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ABSTRACT Based on event-triggered mechanism, networked dissipative filtering of stochastic genetic
regulatory networks is investigated under aperiodic sampling. The states of the genetic regulatory network
are sampled aperiodically and transmitted via a communication network to filters to estimate the expression
levels of the mRNA and protein. In order to make better use of limited communication resources, a novel
communication scheme is proposed. Then considering both network-induced delays and aperiodic sampling
simultaneously, the filtering error dynamics are modeled in the form of a stochastic system with a time-
varying delay. By Lyapunov theory and Wirtinger-based integral inequalities in a stochastic setting, asymp-
totical stability and dissipativity of the error dynamic system can be ensured. Based on the derived criterion,
suitable dissipative filters are designed such that a set of inequalities are satisfied. Finally, the effectiveness
of the proposed method is illustrated by a simulation example.

INDEX TERMS Aperiodic sampling, event-triggered scheme, dissipative filtering, genetic regulatory
networks, transmission delays.

I. INTRODUCTION
Genetic regulatory networks (GRNs), a kind of mechanisms
used to express the interactions between genes (mRNA)
and their products (proteins), have been attracted tremen-
dous attention due not only to the extensive engineering
applications, but also to the theoretical research interest in
biomedical. Over the past few decades, numerous effort has
been devoted to the field of GRNs, see as in [1]–[3] and
references therein. In [2], [3], a stochastic nonlinear dynamic
model has been developed for GRNs under random intra-
and inter-cellular fluctuations. Besides, it is well known
that a number of applications of GRNs heavily depend
on neuron states in order to identify genes of interest and
design drugs. However, in practice, due to the inherent
internal random fluctuations or the external noises, only
parts of neuron states may be available in network out-
puts. Thus, neuron state estimation of GRNs has attracted
enormous attention, and substantial effort has been made
on this topic, see for example, [3]–[9]. In [4], a stochastic
nonlinear dynamic model has been developed for GRNs,
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and a sampled data filtering method has been proposed to
estimate the states of the genetic network. Chen et al. [9]
investigates H∞ filtering for Markovian switching genetic
regulatory networks with time-delays and stochastic
disturbances.

Although many algorithms for GRNs have been proposed
in the literature, it is worth mentioning that most afore-
mentioned results are developed to solve a point-to-point
architecture, which requires continual and instantaneous
communication between the GRN and the filter. Such a
pattern may be unrealistic or even fail to perform filter-
ing tasks in many practical circumstances. For example,
in [3], conventional filtering based on continual communi-
cation is no longer applicable if the measurement is sam-
pled and digital. With the rapid advancement and progress
in the field of the computer industry and artificial intelli-
gence, network-based control has been widely used in engi-
neering, biological science, social science and other areas.
Using communication networks to transmit data can poten-
tially improve the reliability and scalability of GRNs, but
the communication load and bandwidth are always lim-
ited. Thus it is significant to find an effective control
scheme to save communication resources while preserving
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the desired filtering performance, see as in [10]–[14] and
references therein. Recently, some transmission strategies,
such as event-triggered schemes, have been proposed to
tradeoff the communication resources and system perfor-
mance. A number of results are focused on the state estima-
tion of GRNs under network environments [15]–[18], while
most of them are in discrete settings and not considering
network resources. It is essential to develop a network-
based strategy for filtering of GRNs regarding communica-
tion resources, which is the initial motivation of the current
study.

Since dissipativity concept was first proposed in [19], it has
attracted much researchers’ attention. Dissipativity is a gen-
eralization of passivity and H∞ property [20]. It has been
popularly utilised in electrical circuits, mechanical systems,
industry, viscoelastic materials, and so on. A variety of results
on dissipative filtering for network-based neural networks
have been developed. For example, network-based dissipa-
tive filtering for neural networks is investigated in [21].
However, the physical plant is a deterministic system rather
than a stochastic system. In [22], the quantized asynchronous
dissipative state estimation of Markovian jumping neural
networks is studied while the plant is assumed to be discrete-
time. When the physical plant is a stochastic continuous-
time system and the sampling is aperiodic, the criteria on
dissipative filtering techniques in [21] and [22] may not be
effective. To the best of authors’ knowledge, few results on
the dissipative filtering of GRNs under aperiodic sampling
have been published, which is the second motivation of this
study.

Motivated by the above discussion, in order to make
research more realistic, in this paper, we investigate event-
triggered networked dissipative filtering of a genetic regu-
latory network. The signal transmitted from a GRN to its
filter through a communication channel where the signal is
sampled aperiodically. The event-triggered scheme is first
introduced to the research of filtering of GRNs. Compared
with the existing results of GRNs, the proposed mechanism
in this paper is more realistic and can significantly reduce the
communication load and maintain the filtering performance.
Based on the proposed event-triggered scheme, a new frame-
work incorporating network-induced delays and aperiodic
sampling is developed. Then the filtering error system ismod-
eled as a time-delay sampled-data error dependent stochas-
tic system. By the Wirtinger-based inequalities in stochastic
setting, suitable filters can be designed such that certain
filtering performances can be ensured. Finally, the effec-
tiveness of the proposed method is shown by a simulation
example.
Notations: In this paper, diag{· · · } and col{· · · } represent

a diagonal matrix and a column vector, respectively. The
symbol He{A}means A+AT . The space of square-integrable
vector functions over [0,∞) is denoted by L2[0,∞). The
symbol ‘?’ stands for the symmetric term in a symmetric
matrix.

II. PROBLEM DESCRIPTION
Consider a genetic regulatory network (GRN) described by

dm(t)
dt
=−Am(t)+ Bg(p(t))+ Emv(t)+l

dp(t)
dt
=−Cp(t)+ Dm(t)+ Epv(t)

(1)

where

m(t) =
[
m1(t) m2(t) · · · mn(t)

]
,

p(t) =
[
p1(t) p2(t) · · · pn(t)

]
,

A = diag(a1, a2, · · · , an),

C = diag(c1, c2, · · · , cn),

D = diag(d1, d2, · · · , dn),

Em =
[
em1, em2, · · · , emn

]T
,

Ep =
[
ep1, ep2, · · · , epn

]T
,

l =
[
l1, l2, · · · , ln

]T
,

g(p(t)) =
[
g1(p1(t)), g2(p2(t)), · · · , gn(pn(t))

]T
.

with i = 1, 2, · · · , n, mi(t) and pi(t) representing the con-
centrations of mRNA and protein of the ith gene at time t ,
respectively; ai and ci are the degradation rates of mRNA
and protein, respectively; di denotes the translation rate. The
function gj(·) is a nonlinear function. The matrix B = (bij)n×n
is the coupling matrix of the genetic network defined as: if
transcription factor j is an activator of gene i, then bij = aij;
if no connection exists between j and i, then bij = 0; if
transcription factor j is a repressor of gene i, then bij = −aij,
where aij is a positive scalar which denotes the transcriptional
rate of transcription factor j to gene i. li is a basal rate; v(t)
represents the exogenous disturbance belonging to L2[0∞);
emi and epi characterize the intensities of the exogenous dis-
turbance to the mRNA and the protein, respectively. Denote
the equilibrium point of the system (1) as

[
m∗T p∗T

]T
∈ R2n,

and shift it to the origin and obtain the following system
dm̄(t)
dt
= −Am̄(t)+ Bf (p̄(t))+ Emv(t)

dp̄(t)
dt
= −Cp̄(t)+ Dm̄(t)+ Epv(t)

(2)

where f (p̄(t)) satisfies

f (p̄)(f (p̄)− Fp̄) ≤ 0, ∀p̄ ∈ Rn (3)

with F = diag{k1, k2, · · · , kn}.
Due to intrinsic and stochastic fluctuations in the gene

regulation process, genetic networks can be modified as
dm̄(t)= [−Am̄(t)+ Bf (p̄(t))+ Emv(t)]dt

+gm(m̄(t))dwm(t)
dp̄(t)= [−Cp̄(t)+ Dm̄(t)+ Epv(t)]dt

+gp(p̄(t))dwp(t)

(4)

where the initial values of m̄(0) and p̄(0) are
assumed to be F0-measurable bounded random variables;
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wm(t) = [wm1(t) wm2(t) · · · wmn(t)]T and wp(t) =
[wm1(t) wm2(t) · · · wmn(t)]T are n-dimensional Brownian
motions in the probability space(�,F ,Ft≤0,P); the intensity
functions gm(m̄(t)), gp(p̄(t)) are satisfied

gTm(m̄(t))gm(m̄(t)) ≤ m̄T (t)Gmm̄(t), (5)

gTp (p̄(t))gp(p̄(t)) ≤ p̄T (t)Gpp̄(t) (6)

where Gm and Gp are known matrices.
In some practical genetic networks, biologists need to

obtain the concentrations of the proteins and the mRNAs of
the GRNs, such as designing and developing proper drugs.
However, the existence of disturbance, time delays, stochastic
noises and parameter uncertainties makes it difficult to obtain
the accurate state values of GRNs, which gives rise to the
motivation of filtering of GRNs. In this paper, the expression
levels of mRNAs and proteins are described as follows:

y(t) = Lmm̄(t)+ Lpp̄(t) (7)

where y(t) ∈ Rq, (q < n) represents the expression levels
of mRNAs and proteins at time instant t . Lm and Lp are two
known measurement matrices.

To simplify the analysis, a new vector x(t) =

[m̄T (t) p̄T (t)]T is defined. Accordingly, the system (4) with
measurements in (7) becomes

dx(t)= [−Ãx(t)+ B̃f̃ (x(t))+ Ẽv(t)]dt
+g̃(x(t))dw(t)

y(t)=C1x(t)
z(t)=C2x(t)

(8)

with

Ã =
[
A 0
−D C

]
, B̃ =

[
B
0

]
, Ẽ =

[
Em
Ep

]
,

C1 =
[
Lm Lp

]
,

w(t) =
[
wm(t) wp(t)

]T
, f̃ (x(t)) = f (p̄(t)),

g̃(x(t)) = diag{gm(m̄(t)), gp(p̄(t))}.

where z(t) is the signal to be estimated whereC2 is the known
real constantmatrixwith compatible dimension. From (3) and
(5), one can obtain that the nonlinear functions f̃ (x(t)) and
g̃(x(t)) satisfy{

f̃ T (x(t))(f̃ (x(t))− Fx(t)) ≤ 0,
g̃T (x(t))(g̃(x(t)) ≤ xT (t)G̃x(t)

(9)

The objective of the paper is to design suitable filters to
estimate the actual states of mRNAs and proteins based on
the measured signal y(t). As shown in Fig. 1, the filter and
the GRN are located in different places, signals transmit-
ted between each other through network. In this situation,
the input signal of the filter ỹ(t) is no longer equal to the
measurement y(t), so the existing filtering methods as in [3],
[7], [8], are not applicable. In this paper, we propose a novel
method to solve the networked filtering of the GRN (1).

FIGURE 1. The diagram of event-triggered network-based dissipative
filtering for a GRN.

A. AN APERIODIC SAMPLED-DATA EVENT-TRIGGERED
COMMUNICATION SCHEME
In Fig. 1, the measurement signal y(t) is first sampled at
aperiodic discrete instants {sk |sk ∈ R; k ∈ R} satisfying{

0=s0 < s1 < s2 < · · · < sk < . . . , lim
k→∞

sk = ∞

0≤ h ≤ hk = sk+1 − sk ≤ h̄

where h and h̄ are the lower and upper bounds of the uncertain
sampling interval hk , respectively.
The sampledmeasurement with its time stamp (sk , y(sk )) is

encapsulated into a data packet. Whether or not the sampled
data will be transmitted is selected arbitrarily by the event-
triggered data generator (EDG). The triggering time sequence
tk is defined iteratively by:

tk+1 = inf{t|s(t) ≥ 0}, (10)

where s(t) is the event triggering function defined as

s(t) = ψT (tjk )�ψ(tjk )− λyT (tk )�y(tk ), (11)

where ψ(tjk ) = y(tjk ) − y(tk ); λ ∈ (0, 1) is a threshold
parameter;� > 0 is triggering matrix to be determined. y(tk )
is the transmitted data and y(tjk ) is the following sampled
data. In this mechanism, assume that the initial sampled data
y(0) should be triggered.

Suppose the ZOH is event-driven. Once a data packet
arrives at the ZOH, it immediately updates its store and actu-
ates the filter, otherwise, ZOH keeps the previous data. The
data packets released by the plant to the filter are unavoid-
ably delayed due to the limited network bandwidth and/or
congested network. The transmission delay τk of the released
data packet (tk , y(tk )) from the plant to the filter is assumed
to satisfy

τm ≤ τk ≤ τM ≤ h (12)

where τm and τM are two constants.
Under the above assumptions, one can see that the time

sequence, which indicates when the released data packets
arrive at the ZOH, can be given as t1+ τt1 , t2+ τt2 , · · · , tk +
τtk , · · · with tk + τtk < tk+1 + τtk+1 . Accordingly, one has

ỹ(t) = y(tk ) t ∈ [tk + τtk , tk+1 + τtk+1 ) (13)

which is used to be the input signal of the filter. Denote5k =

[tk + τtk , tk+1 + τtk+1 ) and lk = tk+1 − tk − 1. Then 5k =

∪
lk
j=05kj, where 5kj = [tkj + τkj, tk,(j+1) + τk,(j+1)).
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Define an artificial time delay d(t) = t − tkj, t ∈ 5kj. It is
worthy noting that d(t) is piecewise linear and discontinuous
at t = tk with

dm , τm ≤ d(t) ≤ h+ h̄ , dM , ḋ(t) = 1(t 6= tk ) (14)

Then (13) can be rewritten as

ỹ(t)=y(t − d(t))− ψ(t − d(t)) t ∈ [tk + τtk , tk+1 + τtk+1 )

(15)

Remark 1: Different from the exiting event-triggered
schemes, the mechanism of the proposed event-triggered
scheme in this paper is based on aperiodic sampling. The
sampling period is not fixed but belongs to a range with a
specific minimum period, which can be used to prevent the
Zeno behavior. Periodic sampling is a specific case of this
aperiodic sampling.

B. THE FILTER
In this paper, a full-order filter is to be designed in the form
of
dxf (t)
dt
= Af xf (t)+Bf ỹ(t), xf (0) = 0

zf (t) = Cf xf (t), t ∈ [tk + τtk , tk+1 + τtk+1 )
(16)

where Af ,Bf andCf are filter gain matrices to be determined.
The input signal ỹ(t) is given in (15).
Substituting (15) into (16) yields
dxf (t)
dt
= Af xf (t)+Bf y(t−d(t))− Bfψ(t − d(t))

xf (0) = 0
zf (t) = Cf xf (t), t ∈ [tk + τtk , tk+1 + τtk+1 )

(17)

To summarize, under the aperiodic sampling event-
triggered communication scheme, the filter (16) can be
rewritten as a time delay system as in (17).

C. PROBLEM FORMATION
Denote

ξ (t) := col{x(t), xf (t)}, e(t) := z(t)− zf (t)

Then, the filtering error system connecting the GRN (8) with
the filter (17) can be described as

dξ (t) = [Āξ (t)+B̄f̃ (x(t))+B̄fHξ (x(t − d(t)))
+B̄fψ(t − d(t))+Ēv(t)]dt+ḡ(t)dw(t)

ξ (θ ) = col{φ(θ ), 0}, θ ∈ [−hM , 0]
e(t) = C̄2ξ (t), t ∈ [tk + τtk , tk+1 + τtk+1 )

(18)

where

Ā= diag{−Ã,Af }, C̄2= [C2 − Cf ], B̄f =col{0,Bf },

B̄= col{B̃, 0}, Ē=col{Ẽ, 0}, ḡ(t)=col{g̃(t), 0}, H̄= [C1 0].

Next, we introduce a definition of dissipativity in stochastic
setting.

Definition 1 (Dissipativity [20]): For given real matrices
91 ≤ 0, 92 and 93 > 0, the filtering error system (18)
is said to be dissipative, if under zero initial conditions, the
following inequality holds for any t ≥ 0 and v ∈ L2[0, ∞),

J (t)dt ≥ L {V (t)− V (0)} (19)

where

J (t) = eT (t)91e(t)+2eT (t)92v(t)+vT (t)93v(t) (20)

The problem of dissipative filtering to be studied in
this paper is formulated as: for given scalars dm, dM , design
suitable filter gain matrices (Af ,Bf ,Cf ) such that
i) the filtering error system (18) with v(t) ≡ 0 is asymp-

totically stable; and
ii) the filtering error system (18) is dissipative in the sense

of Definition 1.
To proceed further, we need to introduce two integral

inequalities, which are useful in solving the above filtering
problem.
Lemma 1 [14]: Consider the following stochastic differ-

ential equation

dx(t) = l(t)dt + g(t)dw(t) (21)

where w(t) is a one-dimensional Brownian motion. Then for
R ∈ Rn×n (R > 0), and two scalars a and b satisfying b > a,
one has∫ b

a
lT(s)Rl(s)ds ≥

1
b− a

νT (a, b)R̃ν(a, b)

+
2

b− a
νT (a, b)R̃β(a, b) (22)

where R̃ = [ R 0
0 3R ] and

ν(a, b) : = col{ν1, ν2}, β(a, b) := col{β1, β2} (23)

ν1 : = x(b)− x(a), β1 :=
∫ b
a g(s)dw(s)

ν2 : = x(b)+ x(a)− 2
b−a

∫ b
a x(s)ds

β2 : =
1

b−a

∫ b
a (b− a+ 2s)g(s)dw(s)

Lemma 2 [14]: Consider the stochastic differential equa-
tion (21). For n × n real matrix R > 0 and the piecewise
function η(t) satisfying ηm ≤ η(t) ≤ ηM , where ηm and ηM
are two constants, η̄ = ηM−ηm and for S ∈ R2n×2n satisfying
[ R̃ S
? R̃

] ≥ 0 with R̃ = diag{R, 3R}, the following inequality
holds

−η̄

∫ t−ηm

t−ηM
lT(s)Rl(s)ds ≤ 2℘T1 S℘2 − ℘

T
1 R̃℘1

−℘T2 R̃℘2 + 2=(dw(t)) (24)

where

℘1 : = ν(t−ηM , t−η(t)), ℘2 := ν(t−η(t), t−ηm)

=(dw(t)) : = ℘T1 R̃β(t−ηM , t−η(t))

+℘T2 R̃β(t−η(t), t−ηM ) (25)

where ν(·, ·) and β(·, ·) are defined in (23).
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III. DISSIPATIVE PERFORMANCE ANALYSIS
In this section, by Lyapunov-Krasovskii functional (LKF)
method, and based on Lemmas 1 and 2, some sufficient
conditions are derived such that the filtering error system
(18) is asymptotically stable and dissipative. First, choose the
following Lyapunov-Krasovskii functional

V (t) = ξT (t)Pξ (t)+ V1(t)+ V2(t) (26)

where

V1(t) : =
∫ t

t−dm
xT (s)Q1x(s)ds+

∫ t−dm

t−dM
xT (s)Q2x(s)ds

V2(t) : = dm

∫ t

t−dm

∫ t

θ

rT (s)R1r(s)dsdθ

+ (dM − dm)
∫ t−dm

t−dM

∫ t

θ

rT (s)R2r(s)dsdθ

where r(t) = −Ãx(t)+ B̃f̃ (x(t))+ Ẽv(t) and P > 0, Q1 > 0,
Q2 > 0, R1 > 0, R2 > 0 to be determined.
By Lemmas 1 and 2, we derive the following results.
Proposition 1: For given scalars dm, dM and real matrices

90 ≥ 0, 91 = −9̃
T
1 9̃1 ≤ 0, 92, 93 = 9̃T

3 9̃3 ≥ 0,
the filtering error system (18) is asymptotically stable and
dissipative, if there exist real matrices P = [ P1 P2? P3

] > 0,
� > 0, Qi > 0, Ri (i = 1, 2), real diagonal matrices 3 > 0
and S = [ S11 S12S21 S22

] such that

�1 : =

[
R̃2 S
? R̃2

]
≥0 (27)

�2 : =

61 dm0T1 R1 (dM − dm)0T1 R2
? −R1 0
? ? −R2

<0 (28)

where R̃2 := diag{R2, 3R2} and

01 = col{−ÃT , 0, 0, 0, 0, B̃T , 0, 0, 0, ẼT }

and61 is defined in (31), as shown at the bottom of next page,
where

ϑ11 : = He{−P1Ã}+ λG̃+Q1− 4R1−CT
291C2

ϑ12 : = P2Af −ÃTP2+CT
2 91Cf

ϑ22 : =He{P3Af}−CT
f 91Cf ,

ϑ2,10 : = PT2 Ẽ + C
T
f 92

ϑ33 : = Q2 − Q1−4R1−4R2,
ϑ34 : = (S11 + S21 + S12 + S22)T−2R2,

ϑ35 : = (−S11 + S21 − S12 + S22)T

ϑ39 : = (−2S21 − 2S22)T

ϑ44 : = He {−S11−S21+S12+S22}− 4R2 + λCT
1 �C1

ϑ45 : = ST11−S
T
21−S

T
12+S

T
22−2R2

ϑ55 : = −Q2 − 4R2
ϑ48 : = 6R2 − 2(S12 + S22)
ϑ49 : = 6R2 + 2(S21 − S22)T

ϑ55 : = −Q2−4R2,
ϑ58 : = 2(S12 − S22)

Remark 2: Dissipativity analysis is proposed in the above
proposition, where H∞, passivity and dissipativity could be
solved in one framework, if taking some special values of
91, 92 and 93. When 91 = I , 92 = 0 and 93 = γ 2 I ,
the dissipative filtering reduces to the H∞ filtering problem
[18]. If 91 = 0, 92 = I and 93 = γ I , the dissipative
filtering becomes the passive filtering issue [23]. Meanwhile,
from the proof of Proposition 1, one can see that dissipavity
implies stability, therefore, the stability criterion could be
easily derived when external disturbance v(t) = 0.
Remark 3: Since Lemma 2 is an improvement over

Jensen’s inequality without using the free-weighting matrix
approach, Proposition 1 is less conservative than the ones
using the Jensen’s inequality and fewer slack variable matri-
ces are introduced to estimate the upper bounds of some
related integral terms.

IV. DISSIPATIVE FILTER DESIGN
In this section, dissipative filter will be designed based on
Proposition 1.
Proposition 2: For given scalars dm, dM and real matrices

91 = −9̃
T
1 9̃1 ≤ 0, 92, 93 = 9̃T

3 9̃3 ≥ 0, the dissipative
filter can be designed if there exist real matrices P1 > 0,
Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, W > 0, � ≥ 0 and
real matrices S = [ S11 S12S21 S22

], Âf , B̂f and Ĉf , such that P1 > U ,
�1 ≥ 0 and

�̃2 :=

6̃1 dm0T1 R1 (dM − dm)0T1 R2 0̃1
? −R1 0 0
? ? −R2 −I

<0 (29)

where 0̃1 = col{CT
2 9̃

T
1 , Ĉ

T
f 9̃

T
1 , 0, · · · , 0︸ ︷︷ ︸

8

}, and �̃1 =

(ϑ̃ij)10×10 with ϑ̃ij = ϑij (i, j = 1, 2, · · · , 17) except

ϑ̃11 = He{−P1Ã}+Q1− 4R1+ λG̃

ϑ̃12 = Âf − ÃTW T , ϑ̃22 = Âf + ÂTf ,

ϑ̃26 = WB̃, ϑ̃2,10 = WẼ + CT
f 92

and ϑij (i, j = 1, 2, · · · , 10) are defined in Proposition 1.
The parameters of the dissipative filter are given as

Af = ÂfW−1, Bf = B̂f , Cf = ĈfW−1 (30)

V. AN ILLUSTRATIVE EXAMPLE
In this section, a numerical example is given to illustrate the
proposed method.
Example 1: Consider the GRN (1) with

A =

1.84 0 0
0 1.32 0
0 0 1.54

 , B =

 0 0.8 − 0.8
−0.8 0 0.8
0 − 0.8 0

,
C = diag{1.62, 1.53, 1.21}, D=diag{1.8, 1.5, 1.2},

Em = col{0.2, 0.15, 0.1}, Ep=col{0.18, 0.21, 0.25}.

Select h = 0.12s and h̄ = 0.18s. The neuron activation
function is given by f (x) = 0.1 tanh(x).
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FIGURE 2. mRNA concentrations and their estimates under the H∞ filter.

FIGURE 3. Protein concentrations and their estimates under the H∞ filter.

Suppose that the transmission delays belong to [0.12 0.18].
In the following, we will design suitable filters to estimate
the states (proteins and the mRNAs) of neurons based on
Proposition 2.

• H∞ filtering: Set 90 = 0, 91 = −I , 92 = 0 and 93 =

2.72 I . Applying Proposition 2, the filter parameters
Af ,Bf and Cf are given as in next page. The triggering
matrix � is solved as

� =

[
0.1557 0.0307
0.0307 1.2697

]
.

FIGURE 4. z(t) and its estimation zf (t) under the H∞ filter.

FIGURE 5. Event-triggered releasing instants and releasing interval under
the H∞ filter.

In the simulation, parameters are chosen the same as
in [4]. The equilibrium point of the genetic network
is m∗ = [0.4753 0.5563 0.4004]T and p∗ =

[0.5282 0.5453 0.3970]T . The initial values of the
proteins and their corresponding mRNAs are chosen
as [1.2 1 0.8]T and [1 0.8 0.7]T . Associated with
the obtained H∞ filter, under the disturbance v(t) =
e−t sin t , Fig. 2 and Fig. 3 plot the actual trajectories of
the mRNA concentrations mi(t) and the actual trajecto-
ries of protein concentrations pi(t) with their estimates.

61 : =



ϑ11 ϑ12 −2R1 P2Bf C1 0 P1B̃+ ρ3 6R1 0 0 P1Ẽ − CT
2 92 P2Bf

? ϑ22 0 P3Bf C1 0 PT2 B̃ 0 0 0 ϑ2,10 P3Bf
? ? ϑ33 ϑ34 ϑ35 0 6R1 6R2 ϑ39 0 0
? ? ? ϑ44 ϑ45 0 0 ϑ48 ϑ49 0 −λCT

1 �

? ? ? ? ϑ55 0 0 ϑ58 6R2 0 0
? ? ? ? ? −23 0 0 0 0 0
? ? ? ? ? ? −12R1 0 0 0 0
? ? ? ? ? ? ? −12R2 4ST22 0 0
? ? ? ? ? ? ? ? −12R2 0 0
? ? ? ? ? ? ? ? ? −93 0
? ? ? ? ? ? ? ? ? ? −(1− λ)�


(31)

ζ (t) : = col{x(t), xf (t), x(t−dm), x(t−d(t)), x(t−dM ), f̃ (x(t)), v(t), v1(t), v2(t), v3(t), ψ(t − d(t))} (32)
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FIGURE 6. z(t) and its estimation zf (t) under the passive filter.

FIGURE 7. z(t) and its estimation zf (t) under the mixed H∞ and passive
filter.

The output z(t) and its estimation zf (t) are plotted
in Fig. 4. Fig. 5 depicts the event-based release instants
and release interval, which reflects that the transmission
rate is 78.8% with λ = 0.7. From this figure, one can
see that the H∞ filter can estimate the z(t) well.

• Passive filtering: Let 90 = 0, 91 = 0, 92 = I and
93 = 0.8 I . Associated with the passive filter solved by
Proposition 2, the signal z(t) and its estimation zf (t) are
depicted in Fig. 6.

• Mixed H∞ and passive filtering: Set 9 = 0, 91 =

−γ−1αI , 92 = (1 − α)I and 93 = γ I with α = 0.5
and γ = 1.8. With with the mixed H∞ and passive filter
calculated by Proposition 2, Fig. 7 shows the signal z(t)
and its estimation zf (t).

• (Q, S,R)-dissipative filtering: Set 90 = 0, 91 = −2I ,
92 = 2I and 93 = 2.5 I . Under the dissipative
filter derived by Proposition 2, the signal z(t) and its
estimation zf (t) are plotted in Fig. 8.

FIGURE 8. z(t) and its estimation zf (t) under the dissipative filter.

VI. CONCLUSION
In this paper, to tradeoff communication resources and
estimation performance of GRNs, a novel event-triggered
scheme is proposed to study network-based dissipative
filtering for stochastic genetic regulatory networks. In the
communication strategy, the event-triggered data generator
is proposed to select the necessary data to be transmitted
to the filter in an aperiodic sampling way, which can effec-
tively reduce the communication traffic. Under this strategy,
the filtering error system has been modeled as a sampled-data
error dependent stochastic time-delay system. A linear matrix
inequality based approach has been presented to design suit-
able filters such that some certain filtering performance can
be ensured. This designed filtering strategy is more suitable
for GRNs in communication network environments with lim-
ited load and bandwidth. The effectiveness of the proposed
dissipative filtering approach has been demonstrated by a
numerical example.

APPENDIXES
Proof of Proposition 1: Using the Itô’s formula, the differen-
tial of V (t) can be calculated as

L V (t)=2ξT(t)Pr̄(t)+ḡT(t)Pḡ(t)+L V1(t)+L V2(t) (33)

where r̄ = Āξ (t)+B̄f̃ (x(t))+B̄fHξ (x(t − d(t)))+Ēv(t), and

L V1(t) = xT (t)Q1x(t)+ xT (t − dm)Q2x(t − dm)

−xT (t − dm)Q1x(t − dm)

−xT (t − dM )Q2x(t − dM ) (34)

Af =


−45.4640 − 17.8921 − 48.7770 − 0.0497 5.3023 11.5301
−24.4090 − 53.3619 − 46.5000 − 14.8446 13.3665 24.8146
−30.6461 3.5150 − 87.9039 4.9067 − 19.4099 21.3228
25.6066 − 14.7137 − 8.3357 − 21.5762 5.8830 11.1914
−3.4430 34.8490 − 2.8238 17.1985 − 21.5074 − 2.5787
23.1138 − 1.9780 81.3899 2.1234 18.0311 − 40.4255

 ,Bf =


1.2084 − 3.4228
0.0339 − 0.0371
0.0257 0.1044
0.0314 − 0.0748
−0.0376 − 0.1629
0.0055 0.0197
−0.0380 0.0911


Cf =

[
−1.9061 −9.0065 −1.5035 −1.6959 1.2056 −1.5005

]
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L V2(t) = d2mr
T (t)R1r(t)+ (dM − dm)2rT (t)R2r(t)

−dm

∫ t

t−dm
rT (θ )R1r(θ )dθ

−(dM − dm)
∫ t−dm

t−dM
rT (θ )R2r(θ )dθ (35)

By Lemma 1, we have

−dm

∫ t

t−dm
rT(t)R1r(s)ds ≤ 2ψT

01R̃1ψ01 + 2ψT
01R̃1v01 (36)

where R̃1 := diag{R1, 3R1}; and
ψ01(t) :=

[
x(t)− x(t − dm)

x(t)+ x(t − dm)− 2
dm

∫ t
t−dm

x(θ )dθ

]

v01(t) :=

[ ∫ t
t−dm

g(θ )dθ∫ t
t−dm

(dm + 2θ )g(θ )dθ

]
Apply Lemma 2 to obtain

−(dM − dm)
∫ t−dm

t−dM
rT (θ )R̃2r(θ )dθ

≤ 2ψT
11Sψ21 − ψ

T
11R̃2ψ11 − ψ

T
21R̃2ψ21

+2ψT
11R̃3φ1 + 2ψT

21R̃3φ2 (37)

where R̃2 := diag{R2, 3R2}, R̃3 := diag{R2,R2} and
ψ11 :=

[
x(t − d(t))− x(t − dM )

x(t − d(t))+ x(t − dM )− 2v3(t)

]

ψ21 :=

[
x(t − dm)− x(t − d(t))

x(t − dm)+ x(t − d(t))− 2v2(t)

]
with {

v2(t) := 1
d(t)−dm

∫ t−dm
t−d(t) x(s)ds

v3(t) := 1
dM−d(t)

∫ t−d(t)
t−dM

x(s)ds


φ1 :=

 ∫ x(t−d(t))
x (t − dM )g(s)dw(s)

1
dM − d(t)

∫ x(t−d(t))
x(t−dM ) (dM − d(t)+ 2s)g(s)dw(s)


φ2 :=

 ∫ x
x(t−d(t))(t − dm)g(s)dw(s)

1
d(t)− dm

∫ x(t−dm)
x(t−d(t))(d(t)− dm + 2s)g(s)dw(s)


Substituting (36)-(37) into (33) yields

L V (t)− J (t) ≤ ζ T (t)ϒζ (t) (38)

where ζ (t) is defined in [(32), p. 6], and

ϒ := �+01

[
d2mR1+(dM−dm)

2R2
]
0T1

If the matrix inequality in (28) is satisfied, applying the
Schur complement yields ϒ < 0. Thus, there exists a scalar
σ > 0 such that

L V (t)− J (t) ≤ −σζ T (t)ζ (t) ≤ 0 (39)

Then, under zero-initial condition, the filtering error system
(18) is dissipative.

Next, we prove that when v(t) ≡ 0, the filtering error
system (18) is asymptotically stable if the matrix inequalities
in (27) and (28) are satisfied. First, set v(t) ≡ 0. Then from
(20) and (39), with 91 ≤ 0, we have

V̇ (t) ≤ eT91e(t)− σξT (t)ξ (t)

≤ −σξT (t)ξ (t) < 0, for ξ (t) 6= 0 (40)

Therefore, the filtering error system (18) with v(t) ≡ 0 is
asymptotically stable, which completes the proof. �

Proof of Proposition 2 is similar to the proof of
Proposition 11 in [24], so the proof is omitted.
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