
of the signal and N is the number of points in the
spectrum.

xi logoxi

D. BIDIRECTIONAL LONG SHORT-TERM MEMORY
BLSTM is widely used to solve several classification prob-
lems related to sequential data and has become a state-of-
the-art classifier [20]. The long short-term memory (LSTM)
layer can process a time series only in one direction (for-
ward), whereas a BLSTM layer processes the time series
in both directions (forward and backward) [44]-[49]. The
hidden layer of LSTM is also named an LSTM cell, as shown
in Fig. 15a [44]. At time ¢, the input gate, forget gate,
output gate, layer input, layer output, cell input state, cell
output state, and previous cell output state are denoted as
it, fi, o1, Xt, hy, C‘t, C;, and C;_;, respectively [44]. The input
gate, forget gate,, forget gate, output gate, and cell input state
can be calculated using the following Equations [44]:

fi=ot (prt + Uphe—1 + bp) 9
it = oy (Wix, + Uihe—1 + by) (10)
ot = ot (Woxt + Uoht—1 + bo) (1n
C, = tanh Wex; + Uchi_1 + be) (12)

where W, W, W,,, and W, are the weight matrices mapping
the hidden layer input to the three gates and the input cell
state; Up, Ui, Uy, and U, are the weight matrices connecting
the previous cell output state to the three gates and the input
cell state; by, bi, by, and b are four bias vectors; o is the gate
activation function, which normally is the sigmoid function;
and tanh is the hyperbolic tangent function. Based on the
results of the four above equations, at each time iteration ¢,
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FIGURE 15. (a) Hidden layer of LSTM architecture. (b) BLSTM consists of
two LSTM layers.

TABLE 2. Layer arrays.

No. Layer architecture Option

I Input sequence size Sequence input with 2

dimensions
2nd BLSTM BLSTM with 100 hidden
layers

3rd Fully connected 3 fully connected layers
4 Softmax Softmax

5t Classification output Cross-entropy

the cell output state, é and the layer output, h, can be
calculated as follows [44]:

Co=fixC +ixC
hy = o x tanh Cy

13)
(14)

The final output of an LSTM layer should be a vector of all the
outputs, represented by Y, = [hj_y, ..., h—1]. To process
the data, the first LSTM layer reads data from left to right,
whereas the second LSTM layer reads data from right to left,
as shown in Fig. 15.

E. BIDIRECTIONAL LONG SHORT-TERM MEMORY
ARCHITECTURE

In this study, we use a BLSTM layer with an output size
of 100 and output the last element of the sequence. We deter-
mine five layers, including the fully connected layer, followed
by the softmax layer and the cross-entropy, as illustrated
in Table 2.

IV. RESULTS

We conducted an experiment in MATLAB (R2019a version)
to classify BP based on PPG signals using BLSTM networks
with TF analysis. There are two main problems of deep
learning classification methods: classification accuracy and
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FIGURE 16. Training performance of BLS.

time consumption during training. Therefore, to evaluate the
training performance in this study, a comparative analysis
was conducted with the BLSTM model, GoogLeNet model,
AlexNet model, and BLSTM model with TF analysis for the
same dataset. We compared the training performance based
on training time. We found that the training of a BLSTM
network that uses PPG features required a very long time. The
results indicate that our proposed method (BLSTM with TF
analysis) achieves better training performance than the other
classification methods, as shown in Table 3.

Referring to Fig. 16, for our proposed method (BLSTM
with TF analysis), the top subplot of the training progress plot
represents the training accuracy, and the value approaches
100%. The bottom subplot section represents the loss of the
training, and the value of the loss in cross-entropy train-
ing in each mini-batch decreases to zero. This means that
the training progresses successfully. The detailed parameter
sets are shown in Table 4. The training process continues
for as many as 300 epochs, allowing the network to make
300 passes through the training data. The initial learning rate
is 0.01, which helps speed up the training process. We use a
sequence length of 1000 to divide the signal into small pieces.
Using this approach uses less memory even though more
data are processed at one time. This study uses the adaptive
moment estimation (ADAM) solver, which performs well for
RNN:E.

In this study, a confusion matrix is used to visualize classi-
fier performance for a set of data where the true values are
known. The confusion matrix from the training values are
known. The confusion matrix from the training process of the
BLSTM network is shown in Fig. 17. The axis labels are the
class labels NT, PHT, and HT. The output class represents
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TABLE 3. Comparison of training performance.

Method Feature Training Training Option
Extraction Time
BLSTM PPG feature 50 min 51 sec 30 epochs
GoogleNet CWT 57 min 31 sec 20 epochs
scalogram
AlexNet CWT 46 min 55 sec 20 epochs
scalogram
BLSTM with STFT 30 min 26 se: 300 epochs
TF analysis spectrogram
(proposed
method)
TABLE 4. Parameters of BLSTM network.
Setting Items Detail
Input sequence size 2
Fully connected layer 3
Gradient threshold 1
Initial learning rate 0.01
Iterations per epochs 8
Maximum number of epochs 300
Maximum iterations 2400
Adaptive learning rate Adam
optimization

the label assigned to the signal by the network. The target
class represents the ground-truth label of the signal. The
green cells represent true positive (TP) or true negative (TN)
signals, and the red cells represent false positive (FP) or false
negative (FN) signals. The light gray cells provide row and
column summaries. The bottom-right cell displays the overall
accuracy. The confusion matrix of the training process shows
that 100% of the ground-truth normal signals are correctly
classified as NT, 100% of the ground-truth prehyper signals
are correctly classified as PHT and 100% of the ground-truth
hyper signals are correctly classified as HT. Furthermore,
100% of the normal signals are classified as NT, 100% of the
prehyper signals are classified as PHT, and 100% of the hyper
signals are classified as HT. The average training accuracy
is 100%.

The confusion matrix of the testing process shows that
94.70% of the ground-truth normal signals are correctly clas-
sified as NT, 86.8% of the ground-truth prehyper signals are
correctly classified as PHT, and 97.4% of the ground-truth
hyper signals are correctly classified as HT Furthermore,
94.70% of the signals classified as NT are actually normal,
97.1% of the signals classified as PHT are actually prehyper,
and 88.1% of the signals classified as HT are actually hyper.
The average testing accuracy is 93.0%. The confusion matrix
from the testing process of the BLSTM network is shown
in Fig. 18.
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TABLE 5. Classification performance of BLSTM with TF analysis.

Trial TP FP TN FN Accuracy Sensitivity Specificity Recall Precision F1 Score

(subjects) (subjects) (subjects) (subjects) (%) (%) (%) (%) (%) (%)

Normotension 36 2 70 2 96.36 94.73 9722 9473 94.73 9473
(NT)

Prehypertension 33 5 73 1 94.64 97.05 93.58  97/05 85.84 92.16
(PHT)

Hypertension 37 1 69 5 94.64 88.095 98.57 88.09 98.57 93.03
(HT)

NT vs PHT 36 0 33 2 97.18 94.73 100.00 9473 100.00  97.29

NT vs HT 36 2 37 0 97.33 100.00 94.87 100.00  94.73  97.29

(NT + PHT) vs HT 69 5 37 3 92.98 95.83 88.09 95.83 9324 9393

Training Accuracy Gonfusion Matrix

262 o o 100%6
HT 233.3% 0.0% 0.0% 0.0%
w NT o 262 (] 1003
B 0.0% 33.3% 0.0% 0.0%
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5
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S PHT o o 262 100%
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& 2
é
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FIGURE 17. A training accuracy confusion matrix is used to describe the
performance of the classifier in a dataset where the actual values are
known.

To comprehensively evaluate the testing models, vari-
ous evaluation indices were used, including TP, FP, TN,
FN, Ac, Re, Sp, Pr, Se, and the F1 score. The confusion
matrix used for evaluating the classification performance is as
follows [49]:

Tp+ T
Ac = PEIT ) 100% (15)
Ip+Fp+Tn+Fn
Tp
Re = (—2—)100% (16)
Tp + Fn
Sp = (—"100% (17)
P =
Tp
Se = (—L100% (18)
Tp 4+ Fn
Tp
Pr=(—2 _100% (19)
Fp+1Tp
2(Re x Pr)
Fl=22¢2"0 (20)
(Re + Pr)
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FIGURE 18. A testing accuracy confusion matrix is used to describe the
performance of the classifier in a dataset where the actual values are
known.

where Ac is the accuracy, Re is the recall, Sp is the specificity,
Se is the sensitivity, Pr is the precision, and F1 is the F1 score.
The above six formulas are computed by the TP, FP, TN, and
FN quantities. Table 5 shows the classification performance
of our proposed method (BLSTM with TF analysis).

We performed a comparative study between our method
and the results of previous studies. Table 6 presents a per-
formance comparison with previous studies. To compare BP
classifications based on a PPG signal, three classification
experiments were carried out, NT vs PHT, NT vs HT, and
NT vs (PHT + HT)). The first study [50] used the pulse
arrival time (PAT) extracted from ECG, PPG signals, and
PPG morphology features extracted from PPG. The study
employed four distinctive classifiers: a bagged tree, k-nearest
neighbors (KNN), logistic regression and an AdaBoost tree.
These classifiers represent different classification methods,
such as a bagged decision tree, regression, a decision tree, and
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TABLE 6. Classification performance comparison.

Method Trial Feature Database Classifier F1
Extraction
PAT and PPG features NT (46 subjects) vs PHT (41 subjects) PAT and 10 121 subjects AdaBoost 74.67%
[50] NT (46 subjects) vs HT (34 subjects) PPG features  (MIMIC database) tree 90.15%
NT + PHT (87 subjects) vs HT (34 subjects) 79.71%
PPG features [50] NT (46 subjects) vs PHT (41 subjects) 10 PPG 121 subjects AdaBoost 72.26%
NT (46 subjects) vs HT (34 subjects) features (MIMIC database) tree 80.11%
NT + PHT (87 subjects) vs HT (34 subjects) 63.76%
PAT features [50] NT (46 subjects) vs PHT (41 subjects) PAT features 121 subjects AdaBoost 66.88%
NT (46 subjects) vs HT (34 subjects) (MIMIC database) tree 68.04%
NT + PHT (87 subjects) vs HT (34 subjects) 53.19%
PAT and PPG features ~ NT (46 subjects) vs PHT (41 subjects) PAT and 10 121 subjects Bagged tree 83.88%
[50] NT (46 subjects) vs HT (34 subjects) PPG features  (MIMIC database) 94.13%
NT + PHT (87 subjects) vs HT (34 subjects) 88.22%
PPG features [50] NT (46 subjects) vs PHT (41 subjects) 10 PPG 121 subjects Bagged tree 78.48%
NT (46 subjects) vs HT (34 subjects) features (MIMIC database) 84.98%
NT + PHT (87 subjects) vs HT (34 subjects) 75.32%
PAT features [50] NT (46 subjects) vs PHT (41 subjects) PAT features 121 subjects Bagged tree 66.95%
NT (46 subjects) vs HT (34 subjects) (MIMIC database) 84.98%
NT + PHT (87 subjects) vs HT (41 subjects) 75.32%
PAT and PPG features ~ NT (46 subjects) vs PHT (41 subjects) PAT and 10 121 subjects Logistic 63.92%
[50] NT (46 subjects) vs HT (34 subjects) PPG features  (MIMIC database)  regression 79.11%
NT + PHT (87 subjects) vs HT (34 subjects) 62.26%
PPG features [50] NT (46 subjects) vs PHT (41 subjects) 10 PPG 121 subjects Logistic 63.66%
NT (46 subjects) vs HT (34 subjects) features (MIMIC database)  regression 67.94%
NT + PHT (87 subjects) vs HT (34 subjects) 47.10%
PAT features [50] NT (46 subjects) vs PHT (41 subjects) PAT features 121 subjects Logistic 56.85%
NT (46 subjects) vs HT (34 subjects) (MIMIC database)  regression 67.85%
NT + PHT (87 subjects) vs HT (34 subjects) 52.38%
PAT features [50] NT (46 subjects) vs PHT (41 subjects) PAT and 10 121 subjects KNN 83.34%
NT (46 subjects) vs HT (34 subjects) PPG features  (MIMIC database) 94.84%
NT + PHT (87 subjects) vs HT (34 subjects) 88.49%
PPG features [50] NT (46 subjects) vs PHT (41 subjects) 10 PPG 121 subjects KNN 78.62%
NT (46 subjects) vs HT (34 subjects) features (MIMIC database) 86.94%
NT + PHT (87 subjects) vs HT (34 subjects) 78.44%
PAT features [50] NT (46 subjects) vs PHT (41 subjects) PAT features 121 subjects KNN 66.95%
NT (46 subjects) vs HT (34 subjects) (MIMIC database) 68.10%
NT + PHT (87 subjects) vs HT (34 subjects) 53.19%
Raw PPG signal [33] NT (46 subjects) vs PHT (41 subjects) Continuous CNNs 80.52%
NT (46 subjects) vs HT (34 subjects) wavelet 219 subjects 92.55%
NT + PHT (87 subjects) vs HT (34 subjects) transform (Figshare database) 82.95%
(scalogram)
Raw PPG signal NT (38 subjects) vs PHT (38 subjects) Short-time BLSTM with 97.29%
(proposed method in NT (38 subjects) vs HT (38 subjects) Fourier 219 subjects time- 97.39%
this study) NT + PHT (76 subjects) vs HT (38 subjects) transform (Figshare database) frequency 93.93%
(spectrogram) analysis

a clustering method [50]. The second study [33] employed
a CWT and CNNs. Table 6 shows that the F1 scores of our
proposed method (BLSTM with TF analysis) were higher
than those of the CNN classifier and regression methods, such

as the bagged tree, KNN, logistic regression and AdaBoost
tree methods. This result indicates that our BLSTM with
TF analysis method achieves higher accuracy than the CNN,
propagation and regression methods.
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V. DISCUSSION

Our proposed method has promising potential and exclu-
sively uses raw PPG signals to replace the PPG morphol-
ogy feature extraction process for BP classification. Ideally,
a method for measuring BP should offer high accuracy and
should not require calibration or medical supervision [51].

The human physiological state is always dynamic in time,
which makes estimating physiological signals a dynamic
estimation problem. Therefore, certain physiological signals
cannot be estimated using only the signal history without the
current physiological conditions. Considering the valuable
information of a temporal sequence and the dynamic nature
of physiological signals, BLSTM is applied in our proposed
method. CNNs are able to learn a local response from tem-
poral or spatial data but lack the ability to learn sequential
correlations [48]. In contrast to CNNs, RNNs are specialized
for sequential modeling but are unable to extract features in
a parallel manner [48].

The main challenge associated with using PPG is the influ-
ence of noise artifacts. The accuracy is significantly affected
by noise artifacts [52]. In this study, we used two methods
to avoid motion artifacts. The first method was implemented
during the data collection process, where the data were eval-
uated using the SSQI before being stored. The SSQI value
was recorded for each PPG segment of a particular subject.
Values greater than zero were stored, and if the value was
less than zero, the application asked the user to remove the
PPG signal.

The second method involved using a method based on
TF analysis to compensate for noise artifacts. Using TF
analysis to obtain the instantaneous frequency and spectral
entropy has the advantage of spreading noise in the TF
field, which results in better estimates of higher noise lev-
els. Frequency analysis is performed by segmenting a PPG
signal into short periods that are presented in the form of
a spectrum in a sliding window. Each pixel corresponds to
a frequency and a time and represents the power of the
PPG signal.

In this study, we used raw PPG signals to classify BP into
different categories. To improve the accuracy of the training
and testing of BLSTM, feature extraction from PPG signals
is needed. Therefore, the raw PPG signal is first converted
through an STFT into a TF moment to extract the features.
The use of an STFT is a logical choice due to its speed and
ease of use [53].

Moreover, another problem is that the PPG wave charac-
teristics vary with changes in the blood vessel wall elasticity,
peripheral vascular resistance, and blood viscosity and can
cause measurement errors. For this reason, the system must
be calibrated to adjust for changes in the PPG characteris-
tics [54]. BLSTM is a kind of RNN architecture with LSTM
units as hidden units and effectively solves vanishing gra-
dient and gradient explosion problems. BLSTM combines a
forward hidden layer and a backward hidden layer. BLSTM
not only can exploit the context for long periods of time but
also has access to the context in both previous and future
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directions. Therefore, BLSTM does not require a calibration
process to adjust for various PPG wave characteristics.

In previous studies using deep learning for BP classifica-
tion, the training unfortunately took a very long time [33].
In this case, because the training set was large, the training
process could take several minutes. When a network uses data
with a large range of values and a large average, the learning
process and convergence of the network can be slow [55].
TF analysis produced the instantaneous frequency and spec-
tral entropy using STFT with 63 time windows. In this case,
each dataset no longer contains 2.100 sample points but
contains only 63 sample features. With a small training set,
the training process could take only a few minutes.

To comprehensively evaluate the testing models, various
evaluation indices were used, including Ac, Re, Sp, Se, Pr,
and the F1 score. Precision is a better metric when the cost
of an FP is high. Recall helps when the cost of an FN is high.
The F1 score is an overall measure of a model’s accuracy that
combines the precision and recall. A good F1 score indicates
that the system has low FP and FN rates.

An advantage of BLSTM techniques is that they are quite
effective when used as a solution for classification problems,
including BP classification. BLSTM networks have been
widely used to eliminate the negative effects of an active
process from the past and future caused by the presence of
nonlinear physiological changes. Considering the advantages
of BLSTM, we use it as the classifier for BP in this study.
A disadvantage associated with BLSTM is that it is necessary
to pay attention to the width of the window according to the
area of use since a good time resolution and a good frequency
resolution cannot be obtained at the same time. Therefore,
the relationship among the time duration, frequency band-
width, and window size is very important.

VI. CONCLUSION

Users can immediately know the condition of their BP to
ensure early detection using our proposed method. This
method can expedite the treatment process and reduce the risk
of mortality. Training a BLSTM network using TF moments
such as instantaneous frequency and spectral entropy signifi-
cantly improves the classification performance and decreases
the training time. Our proposed method does not require a
high-quality PPG signal and does not require an extraction
of PPG morphological features; therefore, the method can be
easily applied in many situations. In general, normotension
had the highest accuracy with a value of 96.34% and achieved
the best F1 score, with a value of 94.73%, among the classifi-
cation levels. The results show that the classification of nor-
motension vs hypertension (NT vs HT) shows the best results
with accuracy, sensitivity, and specificity values of 97.33%,
100%, and 94.87%, respectively. The F-scores of the three BP
classifications were 97.29%, 97.39%, and 93.93%, respec-
tively. The results of our proposed method demonstrated
higher accuracy than a CNN method and regression meth-
ods such as the bagged tree, KNN, logistic regression, and
AdaBoost tree methods. In future studies, we will use the
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Stockwell transform to conduct frequency analysis of PPG
signals [56]. In addition, increased sample sizes could be used
to further improve the performance of BP classification based
on PPG signals.
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