IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 1, 2020, accepted January 17, 2020, date of publication January 23, 2020, date of current version February 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968982

Reverse Spatial Visual Top-k Query

LElI ZHU“1, JIAYU SONG!, WEIREN YU2%3, CHENGYUAN ZHANG"1,

HAO YU', AND ZUPING ZHANG !

!School of Computer Science and Engineering, Central South University, Changsha 410083, China
2School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China

3Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.

Corresponding authors: Weiren Yu (ywr0708 @hotmail.com) and Chengyuan Zhang (cyzhang @csu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702560, Grant 61379109, Grant
61836016, and Grant 61972203, in part by the Science and Technology Plan of Hunan Province under Project 2018JJ3691 and Project
2016JC2011, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20190442, and in part by the Research and
Innovation Project of Central South University Graduate Students under Grant 2018zzts177.

ABSTRACT With the wide application of mobile Internet techniques an location-based services (LBS),
massive multimedia data with geo-tags has been generated and collected. In this paper, we investigate a
novel type of spatial query problem, named reverse spatial visual top-k query (RSVQy) that aims to retrieve
a set of geo-images that have the query as one of the most relevant geo-images in both geographical proximity
and visual similarity. Existing approaches for reverse top-k queries are not suitable to address this problem
because they cannot effectively process unstructured data, such as image. To this end, firstly we propose
the definition of RSVQy problem and introduce the similarity measurement. A novel hybrid index, named
VR2-Tree is designed, which is a combination of visual representation of geo-image and R-Tree. Besides,
an extension of VR2-Tree, called CVR2-Tree is introduced and then we discuss the calculation of lower/upper
bound, and then propose the optimization technique via CVR?-Tree for further pruning. In addition, a search
algorithm named RSVQ; algorithm is developed to support the efficient RSVQ; query. Comprehensive
experiments are conducted on four geo-image datasets, and the results illustrate that our approach can address

the RSVQy problem effectively and efficiently.

INDEX TERMS Geo-image, reverse top-k query, spatial visual query, hybrid index.

I. INTRODUCTION

With the wide application of mobile Internet techniques and
location-based services (LBS), massive multimedia data with
geo-tags (geo-multimedia for short) has been generated and
collected by smartphones and tablets with local sensors, and
then uploaded and stored on the Internet. On the one hand,
the multimedia sharing platform and online social network-
ing provide geo-multimedia storage and sharing service. For
example, more than 95 million photos with location infor-
mation captured by smartphones and digital cameras are
stored on Flickr,! which is one of the largest picture sharing
platforms. more than 140 million Twitter> users post 400 mil-
lion tweets in the form of text and image with geo-location
information (referred as geo-text and geo-image). In China,
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lots of users of WeChat,® the most popular mobile appli-
cation, share texts, images and short videos with geo-tags
every day. On the other hand, geo-multimedia data are used
in many location-based services. For instance, Dianping*
provides the rating and review services for finding restau-
rant, hotel, gym, cinema, etc. via sharing the geo-texts and
geo-images uploaded by users. Another LBS application is
Foursquare,® which helps users to share the places visited and
find the best places nearby via geo-multimedia data. These
geo-multimedia data is a fusion of multimedia content [1], [2]
and geo-location information [3], which enables queries con-
sider geographical proximity and multimedia content similar-
ity simultaneously.

Spatial keyword query [4] is one of the significant prob-
lems that has attracted much attention in the spatial database
and information retrieval community. This query aims to find

3 https://web.wechat.com/
4https://www.dianping.com/
5 https://foursquare.com/
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FIGURE 1. An example of reverse spatial visual top-k query.

spatial objects by taking into account both spatial proximity
and relevance of keywords. Several types of spatial keyword
search, i.e., collective spatial keyword query [5], m-closest
keywords search [6], best keyword cover search [7], group
top-k spatial keyword query [8] and etc., are studied deeply
and applied widely in many scenarios to provide efficient
spatial keyword query.

A. MOTIVATION

Reverse spatial keyword query [9] is another important search
problem, which is to find a set of geo-objects that have the
query as one of the most relevant objects in both geographical
proximity and textual similarity. Many researches [10]-[13]
propose efficient algorithms to speed up the reverse search on
Euclidean space and road network space. However, previous
works only focus on keyword search, which are suitable
for unstructured data, such as geo-image. In other words,
these techniques cannot be applied directly to the reverse
spatial query for geo-multimedia data. To this end, this paper
consider geo-image that is the most common type of geo-
multimedia. Thus, we propose a novel type of reverse top-k
query, named reverse spatial visual top-k query (RSVQy for
short), which takes into account both geo-location proximity
and visual similarity between images. In other words, users
can submit a reverse query with geo-images, rather than
keywords. To the best of our knowledge, this is the first time
to investigate RSVQy problem. To introduce this problem
more intuitively, we provide an example of reverse spatial
visual top-k query as follows:

Example 1: AsshowninFig. 1, a manager of a steak house
wants to know the consumer preferences of people nearby
S0 as to carry out more accurate advertising. She submits a
reverse spatial visual top-k query by taking a picture of steak
with a smartphone in this steak house. The system will return
the users who have this steak house as one of the k most desir-
able restaurants in both aspects of geographical proximity
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and the visual similarity between their posed images and the
query image.

B. OUR METHOD

To overcome this challenge, firstly, this paper defines reverse
spatial visual top-k query in formal, and introduces the rel-
evant notions, i.e., the geographical proximity measurement
and visual similarity measurement. As far as we know, this
is the first time to propose the definition of RSVQ; and
no existing approach has been proposed for this problem.
Thus, a baseline that uses R-Tree and the threshold algo-
rithm [14] is proposed. To organizing the geo-image data
more efficiently, we careful design a novel hybrid index,
named VR?-Tree, which is a integration of the visual repre-
sentation of geo-images and R-Tree. The visual representa-
tion of an image in this work is a vector of visual words. Two
operations of visual words vector, namely Weight OR and
Weight AND are proposed to support the generation of the
non-leaf nodes of VR2-Tree. Besides, an extension of VR2-
Tree, named CVR?-Tree is developed to enhance the pruning
power by its specific entry in tree node, namely CEntry
set. Furthermore, we discuss the calculation of lower bound
and upper bound via CVR?-Tree, and then introduce the
optimization technique via CVR?-Tree to tighter the bounds.
In addition, the CVR?-Tree based query processing algorithm
with the optimization is introduced.

C. CONTRIBUTIONS
The main contributions of this work are summarized as
follows:

« We propose the definition of reverse spatial visual top-k
query and the relevant notions. Besides, a baseline for
reverse spatial visual search is introduced. To the best
of our knowledge, this work is the first time to study
RSVQy. problem.

o We present a novel hybrid index, named VRZ?-Tree
which is a combination of visual representations of
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geo-images and R-Tree. In addition, an extension of
VRZ-Tree, called CVR2-Tree is designed, which can
further improve the pruning power during the reverse
search.

o We carefully develop the efficiency RSVQy algorithm,
which utilizes the optimization technique via CVR2-
Tree to enhance the search performance significantly.

« We have conducted extensive performance evalua-
tion on four geo-image datasets. Experimental results
demonstrate that ths proposed approach has really high
performance.

D. ROADMAP

In the remainder of this paper, we review the previous studies
about this work in Section II. In Section III, we propose the
definition of reverse spatial visual top-k query and the related
notions. Besides, a baseline is introduced in this section.
In Section IV, a novel hybrid index, named VR2-Tree and its
extension, i.e. CVR?-Tree are proposed. Furthermore, an effi-
cient reverse spatial visual search algorithm named RSVQk
is carefully designed. In Section V, we evaluate the proposed
algorithms on four geo-image datasets. Finally, we conclude
this paper in Section VI.

Il. RELATED WORK

In this section, we review the previous studies of image
retrieval and collective spatial keyword query, which are
related to our work. To the best of our knowledge, we are
the first to study the problem of collective geo-image query.

A. IMAGE RETRIEVAL

Image retrieval is one of the classical problems in the commu-
nity of multimedia and computer vision, and it can be applied
in versatile big data applications [ 15]-[23]. Lots of researches
have been proposed to combat this challenge. As two pow-
erful visual feature representation tools, Scale-Invariant Fea-
ture Transform (SIFT) [24], [25] and Bag-of-Visual-Word
(BoVW) [26] are widely utilized. For example, Ke et al. [27]
proposed an effective PCA-based local feature representation
method called PCA-SIFT to improve the accuracy and effi-
ciency. Mortensen et al. [28] proposed to augment the original
SIFT descriptor by combining SIFT feature with a global
context vector to enhance the matching rate. Li and Ma [29]
improved SIFT descriptor by integrating color and global
information which provides powerfully distinguishable infor-
mation. Dimitrovski et al. [30] improved BoVW model by
using predictive clustering trees to construct codebook to
reduce the number of local descriptors.

More recently, with the rise of deep learning [31]-
[33], lots of researchers employed more powerful tools
such as CNN [34], RNN [35] and LSTM [36] to greatly
hoist the image retrieval accuracy [37], [38]. In 2012,
AlexNet [39] markedly improved the image classification
accuracy and won the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC). Matsuo et al. [40] proposed
a CNN-based style vector that is transformed from style
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matrix with PCA dimension reduction. Gordo et al. [41]
proposed a CNN-based global fixed-length representation for
image retrieval, which is generated by a ranking framework.
Tan et al. [42] utilized different CNN models to extract the
multiple visual features that are fused into weighted aver-
age feature. Liu ef al. [17] introduced a method that fuses
high-level features from CNN and low-level features to gener-
ate two-layer codebook features. Seddati et al. [43] combined
multi-scale and multi-layer feature extraction from improved
RMAC approaches, which generates short descriptors and
get better performance without the need of CNN fine tuning.
Yang et al. [44] introduced a method in which a dynamic
match kernel is constructed by calculating the matching
thresholds between query and candidate.

It is obvious that the deep learning based methods have
much better performance than the traditional hand-crafted
feature based methods. In our previous works [45], [46],
we proposed to combine the spatial search techniques
and visual feature representations to solve geo-multimedia
retrieval problem. However, as far as we know there is no
existing image retrieval approach that is suitable to address
the reverse spatial visual query (RSVQ) problem. In this
work, we attempt to design efficient index structure and
algorithm for RSVQ problem.

B. SPATIAL KEYWORD QUERY

Spatial keyword query [47], [48] is a significant problem in
the community of spatial database [49]-[51], which is well
studied by researchers in recent years. It aims to returns
spatial-textual objects that are spatially and textually rele-
vant to the query. Several spatial indexing structures such as
R-Tree [52], R*-Tree [53], IR-Tree [54], [58], KR*-Tree [55],
IL-Quadtree [56], etc. have been proposed to improve the
spatial keyword search effectively.

Felipe et al. [57] proposed to address the top-k spatial
keyword queries by using a novel index called Information
Retrieval R-Tree (IR2-Tree) that is a combination of R-Tree
and superimposed text signatures. Cong et al. [58] introduced
a new indexing framework, in which the inverted file is
employed for text retrieval and R-tree for spatial proxim-
ity search. Rocha-Junior et al. [59] proposed a novel index
named Spatial Inverted Index (S2I) which maps each distinct
term to a set of objects containing the term. Zhang et al. [60]
developed I’ that is an integrated inverted index with quadtree
to partition the data space into cells in a hierarchical man-
ner. In another work of them [61], they modeled the top-k
distance-sensitive spatial keyword query as top-k aggregation
problem, and then an extension of CA algorithm, called
Rank-aware CA algorithm, to enhance the search.

Unfortunately, These researches whether in European
space or road network space can only be applied to structured
data, e.g., keywords. That means they are not suitable to cope
with spatial unstructured data, such as geo-image. To the
best of our knowledge, this paper is the first time to develop
effective and efficient technique for the geo-image search
task.
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C. REVERSE QUERY PROCESSING

Reverse query [11], [62], [63] is another significant prob-
lem in the area of spatial-textual search, which is from the
perspective of point of interest (POI), e.g. restaurant, super-
market, store, tourist attraction, etc, rather than users. More
specifically, it aims to retrieve the users for which the query
objects is one of the most preferences, such as geographical
proximity [64]-[67]. Reverse query can be applied in lots of
applications, e.g., advertising, recommendation, marketing,
etc.

Many researches have been proposed to combat this
challenge in the last decade. Vlachou et al. [64] pro-
posed the reverse top-k query and introduced two versions,
namely monochromatic and bi-chromatic. In their another
work [68], they proposed distance-based reverse top-k query
problem which can be applied in the mobile environment.
For the reverse k nearest neighbor (RANN) problem,
Cheema et al. [69] proposed a novel notion, named influence
zone, which is the area such that every point inside this area is
the results of RKNN query and every point outside it is not the
results. Yu et al. [70] studied the reverse top-k search by using
random walk with restart in large graphs. In road network
space, Wang et al. [71] investigated continuous monitoring
of RkNN queries. They utilized the influence zone to boost
the search.

Not only the proximity of space distance, the textual
similarity is considered into the reverse query. For exam-
ple, Lin et al. [9] proposed the reverse keyword search for
spatio-textual top-k queries (RSTQ) at the first time and
developed a novel hybrid index, called KcR-tree, to store
and summarize the spatial and textual information of objects.
Yang et al. [11] proposed to extend half-space-based prun-
ing technique to solve the spatial reverse top-k queries
and introduced a novel regions-based pruning algorithm
according to SLICE [72] that is a regions-based prun-
ing algorithm for reverse k nearest neighbors queries to
improve the efficiency. Instead in the Euclidean space,
Luo et al. [73] investigated reverse spatial and textual k near-
est neighbor queries on road networks. Besides, they pro-
posed several spatial keyword pruning techniques to speed
up the search. Gao et al. [10] introduced another novel
query paradigm, called reverse top-k Boolean spatial key-
word (RkBSK) retrieval on Road Networks that considers
both spatial and textual information. To boost the system per-
formance significantly, they developed a new data structure
named count tree to overcome the drawback of the count
list.

However, these solutions for reverse queries cannot be
extended to the geo-image query problem since they are
not suitable for unstructured data such as image. To combat
this limit, in this work we propose to address the reverse
spatial visual top-k query problem that takes into account
both visual similarity and geographical proximity simulta-
neously. To the best of our knowledge, we are the first to
propose this query paradigm and try to solve it effectively and
efficiently.
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IIl. PRELIMINARY

In this section, for the first time, we formulate the definition
of reverse spatial visual top-k query problem and introduce
the relevant notions. Then we propose the baseline to combat
this challenge. Table 1 summarizes the notations frequently
used throughout this paper to facilitate the discussion.

TABLE 1. The summary of notations.

Notation Definition

T a geo-image dataset

1 a geo-image

IX the geo-location descriptor of I

X the value of longitude

Y the value of latitude

I.v the visual descriptor of 1

Q the reverse spatial visual top-k query

o the balance parameter in similarity measurement

wWi() the weight function of visual word

(039 the weight AND operator

&b the weight OR operator

Cr the k-th cluster

Sc the CEntry set

Ec a CEntry

Cia the id of a cluster

U] the CEntry set sum operator

T a CVR2-Tree

T a tuple in a CVR2-Tree

7] the lower bound of similarity between 7~ and k-th most
similar geo-image

[T] the upper bound of similarity between 7~ and k-th most
similar geo-image

L\ a lower bound determinant queue

Uy a upper bound determinant queue

A. PROBLEM DEFINITION
Before defining the reverse spatial visual top-k query prob-
lem, we introduce the notion of geo-image that contains two
aspects of information, i.e., geo-location and visual content.

Let 7 = {11,12, .. .I‘Z‘} be a geo-image dataset. Each
geo-image I € Z is represented by a tuple (/.A, I.v), where
1.\ is the geo-location descriptor that is a 2-dimensional vec-
tor to represent the geographical information in the form of
longitude X and latitude Y, i.e.,I.A = (X, Y).I.v is the visual
descriptor which is a y-dimensional vector to represent the
visual features of the image, i.e., I.v = (v, v®, . b))
In this paper, we employ BoVW [26] model to construct
the visual descriptor, thus each item v represents a visual
word.

Definition 1 (Reverse Spatial Visual Top-k Query): Given
a geo-image dataset Z and a query Q = (Q.X, Q.v). A reverse
spatial visual top-k query (RSVQy) aims to retrieve all the
geo-images in Z that consider the query Q as one of the top-k
most relevant geo-images in both aspects of geo-location and
visual content. Formally, it is described as follows:

RSVOL(Z,Q,k) ={110 € SVOr(Z,1,k),1 €I} (1)

where SVQO(Z, I, k) represents the spatial visual top-k query
that aims to return k most similar geo-images by a query
I considering geographical proximity and visual similarity
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FIGURE 2. An example of reverse spatial visual top-k query (RSVQy). There are ten geo-images I, I,, .. .I;o, and a query Q containing ten different
visual words in this example. The left is the spatial distribution of these ten geo-images. The table on the right demonstrates the details of them: the

geo-location descriptor and the visual descriptor.
simultaneously, formulated as follows:

SVOr(,1,k)
= {i|Sim(i, 1> Sim(I', 1), V1,1’ ¢ I} ,
ISVOR(Z,1,k)| <k )

where Sim(f ,I) is the similarity function to measure both
geographical proximity and visual similarity between / and /.
Herein we define it in formal as follows:

Sim(1,1) = u x GeoSim(I.\, I.X)
+(1 — p) x VisSim(I.v, 1.v) (3)

where € [0, 1] is a parameter to balance the propor-
tion between geographical proximity and visual similarity,
i.e., GeoSim(I. A, I.\) and VisSim(I.v, Iv). If u = 1 (or u =
0), the query is just considering the geographical proximity
(or visual similarity). In our solution, the users are allowed to
set this parameter according to their query preferences.

In the next we formulate the definition of geographic prox-
imity and visual similarity measurement and introduce how
to implement GeoSim(? A, I.1) and stSim(i v, 1Iv).

Definition 2 (Geographical
Given a geo-image dataset Z, VI, 1 € T are two geo-images.
The geographical proximity between I and I is measured by
the following function:

> EucliDst(I X, 1.\
GeoSim(I A, I1A) = 1 — 2 st( ) @
MaxDst(Z)

where EucliDst(f A, I.)) is the function to calculate the
Euclidean distance between /.A and /.A, shown as follows:

EucliDst(I.A, I.))

- " %)
= \/(I.A.X —IAX)2Z2+ (ALY —1LY)?

The function MaxDst(Z) in Eq. 4 measures the maximum
Euclidean distance between any two geo-locations in the
dataset Z, which is to normalize the Euclidean distance into
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Proximity  Measurement):

[0, 1],1.e.,
MaxDst(1)

= Max (| EuctiDst0 2, 10, 1 € 7)) ©)

where Max(-) is to return the largest element from the input
collection.

Definition 3 (Visual Similarity Measurement): Given a
geo-image dataset Z, VI I e T are two geo-images. The
visual similarity between these two geo-images is measured
by the following function:

RN ExJacc(i.v, 1.v)
VisSim(I.v,I.v) = ———— 7)
MaxVisSim(T)
where ExJacc(i v, I.v) is the extended Jaccard distance mea-
surement shown as following:

ExJacc(f.v, I.v)
Y , .
Y WED) x W)

i=1

WEDR + 3 WY — 3 WEO) < W)
1 i=1 i=1
@®)

to simplify the description, herein we use $” and v\¥) to denote
i-th visual word of I.v and I.v, i.e., ?® € I.v and v® € I.v.
The function W(-) in Eq. 8 is to calculate the weight of visual
word by TF-IDF [74]. Similar to the role of MaxDst(Z) in
Eq. 4, the function MaxVisSim(Z) in Eq. 7 is to return the
maximum visual similarity, i.e.,

Max VisSim(ZT)
= Max ({Ex]acc(i.v, I.v)|Vi, I e I})

Y
i=

&)

In the following, we give a simple example to present
reverse RSVQy, problem and how to find the results by com-
paring to the conventional reverse top-k query.

Example 2: As shown in Fig. 2, there is an example to
describe the reverse spatial visual top-k query (RSVQy)
task. Ten geo-images, i.e., I1, Iz, ... I1o illustrated by black
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¢ ¢
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FIGURE 3. The structure of VR2-Tree. It is a combination of visual representations and R-Tree. As described above, the visual representation of geo-image
is the visual word vector and the geographical partition is implemented by MBR. Each tree node contains both geo-location information and visual

content information.

spots, are distributed in a region represented by longitude
X and latitude Y. Ny, N2, ...N7 is the minimum bound-
ing rectangles (MBRs) that is to describe the approximate
location. The visual dictionary is the collection of visual
words that are contained by these geo-images. The table
on the right shows the geographical information and the
weights of each visual words that are contained in each
geo-image. Given a query Q (the red spot), and Q.o =
9,9),0.v = (1.0,1.0,0.0,0.0,0.0,0.0,9.0,9.0, 7.5, 8.5).
For the conventional reverse top-k query that consider only
the geographical proximity (Euclidean distance), and let
k = 2, the set of results is {I», I5, I3}. However, for the
RSVQg, let © = 0.5, now the set of results is {Ig, Ig, Iy}
because Q is more similar to /g and Ig in the aspects of visual
content.

B. BASELINE INTRODUCTION

As far as we know, there is no study that focus on RSVQx
problem and no baselines have been proposed. Obviously,
the existing reverse spatial textual search methods cannot be
directly applied to RSVQy since the necessity of visual rep-
resentation and similarity measurement. According to Eq. 3,
both geographical proximity and visual similarity should be
considered simultaneously during the search. Thus, it is not
feasible that perform reverse spatial search and reverse visual
search separately and then combine the results of them to
answer RSVQy query.

In this work, we propose a baseline for RSVQy, named
RSVQi-R. A pre-computation is processed to calculate
the geographical proximity and visual similarity between
the query Q and all the geo-images in the dataset Z, and the
results are stored in two lists. The threshold algorithm [14]
is employed to retrieve top-k geo-images which have the
highest similarity computing by Eq. 3 on these two lists.
In the process of computing, if the similarity between the
query Q and a geo-image I; is larger than the similarity of the
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k-th geo-image I, then I; become the new k-th geo-image by
replacing Ij.

For the visual representation of geo-image, we utilize the
hand-crafted features, namely SIFT descriptor, and combin-
ing with BoVW model to encode the visual content, which
is a conventional way used in many image search tasks [46],
[75]1, [76]. Specifically, the visual features are extracted by
SIFT technique and clustered by k-means method to generate
visual dictionary. Each geo-image is represented by a visual
word vector in which each element is the weight of the visual
word measured by TF-IDF. The spatial index employed in
RSVQi-R is R-Tree.

IV. THE PROPOSED APPROACH

In this section, we propose an effective approach to overcome
the challenge of RSVQy. Firstly, a novel hybrid index, named
VRZ-Tree, is introduced in subsection IV-A, which can orga-
nize the geo-images efficiently in both aspects of geographi-
cal distribution and visual representation. In subsection IV-B
we analyze the lower and upper bound of the search in theory.
Then we develop a VR2-Tree based algorithm to speed up the
search markedly.

A. HYBRID INDEX

1) VR2-TREE

The Structure. To efficiently organize the geo-images,
we integrate the visual representation of geo-images and
R-Tree to construct a novel hybrid index, named Visual
Representation R-Tree (VR>-Tree). As shown in Fig. 3,
VR2-Tree is a balanced tree built on a geo-image database 7.
Each leaf node contains several tuples in the form of
T = {{.A1.v, PTR()),I € Z. As defined in Section III,
I.A = (X,Y) is the geo-location descriptor and [.v =
(v(l),v(z), ...,v(")) is the visual descriptor modeled by
BoVW technique. PTR(I) is the pointer of a geo-image I in
database. Each non-leaf node contains quadruples in the form
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of (MBR, ANDOR, NUM, PTR(Child)), where MBR repre-
sents the minimum bounding rectangle of the child node,
ANDOR refers to two visual vectors, namely visual word
weight AND vector (AND-vector for short) and visual word
weight OR vector (OR-vector for short), which are generated
by two novel operations for weighted visual word vector. The
definitions of them is given thereinafter. NUM is the total
number of geo-images in the leaf nodes which belong to the
subtree of this non-leaf node. PTR(Child) is the pointer to the
child node.

Definition 4 (Weight AND): Given two y-dimensional
visual word vectors v (vl ), (12), .. (V)) and vy =
(v(zl), v(22)’ .. (y)) W(-) is the visual Word weight function.
The weight AND operation on v and v,, denoted as v; ) v2,
is to choose the minimum value of corresponding elements in
v and v,, namely:

v @) v2 = Min(Wi), Wiy,
Min(W ), W), ...,
Min(W ), wo)) (10)

where Min(-, -) is to return the minimum of the two inputs.
Definition 5 (Weight OR): Given two y-dimensional visual
4@ <y> -~
word vectors v, = (v1 SV ) and vo =
(v(zl) , V(22) - (y)) W (-) is the visual Word weight function.
The weight OR operation on v and v,, denoted as v €P va,
is to choose the maximum value of corresponding elements

in v and v,, namely:

vi P v2 = Max(Wi), Wiy,
Max(W(OP), o)), ...,
Max(W), W) (11)

where Max(-,-) is to return the maximum of the two
inputs.

For a non-leaf node N of a VR2-Tree, it assumes that
the geo-images contained in its subtree are {I1, I2, ... .I,;},
the visual word weight AND vector of a quadruple in N
is denoted as AND(I1, b, ... .In) = [Lv QL.v...Q Ly.v.
Similarly, the visual word weight OR vector is
0R(11, 12, ey Im) = 11.v @Iz.v . @Im.v.

According to Definition 4 and 5, we calculate the visual
word weight AND vector and visual word weight OR vector
of non-leaf nodes, i.e., N5, Ng, N7 in Example 2, as shown
in Fig. 4. For example, I, I, I3 are contained in the left
subtree of Ns, and 4, I5 are contained in the right subtree.
Thus, for non-leaf node N5, the weight AND vectors of
two quadruples are AND(I, I, I3) and AND(l4, Is), respec-
tively. Likewise, the weight OR vectors are OR(Iy, I, I3) and
OR(14, Is).

Visual Representation. Instead of hand-crafted visual
features, we propose to utilize deep CNN features to rep-
resent each geo-images since CNN features are power-
ful to represent semantic concept information. Specifically,
AlexNet [39] is employed to extract the visual features
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Non-leaf |
o LT

N AND(y, I, I5) 5.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0
AND(ly, I5) 4.5 2.0 0.0 15 l 0.0 0.0 0.0 1.5 0.0 0.0
N AND(Ig, I7) 0.0 1.0 0.0 0.0 0.0 0.0 8.0 7.0 9.0 8.0
AND(Ig, Is, I10) 2.0 1.0 0.0 0.0 l 0.0 0.0 5.5 0.0 0.0 0.0

AND(1y, I, I3, 1y, I5) 4.5 2.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0
AND(lg, I, Is, 19, Io) | 0.0 1.0 0.0 0.0 l 0.0 0.0 5.5 0.0 0.0 0.0

(a) Weight AND vectors
Non-leaf

G5 ovwn | ]I [ [
OR(Iy, I, I5) 8.0 9.0 9.5 9.0 6.5 0.0 6.5 1.5 8.0 1.0
OR(14, Is) 5.0 8.5 8.5 2.0 6.5 3.0 2.0 1.0 9.0 5.5
ORI, I7) 1.0 20 1.0 0.0 1.0 0.0 9.5 8.0 9.5 9.0
OR(Is, Iy, I1o) 4.5 35 1.0 0.0 8.0 8.0 8.5 9.0 9.0 8.5
OR(I1, I, I3, I, I5) 8.0 9.0 9.5 9.0 6.5 3.0 6.5 1.5 9.0 55
OR(Is, I3, Iy, Io, I0) 45 35 1.0 0.0 8.0 8.0 9.5 9.0 9.5 9.0

Ns

Ne

Ny

(b) Weight OR vectors

FIGURE 4. The visual word weight AND and OR vectors of non-leaf nodes
Ns, Ng, N7 in Example 2.

1) ()

C X
Z, where (x(l) (2),... x.("))5

from each geo-image in Z, ie., (x;
ALEX(I;), VI; S ) X; is
the output of 5-th convolutional layer. We sill use
BoVW model to generate the visual word vector as the
visual representation. Similar to the conventional manner,
k-means technique is exploited to construct the CNN
visual word dictionary containing y different words. Then
each geo-image is encoded into the y-dimensional visual
word vector, i.e., [;j.v = BOVW((x(l) (2),... ("))5) in
which each Word is weighted by TF-IDF method, namely
W), wo?), ... W) = TF-IDF(l,.v). In the
following discussion, we denote the weighted visual words
vector by I;.v.

2) THE CONSTRUCTION ALGORITHM

Inspired by the R-Tree [52] insert operation, we develop
a similar insertion algorithm based on the heuristics of
minimizing the MBR to implement construction of the
VR2-Tree, as described in Algorithm 1 detailedly. What is
slightly different from the above is that, instead of using
the form of (W(vj(l)), W(vj(.z)), R W(V;V))), we propose to
store the visual representation vector in a node N in the new
form of (5", W), (B, WO, ... (™ WO,
where #! ) is a code hashed from visual word v( ) is the
total number of visual words in N. To implement the hashing
operation, we employ the technique proposed in [77], namely
order preserving minimal perfect hashing.

Specifically, the procedure OPMP-HASH (I.v) in Line 5
is to generate the hash codes by order preserving mini-
mal perfect hashing from the original visual words vec-
tor and produce the new representation vector, namely
Vo= (o wor D W) W),
The procedure ChooseLeaf (MBR) in Line 6 is invoked to
choose the leaf node according to the MBR, which is similar
to the implementation of R-Tree [52]. From Line 7 to 12,
the procedures N.Add(I.v, MBR), N.SplitNode() and
M .AddNode(O, P) are similar to the processes of insertion
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Algorithm 1 Insert(/.v, MBR)
1: INPUT an original weighted visual representation vector
1.v,a MBR.
: Initializing: A vector V < null;
: Initializing: A node N < null;
: Initializing: A node M < null;
V < OPMP-HASH(I .v);
N <« ChooseLeaf (MBR);
N.Add(I.v, MBR),
: if N needs to be split then
{0, P} < N.SplitNode();
if N is the root node then
M .AddNode(O, P);
SetRoot(M);
else
AdjustTree(N .Parent, O, P);
15:  end if
16: else if N is not the root node then
17:  AdjustTree(N .Parent, N, null);

— m == =
L T

18: end if
MBR MBR
Cia Cia
Ctuple Set Ctuple Set I’ I
ANDOR ANDOR M
Num Num
AND-vector ‘
PTR(Child,) PTR(Child,) OR-vector ‘

FIGURE 5. The non-leaf node structure of CVR2-Tree.

in a R-Tree. Different from the algorithm AdjustTree in a
R-Tree, the procedure AdjustTree(-) invoked in Line 14 and
Line 17 is modified for the better compatibility with visual
representations.

3) THE EXTENSION OF VR2-TREE

There is a limitation of the VR-Tree: although the VR?-Tree
can organize geo-images according to geographical prox-
imity (by using MBR) as effectively as R-Tree, it ignores
the visual similarity during the tree construction. In other
words, it could well be that the visual similarity between the
geo-images that close to each other in geographical is very
small. This phenomenon is easy to find in real environment.
For example, on a commercial street, the facilities usually fall
into different categories, e.g. restaurant, clothing shop, cafe,
cinema, etc. This leads to the low visual similarity between
the geo-images collected in these different facilities.

To overcome this limitation, we propose to extend the VRZ-
Tree by exploiting visual content clustering to modify the
structure of the non-leaf node, and we call this extension
as Clustering based VR?>-Tree (CVR2-Tree). Specifically,
before the construction of the tree, we use k-means method
to partition the geo-image dataset Z into k clusters according
to the visual similarity, i.e., {C1, Ca, ..., Cx} = KMEANS(Z).

VOLUME 8, 2020

Different from the VR2-Tree, the tuple 7~ in non-leaf nodes of
CVRZ2-Tree, as shown in Fig. 5, contain a novel entry named
CEntry set S¢c = {€c}. Each CEntry ¢ corresponding to a
cluster is in the following form: Ec : (Cig, Liym), where Cig
is the id of the cluster, I, is the total number of geo-images
belong to this cluster. For a non-leaf node, its CEntry set is the
specific superposition of all the CEntry sets in its child nodes.
To describe it clearly, we propose a novel operation, named
CEntry set sum to define this calculation formally, as shown
in the following.

Definition 6 (CEntry Set Sum): Given two CEntry set Sc
and Sc». The sum of these two CEntry sets, i.e., Sc1 4 Sc2
is defined as follows:

ScilHSc2 =Sci| JSea S\ s, (2
where,
Sy = {&cIVT¢i € Sc1, VT € Sca,
if £¢i.Cia = E¢j.Ciq, then
EC Jyum = gCiJnum + ng'Inum}a (13)
and,

S- = {&ci, Ej|VEci € Sc1, YE¢ € Sca,

Eci-Cia = E¢j.Cial, (14)

and the operator | J is the set union operator, \ is the set minus
operator.

Therefore, for a non-leaf node N, its CEntry set N.S¢ is
the sum of all the CEntry sets in its child nodes, i.e., N.S¢ =
&Jf‘zl ChildNode(N);.Sc, where ChildNode(N); represents
the i-th child node of N, L is the total number of children.
For example, consider all the geo-images {I1, I7, ..., 1o} in
Example 2, according to visual similarity we cluster them into
4 clusters: C1 = {11, I, Is}, Co = {I3, I}, C3 = {Ig, I7, I3, Iy}
and C4 = {l10}. Thus, for the non-leaf node N5, N5s.Sc1 =
{(C1,2),{C2, 1)} and N5.Sc2 = {{Cy, 1), (C2, 1)}; for Ng,
Ne.Sc1 = {(C3,2)} and Ng.Sc2 = {(C3,2), (C4, 1)}; and
for N7, N7.Sc1 = Ns5.Sc1 | Ns5.Sc2 = {(C1, 3), (C2, 2)} and
N7.8c2 = N6.Sc1|H Ne.Sc2 = {(C3,4), (Ca, 1)}.

Like the AND-vector and OR-vector in the node of VR2-
Tree, we can calculate the CAND-vector and COR-vector
for each cluster. Specifically, the CAND-vector contains the
minimal weights of each visual words included in the cluster,
and the COR-vector contains the maximum weights of each
visual words. For the four clusters Cy, Cy, C3, C4 mentioned-
above, the CAND-vectors and COR-vectors of them are
shown in Fig. 6.

B. RSVQg ALGORITHM

Based on the CVR2-Tree, we carefully design a novel algo-
rithm to solve the RSVQ; problem efficiently. Before intro-
duce the detail of this algorithm in Section IV-B.3, we discuss

how to compute the lower bound and upper bound of similar-
ity IV-B.1.
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g 4 Im -
Cluster AND-vector ’ ! E ‘ n ! — " B

Cy AND(I, I, I5) 5.0 2.0 7.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0
(e)] AND(I3, I3) 45 2.0 0.0 15 0.0 0.0 2.0 0.0 8.0 1.0
Cs AND(Is, I, Is, Iy) | 0.0 1.0 0.0 0.0 0.0 0.0 8.0 7.0 8.0 8.0
Cy AND(I10) [ 45 35 0.0 0.0 8.0 8.0 5.3 0.0 0.0 0.0

(a) Weight AND vectors

Cluster AND-vector ’ ! E ‘ n ! - " B

Cy AND(I, I, I5) 7.0 9.0 9.5 9.0 6.5 0.0 1.0 1.5 0.0 1.5
(e)] AND(I, Ls) 8.0 35 0.0 9.0 0.0 3.0 6.5 1.0 9.0 5.5
Cs AND(Is, I, I, Iy) | 3.0 2.0 1.0 0.0 1.0 1.0 9.5 9.0 9.5 9.0
Cy AND(I10) [ 45 33 0.0 0.0 8.0 8.0 5.9 0.0 0.0 0.0

(b) Weight OR vectors

FIGURE 6. The visual word weight CAND and COR vectors of clusters C;,
C,, C3 and C, in Example 2. Similar to the AND and OR operations in
VR2-Tree, the CAND-vector contains the minimal weights of each visual
words included in the cluster, and the COR-vector contains the maximum
weights of each visual words.

1) LOWER BOUND AND UPPER BOUND
To explain the computation of lower bound and upper bound,
firstly, we present the notions of minimal similarity and max-
imal similarity between two tuples in a CVR?-Tree, and then
introduce the lower bound and upper bound contribution list.
Given a CVR2-Tree T, VT € ¥, the lower bound and upper
bound of similarity between the tuple 7 and its k-th most
similar geo-image are denoted as |7 | and [7 ] respectively.
The y-dimensional visual word weight AND vector and OR
vector of T are denoted as T.A = (aV,a?, ..., a")) and
T.0 = (0, 0@, ..., 0")) respectively. we define the min-
imal similarity between two tuples in CVR?-Tree as follows.
Definition 7 (Minimal Similarity (MinSim)): Let T; and
T2 € T be two tuples, the minimal similarity between 7; and
Te is denoted as MinSim(7y, T3), which is computed by the
following equation:

MinSim(T1, T2)
= Max(ju x tMaxGeoSim(Ti, T2)
+(1 — p) x MinVisSim(T1, T2),
1 x MaxGeoSim(Ty, T2)
+(1 — w) x tMinVisSim(Ty, T2)), (15)

tMaxGeoSim(T1, T2)
_ MinMaxEucliDst (T, T2) (16)
- MaxDst(T) ’
MinVisSim(T1, T2)

_ MinExJacc(T1, T)

- (17)
MaxVisSim(T)
MaxGeoSim(T1, T2)
11— MaxEucliDst (T, 7’2)’ (18)
MaxDst (1)
tMinVisSim(T1, T2)
_ tMinExJacc(T1, T) (19)

MaxVisSim(ZT)

where tMaxGeoSim(Ty, T;) proposed in [78] is a tighter
Euclidean distance measurement than MaxGeoSim(7T1, T3)
that is the maximal Euclidean distance between 7;.MBR and
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T>.MBR, and
MinExJacc(T1, T2)

Y . .
N TWD x T WD
i=1

Ty Y Y ’
Y TLWOT £ Y BwO? - 3 TLWO x WO
i=1 i=1 i=1

(20
where, 7;.W® denotes the weight of i-th visual word,

TiWD = 100, 5. W = T4, if
T1.a9 x T7.09 > T5.a9 x T3.09 21
TiWD =749 WD = 75.09, otherwise

and,

tMinExJacc(Ti, T2)

TIWOXx T WOL ¥
R 02 02 © o ’
<<y \TL WO 1T WO T, WO X T5. WO + 5

14
2= Y WO L RwO - WO X T,

i=1,i%
y - -
Y = Z TiWD x T.w® (22)
i=1,i#t
where,
TiWO =T.00, LW = To.a?, if
T1.aD x T1.09 > T5.49 x T5.00 (23)
Ti WD = 7149 WD = 7509, otherwise
E‘W(t)
. T5.09, if T1.aW x T1.09 > T5.a® x T3.00 (24)
B T5.a®, otherwise
T.w®
) TaY, i Ta® x Tio® < T.W 25)
" | 77.09, otherwise

Property 1: Given a CVR?-Tree T, 71, 7> € T.3L €
Tz s.t.¥YI € Ty, Sim(I1, I) > MinSim(T1, T2).

Definition 8 (Maximal Similarity (MaxSim)): Let T and
T> € ¥ be two tuples, the maximal similarity between 7
and T¢ is denoted as MaxSim(7T1, T2), which is computed by
the following equation:

MaxSim(Ti, T2) = u x MinGeoSim(T1, Tz)

+(1—p) x MaxVisSim(T1, T2), (26)
MinEucli(T1, T2)

MinGeoSim(T, 75) =1- W, (27)
o _ MaxExJacc(Ti, T2)
MaxVisSim(T1, T2) = MaxVisSim(T) (28)

where MinGeoSim(7i,T;) is the minimal Euclidean dis-
tance measurement between two MBRs of 77 and 7,
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MaxExJacc(Ty, T2) is the maximal visual similarity between
T1 and 77, which is computed by the following equation:

MaxExJacc(T1, T2)
)4 . .
N TLWD x T wd

o i=1

Ty Y Y ’
S TWO £ Y HWO? - 3 T WO x T WO
i=1 i=1 i=1

(29)

T WD =769 WD =700 if

T1.a9 > T3.00

Ti.WD = T1.00, WD = T5.a9, if

Ti.0% < T5.a" (30)
TiWD =TH.wh =T, .0, if

T2.a" < T1.0% < T5.00

TiWO =T WO = 7,09, otherwise

Property 2: Given a CVR%-Tree X, 71,7, € T.Vlh €
T2, VI € T1, Sim(I1, 1) < MaxSim(Ty, T2).

According to the definition of minimal and maximal simi-
larity between two tuples in VR?-Tree or CVR2-Tree, we pro-
pose other two notions, namely Lower Bound Determinant
Queue and Upper Bound Determinant Queue, which are used
to reduce the candidate set effectively.

Definition 9 (Lower Bound Determinant Queue (W )):
Given a CVR?-Tree %, St = {11, 7T2,..., T} is a tuple
set in which each tuple is in . For a tuple 7 € ST,
a lower bound determinant queue of 7, denoted as W (7) =
(wg), 22), e, za)), is a queue containing « items in the
form of wi’ ) = (&, 7A7 ;) that are sorted in descending order
of &, wherein o € N+A, a € [1,k],i € [1,a], T; is another
tuple in Sy, namely 7; # 7T, & is the value of similarity
between 7 and ’7A: ie., & = MinSim(T, 7A7), ¥ is an integer
that is assigned by the following condition:

5 = |7l — 1, if& = MinSim(T, T;) 31)

1, otherwise

that minimizes o s.2. Y o | ¥ > k.

Property 3: Given a lower bound determinant queue
v (7)), wia) = (&, Tas ¥y is the a-th item of the queue.
If l/fza).&x > MaxSim(T, Q), the subtree of T can be pruned
safely.

According to the Definition 9 and Property 3, the candidate
set can be reduced by pruning the tuples that are not similar
enough to the query. Therefore, the lower bound |7"] can be
assigned by @ &,.

Definition 10 (Upper Bound Determinant Queue (Vy)):
Given a CVR?-Tree %, St = {11, T2, ..., T} is a tuple
set in which each tuple is in . For a tuple 7 € ST,
a upper bound determinant queue of 7, denoted as Wy (7)) =
(wg}), wé,z), ce wéf)), is a queue containing B items in the
form of 1//8) = (&, ’f}) that are sorted in descending order of
&, wherein 8 e NT,B e [1,k],ie[l, 8], 7A§is another tuple
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in S7, namely 7A7 =+ T,& = MaxSim(T, 7Af), B is maximized
to satisfy the condition 1 + Zf}:_ll 1Til < k.

Similar to lower bound determinant queue, upper bound
determinant queue has an important property that is formu-
lated as follows.

Property 4: Given a upper bound determinant queue
VT, v = (&5, Tp) is the B-th item. TIf & <
MinSim(T, Q), then Q is one of the kK most similar geo-images
for all geo-images in 7.

It is easy to understand from the Property 4 that the number
of geo-images that are similar to any geo-image in the tuple 7
(i.e., similarities of them are larger or equal to MinSim(T, Q))
is at most k — 1. Therefore, the upper bound [7] can be
assigned by w(ﬂ).éﬁ.

2) OPTIMIZATION: TIGHTER BOUND VIA CVR2-TREE

To improve the performance of search, we propose a opti-
mization method via CVR?-Tree to obtain a tighter bound.
According to cluster id, this method aims to identify the
outliers from the tuples in CVR?-Tree, which are picked out
from the normal geo-images and severally calculate their
bounds. Thus, the bounds of the normal tuples can be tighter.

The outlies can be identified according to the following two
situations:

Situation-1: For a tuple T, most geo-images in the subtree
of 7 can be pruned, but there exist a few of geo-images
that cannot be pruned, and we treat them as outliers. Obvi-
ously, these outliers make the tuple 7 and its subtree can-
not be pruned. Formally, for a query Q and a tuple 7,
if MinSim(T, Q) < |T| < MaxSim(T, Q), and there exist a
subset Sub({C}) of {C} of T s.t. ZCiESubl({C}) Ci.N = €|T],
and VC; € Subi({C})s.t.

MinEucliDst(T1, T2)

MaxDst(1)
+(1 — wMaxVisSim(C;, Q) < |T|

u(l

where € is a parameter. The geo-images that are in 7 but not
in Suby({C}) are treated as outliers.

Situation-2: For a tuple T, most geo-images in the sub-
tree of 7 can be treated as results, but there exist a few
of geo-images that cannot be treated as results. Therefore,
the tuple 7 cannot be treated as a result tuple. Formally,
for a query Q and a tuple T, if MinSim(T,Q) < [T] <
MaxSim(T, Q), and there exist a subset Sub>({C}) of {C} of
T s.t. 3 cesubycy Ci-N = €|T1, and ¥C; € Subr({C})s.t.

MaxEucliDst(T1, T2)

MaxDst(T)
+(1 — w)MinVisSim(C;, Q) < [T

p(l

where € is a parameter. The geo-images that are in 7 but not
in Sub,({C}) are treated as outliers.

According to the above two situations, we can identify
the tuples whether their subtree can be pruned or treated as
results. The implementation of this optimization method is
shown in the next part.
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Algorithm 2 RSVQk Algorithm

Algorithm 3 IsResultOrPruned(7, Q, Lg)

1: INPUT: the tree root of a CVR2-Tree T.Root, a reverse
spatial visual top-k query Q.

2: OUTPUT: All the geo-images I,
RSVQk(Q, k, I).

: Initializing: A max-priority queue P < null;

. Initializing: A candidate geo-image list Lc < null;

. Initializing: A pruned tuples list Lp < null;

. Initializing: A results list Lr < null;

: EnQueue(P, T.Root);,

: while IsNotEmpty(P) do

Tp < DeQueue(P);

10:  for each child tuple 7 of 7p do

1 Vi (T) < Y (Tp);

s.t., [ IS

O 0 N AW

12: Yy (T) < Yu(Tp);

13: if —IsResultOrPruned(T, Q, Lg) then
14: for each tuple 7 € L¢ U Lz UP do
15: UpdateV (T, T); A

16: if IsResultOrPruned (T, Q, Lg) then
17: Remove(T, Lc U LRrUP);

18: end if

19: end for

20: if —IsResultOrPruned(T, Q, L) then
21: if IsIndexNode(T ) then

22: if 7 is Situation-1 or Situation-2 then
23: for each 7' € Subtree(T) do
24: if C;+ C Sub ({C}) then

25: Prune(T");

26: else if C7+ C Suby({C}) then
27: LrAdd(T");

28: else if IsIndexNode(T’) then
29: EnQueue(P,T),

30: else

31: L. Add(T);

32: end if

33: end for

34: end if

35: EnQueue(P, T);

36: else

37: Lc. Add(T);

38: end if

39: end if

40: end if

41:  end for
42: end while
43: Verify(Lc, Lp, Lg, Q);

3) TOP-k SEARCH ALGORITHM
Based on the CVR?-Tree and the notion of the lower
bound and upper bound, we carefully develop an efficient
search algorithm for the task of RSVQk, which is shown in
Algorithm 2.

Specifically, the inputs of RSVQk algorithm are a tree
root of a CVR?-Tree and a query Q. This algorithm accesses
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1. if [ 7] > MaxSim(T, Q) then

2: ﬁp.Add(’T);

3: return true;

4: elseif [T] < MinSim(T, Q) and IsRightest(T) then
5. LR.Add(T .Subtree)
6 return true;

7: else

8 return false;

9: end if

Algorithm 4 UpdateW (T, 7)

1: for each item Wg) € V. (T)do

2. if wg).ﬁ =TIl 1//£l).7A7 = Parent(T) then
3 Remove(l//g), v(T));

4:  endif
5
6
7

: end for

i [T < MaxSim(T, T) then A

c o Wy(T) < (Yu) € Yu(T) by MaxSim(T, T),

st Yt Wy(T).0: > k;

end if

9 if | T| < tMiNSim(T, T then A

10: W (T) < {¥r}y CVL(T) by tMiNSim(T, T),
s.t. Z;:l W, (T).9 > k;

11: end if

12: if | 7| < MinSim(T, T then A

13: W (T) < {Yr}y C VL(T) by MinSim(T,T)
sto Y W) > ks

14: end if

*

the CVR?-Tree T from top to bottom and computes the
lower bound |7 | and [7] step-by-step for each T € ¥.
Then, according to 7] and [7 ], the algorithm to determine
a tuple 7 should be pruned or the geo-images in it are
the results. At the beginning of it, a max-priority queue P
and three lists are initialized, i.e, a candidate geo-image list
Lc in which the geo-image need to be checked, a pruned
tuples list £p in which the tuples will not be results and
a results list Lg. The first step is to put the tree root into
the queue P by invoking the procedure EnQueue(P, T.Root)
(in Line 7). Then If the queue P is not empty, the tuple
with the highest priority, denoted by 7p is dequeued from P
(Lines 8-9). After that, for each child T of 7p, it inherits the
lower bound determinant list and upper bound determinant
list from 7p (Lines 11-12). Based on Wz (7) and Wy (7T),
the procedure IsResultOrPruned (T, Q, Lg) (Algorithm 3) is
invoked to determine whether 7 is a result or need to be
pruned (Line 13). As shown in Algorithm 3, if |7 >
MaxSim(T, Q), that means T can be pruned, we put T into
list Lp; if [T] < MinSim(T,Q) and T is the rightest
child, that means 7 can be treated as a result, we put it
into results list Lg; if 7 does not belongs to above sit-
uations, we tighten the lower bound and upper bound by
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Algorithm 5 Verify(Lc, Lp, Lg, O)
1: while IsNotEmpty(Lc) do
2:  Initialize 7 € Lp with the lowest level;

32 Lp=Lp—{Th

4:  for each geo-image I € L do

5: UpdateV (I, T);

6: if IsResultOrPruned(I, Q) then
7: Lc=Lc—{I};

8: end if

9:  end for

10:  for each child tuple T of T do
11: Lp=LpU{T}

12:  end for

13: end while

invoking procedure UpdateW (T, T) using T € Lo ULgU
‘P (Lines 14-15). In Line 16 and 17, the algorithm invokes
procedure IsResultOrPruned again to determine whether
T is pruned or treated as a result. If yes, then the algo-
rithm removes 7~ from P or Lc. In Lines 20-35, if 7T is
not a result or pruned, and meanwhile it is an index node
(Lines 20-21), then we identify whether the tuple 7 belongs
to situation-1 or situation-2. If yes, the algorithm checks
whether the tuples in subtree of 7 are results or not based
on the relation between C7~ and the cluster set Sub;({C}) and
Suby({C}). If not, the algorithm puts 7 into queue P. Finally,
in Line 43, the procedure Verify is invoked to decide whether
the geo-images in list L¢ are results.

The pseudo-code of procedure Verify is shown in
Algorithm 5, which aims to check the effect of the tuples in
Tp on each tuples in L¢. First, in Lines 1-2, this procedure
chooses a tuple from the list £p with the lowest level in the
CVR?-Tree. The reason of this process is that the tuples in
the lower level generally have tighter bounds. That means
they are more likely to identify the tuples that are results
or not. In Lines 4-7, the tuple 7 is used to update the
determinant queue of each geo-image that is contained in
Lc, then the geo-images are checked whether they can be
dropped from the L¢. In Line 10-11, this algorithm adds child
tuple of 7 into list Lp, due to the effect on the candidates
in ,Cc.

V. EXPERIMENTS

In this section, the comprehensive experiments on four
datasets are presented, which evaluate the performance of the
proposed approach. Firstly, the datasets and workload of the
experiments are introduced in section V-A, then discuss the
evaluations in section V-B.

A. DATASETS AND WORKLOAD

1) DATASETS

In our experiments, four synthetic geo-image datasets are
used to evaluate the performance of various approaches. Two
common used image datasets, i.e., Flickr and ImageNet, are
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used as the source of the synthetic geo-image datasets. The
following four datasets are deployed in the experiments:

o Flickr-RP. The synthetic dataset Flickr-RP is produced
by obtaining geographical locations from correspond-
ing spatial datasets from Rtree-Portal® and randomly
geo-tagging the images in Flickr,” the most popular
photo-sharing platform. That means we do not use the
original geo-tags of these images. To evaluate the scala-
bility of the proposed approach, The dataset size varies
from 200K to 1000K.

o Flickr-US. The synthetic dataset Flickr-US is produced
by obtaining geographical locations from the US Board
on Geographic Names.® Like the dataset Flickr-RP,
we use these geographical location information to gen-
erate new geo-tags for the images in Flickr.

« ImageNet-RP. The synthetic dataset ImageNet-RP is
generated by obtaining geographical locations from
the US Board on Geographic Names® and randomly
geo-tagging the images obtaining from the largest
image dataset ImageNet.'” ImageNet is widely used in
image processing and computer vision, which includes
14,197,122 images and 1.2 million images with SIFT
features. Like the Flickr dataset, We generate ImageNet
dataset with varying size from 200K to 1000K.

« ImageNet-US. The synthetic dataset ImageNet-US is
generated by obtaining geographical locations from
the US Board on Geographic Names'! and randomly
geo-tagging the images in ImageNet.

Some samples of Flickr and ImageNet dataset are shown

in Fig. 7.

2) WORKLOAD
A workload for reverse spatial visual top-k query experiments
includes 100 input queries. The query locations are randomly
selected from the locations of the underlying geo-objects.
By default, the number of final (top-k) results k = 3;
the image dataset size is 600K, which grows from 200K to
1000K; the parameter u is set to 0.7; The number of query
visual words is set to 100, which changes from 25 to 150.
We report the average response time of 100 queries. The
details of these parameters are presented in Table 2. All the
experiments are run on a workstation with Intel(R) CPU
Xeon 2.60GHz, 16GB memory and NVIDIA GeForce GTX
1080 GPU running Ubuntu 16.04 LTS Operation System. All
query algorithms in the experiments are implemented in Java.
To the best of our knowledge, this work is the first time to
investigate the problem of reverse spatial visual top-k query.
In other words, there exists no method for this challenge.
we compare the performance of the following approaches:

6http://www.rtreeportal.org
Thttp://www.flickr.com/
8http://geonames.usgs.gov
9http://geonames.usgs.gov
10http://image—net.org/index
1 http://geonames.usgs.gov
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ImageNet

FIGURE 7. Some samples of Flickr and ImageNet dataset used in our experiments.

TABLE 2. The parameters evaluated in the experiments. The default
values are shown in bold.

Parameters Values

Dataset size 200K, 400K, 600K, 800K, 1000K
Top-k 1,3,5,7,9

o 0,0.1,0.3,0.5,0.7,0.9, 1
Number of query visual words | 25, 50, 75, 100, 125, 150

e RSVQ;-R. RSVQ;-R is the baseline introduced in
Section III-B, which employs R-Tree as the spatial
index.

o RSVQ;-VR?. RSVQi-VR? is the proposed method
introduced in Section IV-A.1, which employs VR?-Tree
as the spatial index.

« RSVQ;-CVR?. RSVQ;-CVR? is the proposed method
introduced in Section IV-A.3, which employs the exten-
sion of VR2-Tree, i.e., CVR?-Tree.

o RSVQ;-OptCVR?. RSVQ;-OptCVR? is the proposed
method which uses CVR?-Tree with the optimization
method introduced in Section I'V-B.2.

As discussed above, the techniques of visual word gen-
eration used in the baseline is SIFT+BoVW. We utilize
SIFT technique to extract local visual features of samples
in the geo-image datasets, and then encode them into visual
words vectors with a pre-learned vocabulary tree. The number
of local visual features of each sample is from 1 to 300.
For the proposed approaches, the pre-trained CNN model,
i.e., AlexNet is used to learn the visual features. We fine-
tune the AlexNet on the two geo-image datasets by stochastic
gradient descent (SGD) algorithm. The momentum is set to
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0.9 and weight decay is set to 0.0005. To prevent over-fitting,
each layer is followed by a drop-out operation with a drop-out
ratio of 0.5. After fine-tuning, the outputs of the first two
fully-connected layers as the deep visual features, which are
used to generate deep visual words vectors.

B. PERFORMANCE EVALUATIONS

In this section, we evaluate the reverse search performance of
the proposed approaches, i.e., RSVQ;-VR?, RSVQ;-CVR?
and RSVQ;-OptCVR?, and compare them with the baseline
RSVQ-R on different size of geo-image datasets. Some
search results of the proposed approaches are shown in Fig. 8.
The images in green rectangle are the correct results and the
failed cases are in the red rectangle.

1) EVALUATION ON THE SIZE OF DATASETS

We evaluate the effect of varying the size of geo-image dataset
on Flickr-RP, Flickr-US, ImageNet-RP and ImageNet-US,
shown in Fig. 9 using log-scale. Obviously, the proposed
algorithms outperform the baseline on these four datasets.
Particularly, with the increasing of the dataset size, the effi-
ciency of RSVQ;-R declines dramatically because all the
geo-images have to be considered for spatial visual top-k
search. By comparison, the performances of RSVQ-VR?,
RSVQ-CVR? and RSVQ;-OptCVR? drop relatively slowly
due to the efficiently spatial index and search algorithm.

To clearly demonstrates the trends of these proposed
approaches, we draw the experimental data of RSVQ;-VR?,
RSVQ;-CVR? and RSVQ;-OptCVR? via linear scale, shown
in Fig. 10. For these four datasets, the performance of
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Flickr

Results

ImageNet

FIGURE 8. Some search results of the proposed approaches on Flickr and ImageNet. The images in green rectangle are the correct results and the failed

cases are in the red rectangle.

1000000

1000000

1000000 1000000

—m—RSVQR —m—RSVQR —m—RSVQR —m—RSVQR
100000 —@—RSVQ-VR? 100000 RSVQ-VR! 100000 “—®—RSVQVR® 100000 —@—RSVQ,-VR?
(—A—RSVQ-CVR? (—A—RSVQ-CVR? {—A—RSVQ-CVR? [—A—RSVQ,-CVR*
g loooo —¥—RSVQ,-OptCVR’| g loooo —¥—RSVQ,-OptCVR’| g loooo —¥—RSVQ,-OptCVR’| g 10000 —¥—RSVQ-OptCVR?
2 e 2 e 2 e 2
2 1000 2 1000 2 1000 2 1000
p p p p
H 100 H 100 H 100 H 100
RS RS . RS e RS
, eﬁ , f— = , s ¢ . .:_,_*—’v—ﬂ
01 01 01 01
200K 400K 600K 800K 1000K 200K 400K 600K 800K 1000K 200K 400K 600K 800K 1000K. 200K 400K 600K 800K 1000K.
Dataset Size Dataset Size Dataset Size Dataset Size
(a) Flickr-RP (b) Flickr-US (c) ImageNet-RP (d) ImageNet-US
FIGURE 9. Evaluation on the size of geo-image datasets (log-scale).
8 8 8 8
—8—RSVQ-VR? —8—RSVQ,-VR’ —8—RSVQ,-VR® —8—RSVQ,-VR®
[—A—RSVQ,-CVR? [—h—RSVQ,-CVR* (—h—RSVQ,-CVR* —A—RSVQ,-CVR*
6 [—¥—RSVQ-OptCVR* 6 [—¥—RSVQ-OptCVR* 6 —¥—RSVQ-OptCVR? 6 —¥—RSVQ-OptCVR?
3 3 3 3
12 ) 1) (2
2 2 2 2
E E E E
=44 =4 LR =44
z z z z
H H g g
2 2 2 2
3 3 5 5
o~ o~ o~ o~
: -v/'__/ : -f_/ 24 ? -r//
0 T T T T 0 T T T T 0 T T T T 0-r T T T T
200K 400K 600K 800K 1000K 200K 400K 600K 800K 1000K. 200K 400K 600K 800K 1000K. 200K 400K 600K 800K 1000K.
Dataset Size Dataset Size Dataset Size Dataset Size

(a) Flickr-RP

(b) Flickr-US

FIGURE 10. Evaluation on the size of geo-image datasets (linear-scale).

RSVQ-VR? is the lowest. Specifically, its response time
is fluctuating upward in interval [200K, 800K], and after
that it grows rapidly. By using the more efficient index,
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(c) ImageNet-RP (d) ImageNet-US

i.e., CVR?-Tree, the algorithm RSVQ,-CVR? can defeat the
former. Similarly, the response time rises markedly when the
dataset size is larger than 800K. Benefit from the optimization
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technique, RSVQ,-OptCVR? is the most efficient algorithm,
whose growth rate of response time is the lowest as well.
On Flickr-RP, it increases from 1.8 at 200K to nearly 3.2,
which is similar to the situations on the other three datasets.

2) EVALUATION ON THE NUMBER OF RESULTS k

We evaluate the effect of varying the number of results &
on Flickr-RP, Flickr-US, ImageNet-RP and ImageNet-US,
shown in Fig. 11. As the huge performance gap between
the baseline and the three proposed algorithms, we do not
plot the experimental data of RSVQ-R. Instead, we just
show the differences of RSVQk—VRZ, RSVQk—CVR2 and
RSVQ;-OptCVR?. Beyond all doubt, the response time of
all these algorithms increase gradually with the rise of k. Due
to the optimization method, RSVQ;-OptCVR? overcomes
the others on all the four datasets. By comparison, with-
out the optimization, the performance of RSVQ;-CVR? is
worse than the former, which shows an upward trend with
fluctuation. Apparently, the response time of RSVQ-VR?
is the highest since the promotion of efficiency by the VR2-
Tree is not larger than CVR2-Tree, especially the applying of
optimization technique.

3) EVALUATION ON THE BALANCE PARAMETER .

We evaluate the effect of varying the value of balance param-
eter w in the similarity measurement on the four datasets.
Like above experiments, we do not plot the data of RSVQ-
R due to the enormous efficiency gap. On Flickr-RP dataset
shown in Fig. 11(a), we can see clearly that the efficiency
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of RSVQ-VR?, RSVQ;-CVR? and RSVQ;-OptCVR? are
not obviously affected by changing p in interval [0, 0.9].
Specifically, they move up and down slightly. However, when
u = 1, the time cost of these algorithms drop down obviously
because the visual similarity is ignored totally. As expected,
RSVQ;-OptCVR? wins this comparison by applying opti-
mization via CVR2-Tree. On Flickr-US, the runtime of these
algorithms are slightly lower than the values on Flickr-
RP, but the trends of them is very similar. They decline
rapidly at u = 1. As expected, the situations on ImageNet-RP
(Fig. 11(c)) and ImageNet-US (Fig. 11(d)) are very similar to
the former two.

4) EVALUATION ON THE NUMBER OF

QUERY VISUAL WORDS

In the last set of experiments, we evaluate the effect of varying
the number of query visual words on these four datasets. The
experimental results are illustrated in Fig. 13. By the same
token, we do not consider the results of baseline and just
show the differences between RSVQg-VRZ, RSVQ;-CVR?2
and RSVQ;-OptCVR?Z. It is evident that the runtime of these
algorithms decrease gradually as the number of query visual
words increases. In particularly, the change rates of them in
interval [25, 75] is a bit larger than the value in [100, 150]. The
reason is that more visual words may enhance the pruning by
diminishing the average visual similarity between query and
geo-images. Same as those of the above sets of experiments,
RSVQ;-OptCVR? has the highest efficiency on all these
datasets.
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