
Received December 14, 2019, accepted December 25, 2019, date of publication January 23, 2020, date of current version January 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968983

Local Sigmoid Method: Non-Iterative
Deterministic Learning Algorithm for
Automatic Model Construction
of Neural Network
SYUKRON ABU ISHAQ ALFAROZI 1, (Member, IEEE),
KITSUCHART PASUPA 1, (Senior Member, IEEE),
MASANORI SUGIMOTO 2, (Member, IEEE), AND
KUNTPONG WORARATPANYA 1, (Member, IEEE)
1Faculty of Information Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
2Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan

Corresponding author: Kuntpong Woraratpanya (kuntpong@it.kmitl.ac.th)

This work was supported in part by the King Mongkut’s Institute of Technology Ladkrabang (KMITL), Thailand, and in part by the
ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net) under the Japan
International Cooperation Agency (JICA), Japan.

ABSTRACT A non-iterative learning algorithm for artificial neural networks is an alternative to optimize
the neural network parameters with extremely fast convergence time. Extreme learning machine (ELM) is
one of the fastest learning algorithms based on a non-iterative method for a single hidden layer feedforward
neural network (SLFN) model. ELM uses a randomization technique that requires a large number of hidden
nodes to achieve the high accuracy. This leads to a large and complex model, which is slow at the inference
time. Previously, we reported analytical incremental learning (AIL) algorithm, which is a compact model
and a non-iterative deterministic learning algorithm, to be used as an alternative. However, AIL cannot grow
its set of hidden nodes, due to the node saturation problem. Here, we describe a local sigmoid method (LSM)
that is also a sufficiently compact model and a non-iterative deterministic learning algorithm to overcome
both the ELM randomization and AIL node saturation problems. The LSM algorithm is based on ‘‘divide and
conquer’’ method that divides the dataset into several subsets which are easier to optimize separately. Each
subset can be associated with a local segment represented as a hidden node that preserves local information
of the subset. This technique helps us to understand the function of each hidden node of the network built.
Moreover, we can use such a technique to explain the function of hidden nodes learned by backpropagation,
the iterative algorithm. Based on our experimental results, LSM is more accurate than other non-iterative
learning algorithms and one of the most compact models.

INDEX TERMS Neural network, compact model, hidden node interpretation, sigmoid function, function
approximation, slope information.

I. INTRODUCTION
Machine learning has become an active research area in
recent years, especially for neural network (NN) models:
a widely used algorithm to train the neural network mod-
els has been backpropagation (BP) [1]. The BP algorithm
uses local gradient parameters to iteratively minimize the

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

loss function, until those parameters converge to the optimal
point solution. These iterative algorithms can be very slow
to converge and sometime difficult to choose an appropriate
learning rate. Thus, several works have tried to improve
the convergence time using conjugate gradient and second
order methods [2], [3], such as the Levenberg-Marquardt
(LM) algorithm [4] that usually requires a large memory.
Recently, several implementations of gradient descent algo-
rithms have improved the convergence time, by using an

20342 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8558-898X
https://orcid.org/0000-0001-8359-9888
https://orcid.org/0000-0002-3781-0539
https://orcid.org/0000-0002-8337-4563
https://orcid.org/0000-0002-0945-2674

S. A. I. Alfarozi et al.: Local Sigmoid Method

adaptive learning rate method, such as AdaDelta [5], Ada-
Grad [6] and Adam [7]. However, those algorithms follow
the iterative style of BP and are inherently slow. Another
problem with BP arises in weight initiation: in improper
weight initiation of a non-convex model, such as a single
hidden layer architecture, BP does not always converge to
the optimum point [8].

A common neural network model is a feedforward neural
network (FNN). Specifically, one type of FNN is a single-
hidden layer feedforward neural network (SLFN), which can
be used as a universal approximator for an arbitrary function
at any desired accuracy level: this has been proved theoreti-
cally [9]–[11]. Although an SLFN has only a single layer, it is
still hard to optimize themodel parameters because the search
space has a complex shape. Adding a constraint can make an
SLFN easier to optimize; that is, the input weight parameters
are assigned randomly in some ranges, as in the extreme
learning machine (ELM) [12]. Consequently, the ELM objec-
tive function depends on the output weight parameters only
and optimization becomes the least square (LS) problem, and
so a single global optimal solution will be found, subject to
the current set of random constrained input weights. With the
constraint, ELM can be extremely faster than BP, in a single
non-iterative stage. In other words, ELM randomly maps the
input features into a set of hidden features with random input
weights. Thus, ELM is still one kind of neural network with
random weights as comprehensively explained in [13].

Nevertheless, ELM can be unstable [14], [15], especially
if the number of hidden nodes is small. Conversely, if the
number of hidden nodes is large, we may find a subset of the
optimal features in a large number of random features. Hence,
the number of hidden nodes for ELM is commonly larger than
that for BP. In the training phase, ELM is much faster than BP
because the optimization can be computed in a single stage,
without iterations, but the large number of hidden nodes leads
to the more complex model and heavy computation load in
the testing phase.

Inspired by the randomization of ELM, there were
many improved ELMs that try to optimize the original
ELM. Huang et al. further improved their ELM, with an
incremental ELM (I-ELM) [16] and enhanced incremen-
tal ELM (EI-ELM) [17]. I-ELM added new random hidden
nodes, one-by-one, by projecting the error vector into the new
additional hidden node vector to reduce the error norm. How-
ever, I-ELM reduced the error norm only based on the new
additional hidden node, regardless of existing hidden nodes,
thus the final model leads to a non-LS solution. In other
words, with the same random set of hidden nodes in ELM and
I-ELM, ELM will be better than I-ELM, because ELM has
an LS solution. I-ELM is generally faster for a model with a
small number of hidden nodes, because the projectionmethod
is simpler than the inversion one. However, if the number
of hidden nodes is very large, I-ELM has an overhead of
residual error calculation that needs to be calculated on each
iteration, while ELM does not have. EI-ELM improved on
I-ELM, by using a random search that chooses the best nodes

from a set of random nodes on each incremental process.
All these methods (ELM, I-ELM and EI-ELM) require a
large number of hidden nodes because they are based on a
randommapping. In addition, Yang et al. [18] developed semi
deterministic ELM algorithm called bidirectional extreme
learning machine (B-ELM) that generates the odd hidden
nodes using randomization and the even hidden nodes using
a deterministic formula, while the output weights is calcu-
lated using the projection method, similar to I-ELM. Further,
Cao et al. [19] improved the B-ELM on the odd hidden nodes
using the random search, similar to EI-ELM, called enhanced
bidirectional ELM (EB-ELM). However, I-ELM, EI-ELM,
B-ELM and EB-ELM are based on projection method that
is not optimal (not a least squares solution).

Another way for improving ELM is constructing the opti-
mal structure from a set of random hidden node features, such
as pruned ELM (P-ELM) [20] and optimally pruned ELM
(OP-ELM) [21]. P-ELM and OP-ELM remove redundant
nodes from hidden node features. However, both P-ELM
and OP-ELM need to update their output weights, thus they
require more computation time, especially with large struc-
tures of hidden node features. Similarly, a pruned sparse
extreme learning machine (PS-ELM) algorithm [22] tried to
remove the insignificant hidden node based on sparse coding.
PS-ELM used gradient projection (GP) algorithm which is
basically an iterative algorithm. Wang et al. [14] described
two methods: constructive parsimonious ELM (CP-ELM)
and destructive parsimonious ELM (DP-ELM), that use a
recursive orthogonal least square (ROLS) technique [23] to
prune faster. The constructive algorithm (CP-ELM) incre-
mentally adds the hidden nodes from a set of random hid-
den node features, that have significant error reduction. On
the other hand, the DP-ELM algorithm removes the hidden
nodes, from a set of random hidden node features, that con-
tribute less to error reduction. Moreover, the optimal input
weight of the model might be or not in the set of random
hidden features, due to the weight randomization. Thus,
we cannot guarantee that the optimal input weights are in the
random hidden features. Therefore, a key problem of ELM
and its variants is the weight randomization that leads to a
non-optimal solution.

To overcome the ELM randomization problem,
Castaño et al. [24] described PCA-ELM, based on principal
component analysis. Input weight parameters are generated
from the subset of eigenvectors of an input feature covariance
matrix, that explains the data with a chosen confidence
level. However, the PCA-ELM does not reveal the relation
between the input features and the prediction variables. In
our previous work [25], we described analytical incremental
learning (AIL), that adds a hidden node based on the current
error vector. However, AIL cannot further grow the hidden
nodes, because it is struggling to solve non-linearity of the
error vector, thus leading to node saturation; that is, the newly
generated hidden node is similar to the previous one.

Several authors have proved that it is possible to
approximate a function, given some error criterion, using

VOLUME 8, 2020 20343

S. A. I. Alfarozi et al.: Local Sigmoid Method

superposition of several sigmoids [26]–[29]. However, it is
still not clear how to construct the appropriate model that
automatically knows the suitable number of hidden nodes
required for a particular dataset to provide an optimal
solution. Therefore, this paper introduces a local sigmoid
method (LSM) to overcome the non-linear structure of the
error vector and automatically build its model. Here, the LSM
generates the hidden nodes based on the characteristic of error
vectors of a particular dataset, instead of choosing from a
set of random hidden nodes as the ELM and its variants do.
Furthermore, an LSM algorithm was derived from the char-
acteristic of a sigmoid function used in the neural network.
This characteristic makes it easy for us to understand the role
of each node in constructing the prediction variable, using an
interval segmentation method, which is especially effective
for a non-linear function.

Mostly, a neural network model is able to solve many tasks
with good performance. However, it is still a challenging
task to understand how the model really works. Recently,
many researchers have looked inside neural networks, aiming
to explain what a neural network is really doing, with a
variety of approaches, many focusing on deep convolutional
neural network (CNN) [30]. Feature visualization [31]–[34]
shows us how learned hidden neurons react to a particu-
lar input, e.g., show which of the hidden neurons for an
image classification task are fired, when the input is a dog
or a cat. Another approach is the attribution method, which
searches for the relationships between neurons [35]–[38].
These knowledge extraction techniques try to find a high
level representation, obtained from the learned model, that
tells us about the semantic knowledge contributions from
neurons, hidden layers and channel representations to an
object or image. In this respect, we can conclude that some
group of neurons are responsible for a particular input
image pattern after the training, visualization and attribution
processes.

The construction of our LSM is based on the compact rep-
resentation approximation, described in Section II-D, thus,
it enables us to understand how an LSMmodel actually works
and builds its structure, instead of treating it as a black box.
However, our work differs from the existing neural network
interpretations, in that LSM gives us a low level (functional)
representation; therefore, one can understand how a neu-
ral network builds the model instead of extracting the post
knowledge after the training procedure. Furthermore, LSM
avoids the randomization problem of ELM and the node
saturation problem of AIL. As a non-iterative algorithm, then
it would be faster than BP, an iterative approach.

The main contributions of our work are listed as follows.
• A novel non-iterative deterministic learning algorithm
based on local sigmoid properties for SLFN is described.
This algorithm called LSM is more accurate than other
non-iterative learning baselines.

• An LSM algorithm can overcome the random feature
mapping problem of ELM and the node saturation prob-
lem of AIL.

• An automated hidden layer node construction of LSM
is based on interpretable hidden nodes using LSM node
representation.

• An LSM node interpretation technique is applied on
models learned by BP in order to know how each hidden
node works. As shown in Section IV-A, both algorithms
approximately form similar hidden nodes.

• A comprehensive benchmark comparison is done for
both non-iterative algorithms, i.e., LSM, AIL, ELM,
I-ELM, EI-ELM, EB-ELM, CP-ELM andDP-ELM, and
an iterative algorithm, i.e., BP.

The rest of this paper is organized as follows. Section II
analyzes the sigmoid function and the theoretical background
for our approach—function approximation by using sev-
eral representations of a sigmoid. Section III describes how
the LSM algorithm approximates a function as a SLFN
model. The experimental results and discussion are given in
Section IV. Finally, we conclude our work in Section V.

II. THEORETICAL ANALYSIS OF SIGMOID FUNCTION
The purpose of this section is to describe a theoretical analysis
of a sigmoid function and its properties. The sigmoid function
is essential for developing the proposed LSM method; i.e., it
is used for dividing a whole dataset into several subsets, and
then solving each subset separately. The ability of several
functions in the sigmoid family is explained for approximat-
ing any functions as well. One can skip this section, regardless
of the detail explanations of these complementary theories
and methods, and go directly to Section III to get the general
idea of the LSM method.

A. THE SIGMOID FUNCTION
The sigmoid function has an ‘S’ shape and is a monotonic
function, with the property that, if limx→−∞ σ (x) = 0 and
limx→+∞ σ (x) = 1.

Two simple sigmoid functions: the cut and logistic func-
tions were used for validating our method.

1) CUT FUNCTION
The cut function is defined by

cut[a,b](x) =

0, if x < a,
x − a
b− a

, if a ≤ x ≤ b,

1, if x > b.

(1)

It has a positive linear slope in [a, b], otherwise, it has 0
gradient. Thus, we can save the slope of an input within the
interval [a, b] while ignoring it elsewhere.

2) LOGISTIC FUNCTION
The logistic function is defined by

σ[γ,c](x) =
1

1+ e−γ (x−c)
, (2)

where γ is the gradient multiplier and c is the center point of
the slope of the function.

20344 VOLUME 8, 2020

S. A. I. Alfarozi et al.: Local Sigmoid Method

FIGURE 1. Cut and logistic functions.

The hyperbolic tangent, tanh(x), may be defined in terms
of σ[γ,c](x):

tanh(x) = 2σ[2,0](x)− 1, (3)

tanh(x) is usually preferred to σ (x) for the activation function
in neural network hidden nodes, due to its output range of
(−1, 1), center at 0 and its odd property, i.e., tanh(−x) =
− tanh(x). As with cut, σ (.) and tanh(.) can store a slope
or gradient in its non-saturated interval. tanh(.) function is
commonly used as activation function in neural network
implementations because they are smooth and centered at
0 and have a finite differential everywhere. However, finding
an appropriate non-saturated interval for the tanh(.) function
is more difficult, but, as shown in the next section, the interval
for the cut function is trivially set from the desired interval
for approximating the target function and the parameters for
a logistic function, which has a uniform error approximation
to the cut function, has been proved [39], [40]. Fig. 1 shows
cut[−1,1](x) and logistic σ[2,0](x) functions, centered at 0.

B. LOCALITY PROPERTY OF SIGMOID FUNCTIONS
In general, sigmoid functions are able to preserve slope
information of a particular input, in a local interval, called
the locality property. For instance, using the cut function,
cut[a,b](x), to preserve slope information of an arbitrary func-
tion in [a, b], we can use g(x):

g(x) = β + α cut[a,b](x), (4)

where α is the slope multiplier and β is the bias. We can
find values of α and β to approximate a linear segment of a
function in the interval of [a, b]. For example, Fig. 2 shows an
approximation of sin(x) in [−1, 1] using a cut function with
α = 2 and β = −1. Now, the logistic function, σ (x), can
be used to approximate the cut function, cut(x), in the same
input interval, by choosing the appropriate values of γ and
c: Iliev et al. have proved that σ[γ,c](x), with γ = 4/(b − a)
and c = (a + b)/2, is the logistic function approximating

FIGURE 2. Cut and logistic function approximations to sin(x) in [−1,1],
with α = 2 and β = −1.

cut[a,b](x), with a uniform error, ρ(cut, σ) = 1
1+e2

[39], [40],
where ρ is the Hausdorff distance (H-distance) [41], [42].

Therefore, to approximate the cut function, cut[−1,1](x), we
can use a logistic function σ[γ,c](x) with γ = 4/(b− a) = 2
and c = (a+b)/2 = 0, i.e., σ[2,0](x). Then, a relation between
σ[2,0](x), cut[−1,1](x), and sin(x) can be written as σ[2,0](x)→
cut[−1,1](x) → sin(x) in the interval of [−1, 1] with α =
2 and β = −1 as depicted in Fig. 2. Moreover, we can
determine the best values of α and β for the cut function in
(4), using a least square (LS) method. Further, to approximate
another interval, e.g., [a, b], we can use cut[a,b](x). Note that a
single cut function can be used to approximate a single linear
segment. Multiple functions can be used to approximate a
non-linear function as described in Section II-C.
However, in practice, neural networks use a single acti-

vation function, e.g., tanh(x) and σ[2,0]. As previously
described, the σ[2,0](x) function approximates to cut[−1,1](x).
Hence, if we can transform any cut function from cut[a,b](x)
to cut[−1,1](x), then we can approximate the cut function in
any interval using a single log sigmoid function, i.e., σ[2,0]
or tanh(x). For this reason, we propose a Proposition 1 to
transform any cut function in a particular interval to another
interval.
Proposition 1: (An Interval Transformation for the Cut

Function): A cut function cut[a,b](x) can be represented by
another cut function in a different interval by applying a
linear transformation to its input:

cut[a,b](x) = cut[c,d](T[c,d](x)),

where

T[c,d](x) =
(x − a)
(b− a)

(d − c)+ c

transforms the interval [a, b] to [c, d].
Proof: T[c,d](x) is a linear function that transforms an

interval of [a, b] to [c, d]. It suffices to prove that

cut[a,b](a) = cut[c,d](T[c,d](a)) = cut[c,d](c) = 0,

VOLUME 8, 2020 20345

S. A. I. Alfarozi et al.: Local Sigmoid Method

and

cut[a,b](b) = cut[c,d](T[c,d](b)) = cut[c,d](d) = 1,

by substituting a and b to T (x). This is follows from the
definition of the cut function (1).
As σ[2,0](x) approximates cut[−1,1](x), then, we define:
Definition 1: The non-saturated input interval of σ[2,0](x)

or tanh(x) is [−1, 1].
Thus, if we want to use a single activation function, e.g.,

σ[2,0](x) or tanh(x), then we need to transform the input
interval to [−1, 1] of the cut function that approximates a
target function, using the Proposition 1.

C. FUNCTION APPROXIMATION USING LOCALITY
PROPERTY
Many authors [9]–[11] have proved the ability of SLFN, as a
universal approximation, that can approximate any arbitrary
function. In addition, approximations using superposition of
several functions, including the sigmoid function, have been
proved [26]–[29]. Here, we prove that a superposition of cut
functions can approximate an arbitrary function, within some
error ε and some n ∈ N, with a polyline approximation and
its locality property in Theorem 1:
Theorem 1: There exists an ε > 0 and n ∈ N such that,

‖f (x)− Gn(x)‖ < ε,

where f (x) is the target function and

Gn(x) = β +
n∑
i=1

αi cut[ai,ai+1](x) (5)

is the approximation of the target function f (x) in [a1, an+1]
in which a1 < a2 < · · · < an+1.

Proof: Let us define a length of step,1x = ai+1−ai =
(an+1−a1)/n, such that we have a uniform segment length for
all cut[ai,ai+1](x). From (5), we form a line approximation of
f (x), by setting up β = f (a1) and αi = 1yi = f (ai+1)−f (ai).
Let us define the approximation in each local segment such
that

gi(x) = f (ai)+
1yi
1xi

(x − ai) = f (ai)+ αi cut[ai,ai+1],

which is the Taylor series approximation of fi(x) in an interval
of [ai, ai+1] with an error

Ri(x) =
f (2)(z)
2

(x − ai)2,

for z ∈ [ai, ai+1] and f (ai) = gi−1(ai). If n is a large number,
then 1x → 0 that quadratically makes (x − ai)2→ 0. Then,
there exists

‖fi(x)− gi(x)‖ = Ri(x) < ε/n,

for all i = 1, . . . , n, which implies that

‖f (x)− Gn(x)‖ =
n∑
i=1

‖fi(x)− gi(x)‖ < ε.

FIGURE 3. Approximations to sin(x), using a superposition of several
sigmoid (cut) functions in [−5,5], with a differing number of segments:
n = {3,11,31}.

This theorem can also be proved using the line integral theory
of calculus.
As shown earlier, we can generalize the proof by using the

logistic function. Fig. 3 shows several approximations to the
target function, sin(x), using polyline (5) with values of n in
[−5, 5]. With n = 31, we have an excellent model for sin(x)
in that interval. One line segment, [ai, ai+1], is represented
by cut[ai,ai+1](x), i.e., the local representation of this segment.
Clearly, larger n leads to a more accurate representation of
Gn(x), according to ourTheorem 1. In addition, (5) is a linear
system, so, we can further optimize Gn(x) by changing β
and αi, calculated for segment, [ai, ai+1], using a simple LS
method. This will further reduce the error.

From the neural network point of view, (5) is an SLFN
model with cut[a,b](x) as the activation function and n nodes
in its hidden layer. Hence, if n is large, the model will be
large and space consuming. Here, the set of segment points,
{ai}, becomes an important parameter for model optimiza-
tion. From the proof of Theorem 1, the fixed length of
each segment is defined by 1x = (an+1 − a1)/n, which is
inefficient. Therefore, an efficient method that keeps n small
and provides an acceptable error will be introduced in the
next subsection, which shows how to achieve a compact and
efficient model.

D. COMPACT REPRESENTATION APPROXIMATION
In this section, we describe an efficient method for segment-
ing an input interval, into several line segments, that keeps n
as small as possible and within acceptable error.

1) STATIONARY SEGMENT POINTS (∇f (x) = 0)
We show a simple way to segment the input interval into n
segments, considering the error of the approximation func-
tion, Gn(x). We choose the stationary points that satisfy:

∇f (x) = lim
1x→0

f (x +1x)− f (x −1x)
21x

= 0. (6)

Unfortunately, for a discrete set of points, such as random
samples of f (x) in some real dataset, we cannot use (6) due
to the changing of 1x values. Hence, a turning point, i.e., a

20346 VOLUME 8, 2020

S. A. I. Alfarozi et al.: Local Sigmoid Method

FIGURE 4. Interval segmentation with stationary segment points leading
to many unnecessary segments.

point, where the gradient changes sign, is used as a segment
point. A practical criterion for detecting the turning point, xi,
of a function is:

(f (xi)− f (xi−1))(f (xi+1)− f (xi)) ≤ 0. (7)

As a result, when sin(x) is segmented by (6) or (7)
in [−5, 5], we will have a set of segment points, P =
{l,−3π/2,−π/2, π/2, 3π/2, h}, where l = −5 and h = 5
are the lowest and highest values of the interval. The number
of segments with the set P = {a1, . . . , an} is |P| − 1 and the
set of segments is S = {[a1, a2], . . . , [an−1, an]}.

2) UNNECESSARY SEGMENTS
In any set of segments, S, from points in P, not all segments
will add significant information to our predictive model, Gn.
In this case, the significant information is the gradient, 1yi,
for a particular segment. If 1yi → 0, then αi → 0 and fi(x)
has a small effect on Gn, according to (4). Then, we should
remove this insignificant segment from S. For instance, for
the function, f (x), Fig. 4 shows the set of points, P, and
segments, S, derived from (6). Two groups of segments have
slope close to zero and are thus unnecessary segments, which
can be removed from S so that the model is more compact
and less complex. Therefore, we need to define a criterion
for detecting unnecessary segments in S, based on the value
of 1yi:

|1yi| ≥ φ|max
k

f (ak)−min
k
f (ak)|, (8)

where 0 ≤ φ ≤ 1 is the threshold that controls the contribu-
tion toGn. For instance, φ = 0.05 implies that we will ignore
segments, with 1y less than 5% of the length of the range
of f (x).
We usedAlgorithm 1 to obtain the local segment represen-

tation based on our analyses. The following algorithm, local
segment representation (LSR), finds all potential segment
points to build a segment set, S, and then removes the unnec-
essary segments based on the value of φ, using criterion (8).
In the next section, we collect everything together to build a
training algorithm, that works with the SLFN model.

Algorithm 1 Local Segment Representation (LSR)
Data: A function f (x), f : R→ R, for x ∈ [l, h].
Result: A set of segments, S.

1 begin
2 set threshold φ;
3 detect segment points, P, using (6) or (7);
4 create a segment set, S, based on P;
5 remove unnecessary segments in S, using (8);
6 return final segment set, S;
7 end

FIGURE 5. A noisy target function, which generates many local gradient
sign changes.

III. LOCAL SIGMOID METHOD
In this section, we describe local sigmoid method (LSM) and
its pseudocode, based on our previous analyses for an SLFN
model.

A. PROBLEM OF LOCAL SEGMENT REPRESENTATION
ALGORITHM
LSR, Algorithm 1, requires a sorted single-feature input,
x, and a smooth target function, y, to divide the data into
several segments based on the stationary segment points.
However, if these requirements are not satisfied, then we face
problems in running LSR. Here, we show how to overcome
such problems, so that the algorithm can accept any type of
data.

1) NOISY TARGET FUNCTION
In this subsection, we show how to handle noisy target func-
tions. Let us be given N training examples, D = {(xi, yi)}Ni=1,
where xi ∈ R and yi = f (xi) ∈ R. If the target function, y,
is noisy and not smooth, many points, which become segment
points, are detected, and leads to many unneeded segments.
For instance, in Fig. 5, we plot two sin(x) functions with and
without the Gaussian noise. For the smooth target function,
sin(x), we can easily applyAlgorithm 1, because the segment
points are nicely located at the maxima and minima of sin(x)
function, using (6) or (7). However, for sin(x) with added

VOLUME 8, 2020 20347

S. A. I. Alfarozi et al.: Local Sigmoid Method

Gaussian noise, sin(x) + 0.1 × N (0, 1), many inefficient
segment points are detected.

To smooth the noisy target function, we can use a moving
average (MA) low pass filter and recover the smoothed signal,
fs(x), as follows:

fs(x) = smoothp(fn(x)) = fn(x) ∗ hp(x), (9)

where hp(x) is the moving average filter with a length of
p, i.e., hp(x) = [1 . . . 1]1×p. Such a filter can be applied
q ∈ N times to obtain a smoother curve. Then, we can find
the segment set, S, using Algorithm 1.

2) MULTIPLE INPUT FEATURES
Mostly, we deal with multiple input feature datasets. Thus,
to use LSR algorithm we need to transform the multiple
features to a single feature so that we can sort the data
before smoothing and segmenting the data. Let us be given
N training examples D = {(xi, yi)}Ni=1, where xi ∈ Rm and
ŷi = f (xi) ∈ R. As Algorithm 1, LSR, works on a univariate
function, thus we need to map xi to a single feature compo-
nent so that we can segment the interval based on the single
feature ŷ. There are many methods to solve this mapping
function, such as averaging value, principal component anal-
ysis (PCA), least square (LS) method, etc. In our work, the LS
method was selected to solve this problem, because it allows
the mapping function not only to use the information of input
feature but also the information of prediction variable, instead
of using the input feature information only such as PCA or
averaging value.

Let ŷ = fmap(x) : Rm
→ R be a linear mapping function

defined by

fmap(xi) = xTi wmap, (10)

where wmap are the mapping weights. Thus, to approximate
the target function, we need the weights, wmap, which can be
trivially found by solving:

arg min
wmap

∑
i

‖yi − xTi wmap‖, (11)

using LS. Now, we have a single input feature after applying
the mapping function (10), then sorting the dataset D =
{(xi, yi)}Ni=1, based on values in R generated by fmap(x).
Finally, we can use Algorithm 1, LSR, to divide the dataset
D into several subsets based on the fmap(x) feature.

Fig. 6 shows how to segment the multiple input feature
dataset, D, into several small subsets based on the interval
segmentation. A segment set, S, divides the dataset D into
subsets D1, . . . ,Dn. As each segment si represents an almost
linear segment, thus eachDi can have a small error by solving
through LS method solely. This segmentation follows the
‘‘divide and conquer’’ strategy.

B. LSM ALGORITHM
After smoothing of input function and generating of single
feature sorting index using mapping function fmap(.), the LSR
algorithm can be used. Now, we describe the deterministic

FIGURE 6. Segment si represents each subset Di that can be linearly
approximated based on the mapping feature fmap(X).

LSM algorithm: being deterministic means that every time
we run LSM, we will get the same result.

Suppose that we run Algorithm 1 to obtain a segment
set S = {s1, . . . , sn}, where each si divides the dataset D
into subsets D1, . . . ,Dn, representing those segments. Then,
the approximating function, Gn(x), in (5) can be rewritten for
a SLFN model:

Gn(x) = β +
n∑
i=1

αi tanh(Li(x)), (12)

where

Li(xj) = xTj w
in
i (13)

is the approximation of a local segment, si, and win
i is the

i-th input weight of SLFN, Gn(x), obtained from the LS
optimization of a subset Di:

argmin
wini

∑
j

‖T[−1,1](yj)− xTj w
in
i ‖, (14)

where T[−1,1](.) transforms yj ∈ Di into [−1, 1], such that
T[−1,1](min(yj)) = −1 and T[−1,1](max(yj)) = 1. The
yj needs to be transformed to [−1, 1], because the input
of tanh(.), xTj w

in
i , lies in the non-saturated interval — see

Definition 1. Subsequently, all ‘ineffective’ nodes with
‖win

i ‖ < 10−3 are removed because they have a very small
contribution to the approximating function, Gn(x).

Lastly, β and αi are determined by (12)— a linear problem
that can be solved by LS as well. Here, to use multiple
axes error reduction, the AIL recursive block inversion [25]
based on Banachiewicz [43] and Petkovic and Stanimirovic
[44] is adopted. Then, we can reform the SLFN in (12) by
incrementally adding a hidden k-th node, so that

[1N×1 HN×k]
[
β

α

]
= H(k)β(k)

= y, (15)

where H(k)
= [1N×1, tanh(L1(X)), . . . , tanh(Lk (X))] and

α = [α1, . . . , αk]T . Using least squares, the optimum weight
at the current iteration is

β∗(k) = (H(k)TH(k))−1H(k)Ty

= S(k)
−1
u(k), (16)

where S(k) = H(k)TH(k) and u(k) = H(k)Ty. Note that both
S(k) and its inverse S(k)

−1
are symmetric. Hence, the next

20348 VOLUME 8, 2020

S. A. I. Alfarozi et al.: Local Sigmoid Method

optimumweight parameterβ∗(k+1), with an additional hidden
node vector hk+1, can be obtained recursively:

β∗(k+1) =

([
H(k)T

hTk+1

] [
H(k) hk+1

])−1 [H(k)T

hTk+1

]
y

=

[
H(k)TH(k) H(k)Thk+1
hTk+1H

(k) hTk+1hk+1

]−1 [
H(k)Ty
hTk+1y

]

=

[
S(k) H(k)Thk+1

hTk+1H
(k) hTk+1hk+1

]−1 [
u(k)

hTk+1y

]
= S(k+1)

−1
u(k+1). (17)

Applying Banachiewicz block inversion technique [43] to the
symetric matrix S(k+1)

−1
in (17), setting v = H(k)Thk+1, d =

hTk+1hk+1, θ = S(k)
−1
v and ψ = d − vTθ , then we have

S(k+1)
−1
=

[
S(k)

−1
+ ψ−1θθT −ψ−1θ

−ψ−1θT ψ−1

]
(18)

Here, ψ measures the linear dependence of a new node on
existing nodes, if ψ = 0, then the new node hk+1 is linearly
dependent on H(k).
Note that, for each new node, we need to check the inde-

pendence of the new node to the existing nodes, using ψ , and
also the relative error of its residual. Therefore, the additional
node can be omitted by setting a criterion for its indepen-
dence, idp, from existing nodes, 0 < η � 1,

idp = abs
(
ψ

d

)
≤ η (19)

and also when the relative error of its residual is very small at
iteration k

err = abs
(
‖e(k+1)‖ − ‖e(k)‖

‖e(k)‖

)
≤ η, (20)

where e(k) = y − Gk (x). We can terminate the computation
early, if there are no new nodes that satisfy (19) and (20).
An efficient and fast way to calculate (20) is provided in our
code [45], which uses a lower bound for how much of a new
hidden node hk+1 can reduce the current error e(k):

reduce(hk+1) ≥ ‖e(k) −
(e(k)

T
hk+1)

hTk+1hk+1
hk+1‖ (21)

to approximate e(k+1) because LSM adds multiple hidden
nodes in a single step.

Algorithm 2 shows the LSM algorithm in detail. This
algorithm uses multiple iterations for multiple f (l)map(x) based
on the residual error, e(l) = y − G(l)

n (x) at iteration l. Thus,
to obtain the w(l)

map of f
(l)
map(x), we just need to replace yi with

e(l)i in (11) - see Algorithm 2, line 8.
Basically, LSM and AIL use the same incremental output

weight calculation method. The main difference between
LSM and AIL algorithms is of generating their hidden nodes
as depicted in Fig. 7. LSM generates multiple hidden nodes

FIGURE 7. Hidden layer construction of (a) LSM and (b) AIL. Note that the
input weight of each segment si in LSM is calculated using (14).

based on interval segmentation on each iteration of the sort-
ing index f (l)map(X) so that it can approximate function non-
linearity, while AIL generates a single hidden node using
a pointwise inverse on the error vector of the activation
function, tanh−1(e(l)i), so that it only approximates an almost
linear segment for all data points, on each iteration. For
the input weight calculation, AIL calculates it using an LS
method based on tanh−1(e(l)i) without segmentation.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
Here, we compare our LSM algorithm with state of the art
algorithms, both iterative and non-iterative variants. First,
we analyzed approximating the sigmoid hidden node features
of SLFN so that we can understand how the neural network
trained by the BP algorithm works using LSM segmentation,
instead of treating it as a black box. Second, we compare the
performance of all test algorithms on real datasets either for
regression or classification problems. Finally, we also explain
the advantages and disadvantages of our LSM algorithm
when compared to other test algorithms. We used MATLAB
R2018b on a laptop equipped with an i7-7700HQ 2.80 GHz
CPU. All code implementations of this paper is available in
our repository [45].

VOLUME 8, 2020 20349

S. A. I. Alfarozi et al.: Local Sigmoid Method

Algorithm 2 Local Sigmoid Method (LSM)

Data: N training examples D = {(xi, yi)}Ni=1, xi ∈ Rm,
yi = f (xi) ∈ R.

Result: SLFN model Gn(x):W = {win
1 , . . . ,w

in
n } and

β∗.
1 begin
2 set minimum error η;
3 set smoothing parameters, p and q;
4 set maximum number of iterations, l;
5 initialize e(1) = y;
6 for i← 1 to l do
7 map features to 1 dimensions (section III-A.2);
8 map x using f (i)map(x) based on (10) and e(i);
9 sort D based on this new feature;
10 smooth the target function y (section III-A.1);
11 fs← y;
12 for j← 1 to q do
13 fs = smoothp(fs);
14 end
15 run LSR (Algorithm 1) using fs and obtain

segment set S that divides D into subsets,
{D1, . . . ,Dz};

16 calculate input weights w(in)
k using (14) for each

Dk that ‖win
k ‖ ≥ 10−3 ;

17 let hk = tanh(Lk (x)) ∈ H from win
k ;

18 sort (descending) H = {h1, . . . ,hz} based on
(21) to current error e(i);

19 if ∀h ∈ H| reduce(h) < η then
20 return; end the algorithm
21 end
22 foreach hk ∈ H do
23 if reduce(hk) ≤ η then
24 break;
25 end
26 if idp ≥ η then
27 calculate β∗ with hk node using block

inversion (17);
28 add to setW← {W} + {w(in)

k };
29 end
30 end
31 calculate e(i+1);
32 end
33 end

A. BP AND LSM SEGMENTS
Here, we compare how BP and LSM segment a function:
we opened the neural network ‘black box’, using LSM seg-
mentation based on a sigmoid hidden node tanh(.) activation
function. For instance, we want to approximate sin(x) for
x ∈ [−5, 5], using LSM, this requires five segments based
on points, P = {−5,−3π/2,−π/2, π/2, 3π/2, 5}. How-
ever, segments [−5,−3π/2] and [3π/2, 5] have very low
slopes that will be removed automatically by (8); hence, three

FIGURE 8. Segmentation by BP using LSM segmentation to predict sin(x)
for x ∈ [−5,5]. A poor weight initiation, based on the random number
choice, led to bad segmentation (above) but a better choice led to good
approximation (lower).

FIGURE 9. Segmentation of LSM and its prediction for sin(x) for
x ∈ [−5,5].

segments are sufficient. For simulation, 1,001 data points are
generated using linespace function, i.e., [−5 : 0.01 : 5].
According to the above data points and three suitable seg-

ments, SLFN is built with three hidden nodes and trained
by a fast implementation of BP, i.e., Levenberg-Marquardt
(LM) algorithm [4], [46], [47]. 100 epochs with 85% of
training data and 15% of validation data are set and also
the early stopping criteria are implemented. For the LSM
algorithm, the threshold and smoothing parameter are set to
φ = 0.05 and (p, q) = (0.02, 10), respectively, and then
let the algorithm itself decide the required number of hidden
nodes, i.e., the nodes after the training has completed. Finally,
the segmentation of each hidden node is plotted by ignoring
the output weights, so that it is pleasurable to compare.

Fig. 8 shows two BP segmentations resulting from dif-
ferent choices of the input random number: the plots
show results from two seeds for the random number gen-
erator (rng(seed)). These results show that BP relies
on the weight initiation to achieve the optimal solution.

20350 VOLUME 8, 2020

S. A. I. Alfarozi et al.: Local Sigmoid Method

FIGURE 10. Segmentation for BP using LSM and its prediction for sinc(x) for x ∈ [−10,10] with proper weight initiations. (a) six hidden nodes
approximation from LSM segmentation theory; (b) four hidden nodes approximation, a special case for overlapping segmentation.

FIGURE 11. Segmentation for (a) LSM for sinc(x) for x ∈ [−10,10] and (b) comparison of prediction functions from BP and LSM.

The segmentation computed by each node, follows the LSR
segmentation method (Algorithm 1), each node saves the
information for a particular interval in its input weight, in
this case, the input interval is divided into three segments.
Fig. 9 shows the LSM algorithm on the same function. The
LSM segmentation was similar to BP, but around the edges
of interval, LSM was less accurate, i.e., |ypred | > 1.
We also investigated the segmentation of BP and LSM for

another function, i.e., sinc(x) = sin(x)/x for x ∈ [−10, 10],
with the same algorithm settings. For this simulation,
2,001 data points are generated using linespace function,
i.e., [−10 : 0.01 : 10]. In this case, LSM predicted six seg-
ments; therefore, SLFN requires six hidden nodes. With an
appropriate seed, the segmentation of BP algorithm also fol-
lows the LSM segmentation, i.e., one hidden node is respon-
sible for one segment, as depicted in Fig. 10(a). One more
thing that we did, we set the number of hidden nodes to four

nodes instead of six with an appropriate seed. Surprisingly,
after training, the approximation function still approximates
well the sinc(x) function. It means that BP is able to choose
overlapping segments needed to represent sinc(x). However,
the segments obtained from BP are different from LSM. One
hidden node can represent multiple LSM segments, together
with other segments, as depicted in Fig. 10(b). Moreover,
the LSM algorithm segments similar to BP, with six hidden
nodes, as shown in Fig. 11(a) and the functions are compared
in Fig. 11(b). Here, LSM is less accurate than BP, but it
approximates the function adequately.

Furthermore, we ran the experiment on noisy data points
of sin(x) and sinc(x). 5,000 random uniform data points are
generated and added the Gaussian noise with 0.1 × N (0, 1)
to each dataset. Fig. 12 shows the estimation of BP on
noisy sin(x) for x ∈ [−5, 5] with different rng(.)s that
affect the quality of segmentation due to the different weight

VOLUME 8, 2020 20351

S. A. I. Alfarozi et al.: Local Sigmoid Method

FIGURE 12. Segmentation by BP to predict noisy sin(x) for x ∈ [−5,5] with different rng (weight initiations).

FIGURE 13. Segmentation by BP for noisy sinc(x) for x ∈ [−10,10] with proper weight initiations. (a) using six hidden nodes approximation; (b) using
four hidden nodes approximation, a special case for overlapping segmentation.

initiations. For example, using rng(0) and rng(100),
BP was trapped in local minima. For rng(10), BP basi-
cally required two overlapping segments to approximate the
sin(x) in that interval because node1 did not contribute to
the approximation. However, in terms of fitting performance,

rng(1000), using three segments, was more accurate than
rng(10), using two segments. This showed that how BP
performance relid on the weight initiation. In the same way,
for sinc(x), BP showed the similar result of segmentation as
in the case of non-noisy data as depicted in Fig. 13, as long

20352 VOLUME 8, 2020

S. A. I. Alfarozi et al.: Local Sigmoid Method

FIGURE 14. Segmentation of LSM and its prediction for both noisy sin(x) for x ∈ [−5,5] and sinc(x) for x ∈ [−10,10].

as we properly initialized the weights. Fig. 14 shows LSM
approximation on these noisy data resulting similar segmen-
tation as in the case of non-noisy data for both sin(x) and
sinc(x), regardless of rng(.) (deterministic).

Therefore, it can be concluded that both algorithms have
advantages and disadvantages. BP was generally more accu-
rate than LSM, and also able to use overlapping segmentation.
However, LSM algorithm was generally faster than BP as
described in the next subsection, because the LSM algorithm
was based on the LS method (non-iterative), and also was
not needed to manually specify the number of hidden nodes.
Moreover, the LSM is deterministic— it has a single solution,
whereas BP may be trapped in local minima, for poor choices
of the initial weights.

Furthermore, by using LSM segmentation for node repre-
sentation, we can extract information of each hidden node
dealing with the data for the SLFN structure. In a word, each
hidden node represents each local segment by ignoring other
information outside its non-saturated interval.

B. BENCHMARK DATASETS
In this subsection, we compared several algorithms, both
iterative and non-iterative methods. Here, only the fast
second-order BP algorithm, the LM algorithm, was selected
as the iterative method. The non-iterative algorithms were
LSM, AIL [25], ELM [12], I-ELM [16], EI-ELM [17],
EB-ELM [19], PCA-ELM [24], CP- and DP-ELM [14].
Note that LSM, AIL and PCA-ELM are non-iterative and
deterministic.

We compared these algorithms on both regression or clas-
sification problems. Single output benchmarks were selected,
because the LSM method was designed for SLFN with a
single output model. Note that one could treat the mul-
tiple output models as multiple single output models if
desired.

We also used rank score as a metric for the performance
comparison for those algorithms using linear scaling function

TABLE 1. General parameter settings.

on each dataset:

rankscore(x) =
⌊
100×

x −mind
maxd −mind

⌋
, (22)

where mind is the best performed algorithm that will score
zero. On the other hand, maxd is the worst performed algo-
rithm that will score 100. In a word, the lower score, the better
performance.

For general parameter settings, the tanh(x) function is used
as the activation function in all test algorithms and other
parameters are described in Table 1. I-ELM, EI-ELM and
EB-ELM used the stopping criteria η = 10−4 which equals
to RMSE = 0.01 which is basically larger than the stopping
criteria defined in [16], [17], i.e., ‖E‖ < 0.01. The number of
hidden nodes is set out in each section. For LSM, we do not
need to specify the number of nodes, because it is specified

VOLUME 8, 2020 20353

S. A. I. Alfarozi et al.: Local Sigmoid Method

TABLE 2. Parameter settings - regression datasets.

automatically, but, we need to specify the maximum number
of iterations, l, — see Tables 2 and 6.

1) REGRESSION DATASETS
We used 12 datasets, collected by Torgo [48], from sev-
eral repositories, which have been used for ELM [12] and
CP- and DP-ELM [14] - see Table 2.

Here, one of the important parameter settings is the opti-
mum number of hidden nodes, especially for ELM and its
variants. So, we searched for the optimum number of hid-
den nodes by searching in steps of 5 up to 200, i.e., N =
{5, 10, . . . , 200}, and then chose the nearly optimal one,
the same method as Huang et al. [12]. The maximum number
of hidden nodes of I-ELM, EI-ELM, EB-ELM, CP- and
DP-ELM were set to the number of ELM hidden nodes.
However, PCA-ELM does not need any additional param-
eters, because the number of hidden nodes depends on the
confidence levels in its eigenvectors. For AIL, the maximum
number of hidden nodes was set to be twice the number of BP
hidden nodes obtained from cross-validation method. Lastly,
the maximum number of iterations, l, for LSM was obtained
by cross-validation. Table 2 shows these parameter settings
and the split between training and testing for each dataset. In
addition, the input features and output features were normal-
ized into [−1, 1] and [0, 1], respectively, the same setting as
in [12].

We ran each algorithm 50 times, using a random split
between the training and testing data — see Table 2.
Tables 3, 4 and 5 show averages and standard deviations (σ)
over 50 runs for RMSE, final number of hidden nodes and
training time. The rank scores for each algorithm on each
metric are shown in each table: boldface, bold-underline
and bold-italic fonts denote the first, second and third best
algorithms. BP showed the best RMSE on all datasets. LSM
was generally second, followed by AIL, which performed
fairly in the most cases — see Table 3. However, in terms of
mean score, clearly, BP was the best algorithm that scored
zero because it had the best performance on all datasets,
followed by the LSM that scored 15.5, then DP-ELM that

scored 28.4. Here, although AIL had better performance in
the most cases than DP-ELM and ELM, it did not ensure
that AIL had a lower mean scores than those algorithms. This
is because if an algorithm had a large relative difference in
a particular dataset, it would greatly affect the rank score.
PCA-ELM had poor performance, because the number of
hidden nodes depends on the number of its eigenvectors,
which is commonly very small number on most datasets with
a small number of input features. Note that PCA-ELM only
generates its hidden nodes using eigenvectors, that cover 95%
of input data, regardless of target feature information, but
it still performed well, leading to the second best on the
Triazines and Breast Cancer datasets. I-ELM also performed
poorly due to its non-LS solution optimization. For instance,
with the same number of hidden nodes and the same ran-
dom input weights, ELM was better than I-ELM in training
data, because ELM used an LS solution. Clearly, EI-ELM
improved the performance of I-ELM, while EB-ELM, semi
deterministic, further imrproved the performance of I-ELM
and EI-ELM. When considering RMSE mean score, BP still
preformed the best, followed by LSM, DP-ELM, ELM,
CP-ELM, AIL and the other ELM variants.

Table 4 shows the final average number of hidden nodes.
Based on the ranking, PCA-ELM was the most compact
algorithm, with a mean score at 8.3, followed by AIL (11.2)
and BP (19.1). However, PCA-ELM performed poorly as
previously explained in Table 3. AIL cannot grow the number
of hidden nodes, due to the node saturation. This motivated
us to develop the LSM algorithm, that not only can add more
hidden nodes, but also can perform more accurate prediction.
As shown in Tables 3 and 4, LSM used a little bit more hidden
node than AIL, but it performed more accurate. ELM and its
variants need more hidden nodes when compared to LSM,
AIL and BP for most datasets. Although I-ELM, EI-ELM and
EB-ELM added the hidden node one-by-one incrementally
until they reached the stopping criteria, the final number of
hidden nodes were the same as those of ELM. This means
that they did not achieve the stopping criteria. In balance,
BP remains the best algorithm so far in terms of RMSE

20354 VOLUME 8, 2020

S. A. I. Alfarozi et al.: Local Sigmoid Method

TABLE 3. Testing RMSE and RMSE ranks for regression problems.

TABLE 4. Final number of hidden nodes and node ranking for the regression problems.

and node numbers when compared to LSM algorithm and
others.

Table 5 compares training times. ELM and its variants were
faster than LSM and BP, except EB-ELM, which is almost the
same as BP, because the half of hidden nodes are calculated
using a formula, instead of randomization. ELM needed only

one matrix inversion (recursive inversion and node selection
methods for CP-ELM or DP-ELM). However, in terms of
error, LSM and BP were much better than ELM and its
variants. Now, let us focus on LSM, ELM and BP algorithms:
for time ranking, ELM was the best: ELM (7.2) < LSM
(36.4) < BP (64.1), but, for RMSE, BP was the best: BP (0)

VOLUME 8, 2020 20355

S. A. I. Alfarozi et al.: Local Sigmoid Method

TABLE 5. Training time and time ranks for the regression problems.

TABLE 6. Parameter settings - classification datasets.

< LSM (15.5) < ELM (28.8). As expected, there is a trade-
off between the training time and the error— see Table 3. For
the non-iterative algorithms, i.e., LSM, AIL and ELM and its
variants, EB-ELM and LSM are the slowest. However, LSM
performed better than others in terms of testing RMSE.

2) CLASSIFICATION DATASETS
For classification problems, the commonly used datasets in
common areas, such as the kernel and boosting methods,
were selected for performance evaluation. In this experi-
ment, we used IDA benchmark [49], which contains 13 arti-
ficial and real-world datasets, used in several research
papers [49]–[53], available in [54] and for MATLAB version

in [55]. The IDA benchmark covers a variety of different
datasets: from small to high expected error rates, from low- to
high-dimensional data and from small to large sample sizes.
There are 13 binary classification datasets, — see Table 6,
which consists of 100 realizations of predefined splits into
training and testing samples (20 in the case of the image and
splice datasets). The input features were standardized from
the source, the setting was used the same as in [49]–[53], and
the class values were set to 1 (positive) and -1 (negative).
Thus, if the model output value is larger than 0, then, this
example is assigned as the positive class, otherwise, it is a
negative class. For each dataset, we recored the average and
the standard deviation for error rate, number of hidden nodes

20356 VOLUME 8, 2020

S. A. I. Alfarozi et al.: Local Sigmoid Method

TABLE 7. Testing error rate and error rate ranks for classification problems.

TABLE 8. Final number of hidden nodes and node ranking for the classification problems.

and training time — see Tables 7, 8 and 9. We searched for
the best parameter, i.e., the number of hidden nodes or the
maximum of hidden nodes, using the first 10 realizations of

each dataset, with the cross-validation method— see Table 6.
For BP and ELM algorithms, we searched for the optimum
number of hidden nodes by searching in steps of 5 up to 200,

VOLUME 8, 2020 20357

S. A. I. Alfarozi et al.: Local Sigmoid Method

TABLE 9. Training time and time ranks for the classification problems.

i.e., N = {5, 10, . . . , 200}. For I-ELM, EI-ELM, EB-ELM,
CP-ELM and DP-ELM, the maximum number of hidden
nodes was set the same as ELM. The maximum number of
hidden nodes in AIL was set to twice the number of nodes
of BP. For LSM, we searched for the maximum iteration, l,
from 1 to 15.

Table 7 shows the average and deviation of the error rate
on each dataset. Results showed almost similar trend of mean
scores to those in the regression problems, i.e., BP (0.8)
< LSM (42.3) < ELM (55.9) and the poor mean score algo-
rithms remained PCA-ELM (84.2) and I-ELM (78.8), while
other ELMs scored from 55 to 60. Mostly, BP was the best,
when compared to other algorithms on all datasets, except for
Twonorm, in which BP scored 11 which is the second best
after the PCA-ELM (0). This happened because Twonorm
dataset might have a nice data distribution. It was confirmed
by the LSM performance (the third best) that was only one
hidden node (see Table 8), whichmeans that Twonorm dataset
was a linear problem because it only had one segment.
In other words, Twonorm dataset can be solved using a linear
combination of its eigenvectors. Generally, LSM was the
second or third best in the most cases, followed by AIL.

The number of hidden nodes required for each algorithm is
shown in Table 8. Here, AILwas themost compact algorithm,
followed by PCA-ELM and LSM, which were very small,
when compared to the ELM and its variants. Again, we are
not only finding the most compact and fastest algorithm but
also requiring the most accurate one. Note that an accurate
algorithm is the first criteria in our work; a compact and

fast algorithm is useless if it is not accurate. Surprisingly,
the mean score of LSM (30.9) is much more compact than BP
(57) for this classification problem. A compact model implies
that the inference timewill bemuch faster than a non-compact
model. Hence, the model only needs a small operation count,
because it has a small parameter set. Moreover, a compact
model will lead to faster training time as well, when we com-
pare the same algorithm with a different number of hidden
nodes.

Training time for each algorithm on each dataset are listed
in Table 9. As with the regression case, the fastest algo-
rithms were I-ELM, PCA-ELM and ELM. However, I-ELM
and PCA-ELM were generally the most inaccurate mod-
els. Interestingly, on the Twonorm dataset, LSM was the
fastest algorithm. This happened because LSM on Twonorm
only used one hidden node - see the second last row of
Table 8. Thus, the number of hidden nodes required by the
algorithm not only affected the inference speed but also
the training speed. The more compact the model, the faster
the model is. For Splice dataset, BP was around 300 times
slower than others. BP might use all 100 epochs for updating
the weights since the gradient based method is generally
hard to find the global solution on non-convex problems.
In summary, overall algorithm performance for classification
problems was generally similar to that for the regression
problems: BP and LSM were the most accurate algorithms;
AIL, PCA-ELM, LSM and BP were the most compact algo-
rithms; then, I-ELM, PCA-ELM and ELM were the fastest
algorithms.

20358 VOLUME 8, 2020

S. A. I. Alfarozi et al.: Local Sigmoid Method

FIGURE 15. Average ranks for accuracy, final number of hidden nodes and training time for regression problems (left) and classification problem
(right).

FIGURE 16. Average rank scores for performance, final number of hidden nodes and training time for all cases. Closer to the origin (0,0) and a
smaller bubble size implies a better algorithm.

C. DISCUSSION
We have shown that LSM outperformed in terms of accu-
racy and compactness. Relative performance is visualized
in Fig. 15 for both regression and classification problems.
We can see that LSM is more accurate than other non-
iterative methods on both problems. ELM and its variants
use randomization without any optimization of the input
weight assignment that leads to faster training time. How-
ever, they have a large number of hidden nodes that lead
to the slowest testing time. According to LSM segmenta-
tion method, ELM will add random segments, which may
cover some key segments in a particular interval, while LSM
uses a deterministic method without randomization to define
the optimized segment set. Therefore, LSM is more stable
than ELM and its variants. AIL and PCA-ELM are also

deterministic, but LSM still performs better. However, differ-
ent from LSM and AIL, PCA-ELM has poor performance,
because it does not use any information of the prediction
variable and only relies on the input feature distribution.
However, BP remains the best algorithm in terms of the
RMSE and error rate. In terms of hidden node numbers, AIL
is the most compact algorithm, but it cannot generate more
hidden nodes, due to the node saturation and thus termi-
nates early. With the AIL’s limitation, LSM can be used as
an alternative that generates more hidden nodes, but is still
sufficiently compact and more accurate. Most importantly,
LSM is based on the sigmoid node that represents a subset
of data; therefore, we are able to know how the algorithm
builds its model structure and how each node segments the
data.

VOLUME 8, 2020 20359

S. A. I. Alfarozi et al.: Local Sigmoid Method

We took the average rank scores for all cases (both regres-
sion and classification) and plotted the mean scores of three
metrics (error, number of nodes and training time) using
closeness to the origin and small size of the ‘bubble’ as the
optimum point in Fig. 16. Clearly, this shows that LSM is
the best algorithm among the non-iterative algorithms and
LSM is among the best three algorithms, that have a small
hidden node count. However, we can exclude the PCA-ELM,
because it performed poorly, so LSM became the most com-
pact algorithm after AIL. In addition, in terms of speed, ELM
and its variants are still the fastest algorithms. Moreover,
LSM was faster than BP, due to its non-iterative nature.

Finally, we summarize the advantages and disadvantages
of our LSM as follows:

(+) It does not have to defined the exact number of hidden
nodes (uses the maximum iteration, l), i.e., automatic
hidden layer construction.

(+) It does not depend on any randomization (deterministic).
(+) It is generally more accurate than other non-iterative

learning algorithms, in our evaluation.
(+) It produces one of the most compact models, that leads

to faster inference time.
(−) It is slower than ELM, in terms of training time.
(−) It is notmore accurate thanBP, in terms of performances.
(−) It only uses a sigmoid function as the activation function.

D. ABILITY TO UNDERSTAND THE NETWORK STRUCTURE
Mostly, we treat a neural network model as a black box: we
can train using a labeled dataset and obtain the result with
high performance. As we explained in Section II, LSM uses
a sigmoid as a segmenting function, that allows us to keep
input information in a particular input interval (segment) and
ignore input that is outside this segment. Using this capability,
we can examine the optimalmodel trained byBP and interpret
each hidden node using interval segmentation, i.e., each node
is responsible for a particular interval in the input. As a result,
we showed that BP, using the same number of hidden nodes
as LSM, acts similarly, i.e., it segments the input interval
into several segments to approximate a function, such as
sin(x) and sinc(x) functions. Using the LSM theory, for the
example, sinc(x) in [−10, 10], we showed that BP is able
to form an overlapped segmentation, that can combine with
other segments.

V. CONCLUSION
We have described an LSM algorithm that addresses both
problems of ELM randomization and AIL node saturation.
The LSM algorithm builds its structure based on the interval
segmentation method that allows us to divide a dataset into
several subsets (segments), represented by subsets of the data
points in the input, so that each segment is represented by a
single node. Thus the LSM building blocks are nodes, which
can be associated with specific segments of the input data,
i.e., the network is no longer a black box, one can understand
the role of each node and its contribution to the final output.

Furthermore, we showed that LSM is generally faster than
BP, an iterative method, and is more accurate than those
in a set of non-iterative algorithms visualized in Fig. 16.
Moreover, LSM model is one of the most compact models
that leads to the faster inference time on testing data. An
associated benefit is that, in the training phase, LSM can auto-
matically construct a model without requiring a predefined
number of hidden nodes, because it builds nodes that can
explain individual segments of the input data.

A. FUTURE WORK
LSM is still in early phase development. Thus, we will fur-
ther improve to make LSM efficient. In this work, LSM is
only for a single output dataset. Moreover, as discussed in
Section IV-D, BP is able to form an overlapped segmentation.
Hence, we will also investigate further improvement for LSM
to handle these overlaps, thus leading to a more compact
structure. Also, there are many activation functions used in
neural network models, e.g., Rectified Linear Unit (ReLU),
Leaky-ReLU [56], parameterized ReLU (P-ReLU) [57] and
Exponential Linear Unit (ELU) [58]. There is a possibility
that we can build learning methods, based on the properties
of those functions. Furthermore, we suggest that one can use
multiple activation functions in a single model based on their
properties and exploit them to represent different, perhaps
larger, segments of the input, so that the number of nodes can
be reduced without sacrificing accuracy.

ACKNOWLEDGMENT
We thank John Morris, KRIS KMITL, for correcting and
reducing the volume of this paper.

REFERENCES
[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning internal

representations by error propagation,’’ in Readings in Cognitive Science:
A Perspective from Psychology and Artificial Intelligence, A. Collins and
E. E. Smith, Eds. San Mateo, CA, USA: Kaufmann, 1988, pp. 399–421.

[2] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.:
Oxford Univ. Press, 1995.

[3] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA:
MIT Press, 2009.

[4] D. W. Marquardt, ‘‘An algorithm for least-squares estimation of nonlinear
parameters,’’ J. Soc. Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963.

[5] M. D. Zeiler, ‘‘ADADELTA: An adaptive learning rate method,’’ 2012,
arXiv:1212.5701. [Online]. Available: http://arxiv.org/abs/1212.5701

[6] J. Duchi, E. Hazan, and Y. Singer, ‘‘Adaptive subgradient methods for
online learning and stochastic optimization,’’ J. Mach. Learn. Res., vol. 12,
pp. 2121–2159, Feb. 2011.

[7] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[8] S. Haykin, Neural Networks: A Comprehensive Foundation.
Upper Saddle River, NJ, USA: Prentice-Hall, 1994.

[9] K. Hornik, ‘‘Approximation capabilities of multilayer feedforward net-
works,’’ Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[10] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, ‘‘Multilayer feedfor-
ward networks with a nonpolynomial activation function can approximate
any function,’’ Neural Netw., vol. 6, no. 6, pp. 861–867, 1993.

[11] V. E. Ismailov, ‘‘Approximation by neural networks with weights vary-
ing on a finite set of directions,’’ J. Math. Anal. Appl., vol. 389, no. 1,
pp. 72–83, 2012.

[12] G.-B. Huang, Q.-Y. Zhu, andC.-K. Siew, ‘‘Extreme learningmachine: The-
ory and applications,’’ Neurocomputing, vol. 70, nos. 1–3, pp. 489–501,
2006.

20360 VOLUME 8, 2020

S. A. I. Alfarozi et al.: Local Sigmoid Method

[13] W. Cao, X. Wang, Z. Ming, and J. Gao, ‘‘A review on neural networks with
random weights,’’ Neurocomputing, vol. 275, pp. 278–287, Jan. 2018.

[14] N. Wang, M. J. Er, and M. Han, ‘‘Parsimonious extreme learning machine
using recursive orthogonal least squares,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 10, pp. 1828–1841, Oct. 2014.

[15] C. Zhang, X. Bian, P. Liu, X. Tan, Q. Fan, W. Liu, and L. Lin, ‘‘Subagging
for the improvement of predictive stability of extreme learning machine for
spectral quantitative analysis of complex samples,’’ Chemometrics Intell.
Lab. Syst., vol. 161, pp. 43–48, Feb. 2017.

[16] G.-B. Huang, L. Chen, and C.-K. Siew, ‘‘Universal approximation
using incremental constructive feedforward networks with random hidden
nodes,’’ IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892, Jul. 2006.

[17] G.-B. Huang and L. Chen, ‘‘Enhanced random search based incremen-
tal extreme learning machine,’’ Neurocomputing, vol. 71, nos. 16–18,
pp. 3460–3468, Oct. 2008.

[18] Y. Yang, Y. Wang, and X. Yuan, ‘‘Bidirectional extreme learning machine
for regression problem and its learning effectiveness,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 23, no. 9, pp. 1498–1505, Sep. 2012.

[19] W. Cao, Z. Ming, X. Wang, and S. Cai, ‘‘Improved bidirectional extreme
learning machine based on enhanced random search,’’ Memetic Comput.,
vol. 11, no. 1, pp. 19–26, Mar. 2019, doi: 10.1007/s12293-017-0238-1.

[20] H.-J. Rong, Y.-S. Ong, A.-H. Tan, and Z. Zhu, ‘‘A fast pruned-extreme
learning machine for classification problem,’’ Neurocomputing, vol. 72,
no. 1, pp. 359–366, 2008.

[21] Y.Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, andA. Lendasse, ‘‘OP-
ELM: Optimally pruned extreme learning machine,’’ IEEE Trans. Neural
Netw., vol. 21, no. 1, pp. 158–162, Jan. 2010.

[22] Y. Yu and Z. Sun, ‘‘A pruning algorithm for extreme learning machine
based on sparse coding,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2016, pp. 2596–2602.

[23] J. E. Bobrow andW. Murray, ‘‘An algorithm for RLS identification param-
eters that vary quickly with time,’’ IEEE Trans. Autom. Control, vol. 38,
no. 2, pp. 351–354, Feb. 1993.

[24] A. Castaño and F. Fernández-Navarro, and C. Hervás-Martínez, ‘‘PCA-
ELM: A robust and pruned extreme learning machine approach based
on principal component analysis,’’ Neural Process. Lett., vol. 37, no. 3,
pp. 377–392, 2013.

[25] S. A. I. Alfarozi, N. A. Setiawan, T. B. Adji, K. Woraratpanya, K. Pasupa,
and M. Sugimoto, ‘‘Analytical incremental learning: Fast constructive
learning method for neural network,’’ in Proc. Int. Conf. Neural Inf.
Process. Cham, Switzerland: Springer, 2016, pp. 259–268.

[26] A. N. Kolmogorov, ‘‘On the representation of continuous functions of
many variables by superposition of continuous functions of one variable
and addition,’’Doklady Akademii Nauk, vol. 114, no. 5, pp. 953–956, 1957.

[27] G. Cybenko, ‘‘Approximation by superpositions of a sigmoidal function,’’
Math. Control, Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.

[28] Y. Xu, W. Light, and E. Cheney, ‘‘Constructive methods of approximation
by ridge functions and radial functions,’’ Numer. Algorithms, vol. 4, no. 2,
pp. 205–223, 1993.

[29] D. Costarelli and R. Spigler, ‘‘Constructive approximation by super-
position of sigmoidal functions,’’ Anal. Theory Appl., vol. 29, no. 2,
pp. 169–196, 2013.

[30] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel ‘‘Backpropagation applied to handwritten
zip code recognition,’’ Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[31] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, ‘‘Visualizing higher-
layer features of a deep network,’’ Univ. Montreal, vol. 1341, no. 3, p. 1,
2009.

[32] K. Simonyan, A. Vedaldi, and A. Zisserman, ‘‘Deep inside
convolutional networks: Visualising image classification models
and saliency maps,’’ 2013, arXiv:1312.6034. [Online]. Available:
https://arxiv.org/abs/1312.6034

[33] C. Olah, A. Mordvintsev, and L. Schubert, ‘‘Feature visualization,’’Distill,
vol. 2, no. 11, 2017, Art. no. e7. [Online]. Available: https://distill.pub/
2017/feature-visualization

[34] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, ‘‘Plug
& play generative networks: Conditional iterative generation of images
in latent space,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jul. 2017, pp. 4467–4477.

[35] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer,
2014, pp. 818–833.

[36] P.-J. Kindermans and K. T. Schütt, M. Alber, K.-R. Müller, D. Erhan,
B. Kim, and S. Dähne, ‘‘Learning how to explain neural networks: Pattern-
net and patternattribution,’’ 2017, arXiv:1705.05598. [Online]. Available:

[37] R. C. Fong and A. Vedaldi, ‘‘Interpretable explanations of black boxes by
meaningful perturbation,’’ 2017, arXiv:1704.03296. [Online]. Available:
https://arxiv.org/abs/1704.03296

[38] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert,
K. Ye, and A. Mordvintsev, ‘‘The building blocks of interpretability,’’
Distill, vol. 3, no. 3, 2018, Art. no. e10. [Online]. Available: https://distill.
pub/2018/building-blocks

[39] N. Kyurkchiev and S. Markov, ‘‘Sigmoid functions: Some approxima-
tion and modelling aspects,’’ in Some Moduli in Programming Environ-
ment Mathematica, Lambert Academic, Saarbrucken, Germany, 2015,
pp. 3–978.

[40] A. I. Iliev, N. Kyurkchiev, and S.Markov, ‘‘On the approximation of the cut
and step functions by logistic and Gompertz functions,’’ Biomath, vol. 4,
no. 2, 2015, Art. no. 1510101.

[41] F. Hausdorff, Set theory. North Providence, RI, USA: American Mathe-
matical Society, 2005, pp. 119.

[42] B. Sendov, Hausdorff Approximations, vol. 50. Amsterdam,
The Netherlands: Springer, 1990.

[43] T. Banachiewicz, ‘‘Zur berechnung der determinanten, wie auch der
inversen und zur darauf basierten auflosung der systeme linearer gleichun-
gen,’’ Acta Astronom. C, vol. 3, pp. 41–67, 1937.

[44] M. D. Petković and P. S. Stanimirović, ‘‘Generalized matrix inversion is
not harder than matrix multiplication,’’ J. Comput. Appl. Math., vol. 230,
no. 1, pp. 270–282, 2009.

[45] S. A. I. Alfarozi, ‘‘Least square neural network,’’ 2019. [Online]. Available:
https://github.com/sykrn/lsnn

[46] K. Levenberg, ‘‘Amethod for the solution of certain non-linear problems in
least squares,’’ Quart. J. Appl. Math., vol. 2, no. 2, pp. 164–168, Jul. 1944.

[47] J. J. Moré, ‘‘The levenberg-marquardt algorithm: Implementation and
theory,’’ in Numer. Anal. Berlin, Germany: Springer, 1978, pp. 105–116.

[48] L. Torgo, ‘‘Regression datasets,’’ 2019. [Online]. Available:
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

[49] S. Mika and G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Müller, ‘‘Fisher
discriminant analysis with kernels,’’ in Proc. Neural Netw. Signal Process.
IX, IEEE Signal Process. Soc. Workshop, Aug. 1999, pp. 41–48.

[50] G. Rätsch, T. Onoda, and K.-R. Müller, ‘‘Soft margins for adaboost,’’
Mach. Learn., vol. 42, no. 3, pp. 287–320, 2001.

[51] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf,
‘‘An introduction to kernel-based learning algorithms,’’ IEEE Trans. Neu-
ral Netw., vol. 12, no. 2, pp. 181–201, Mar. 2001.

[52] M. Viola, M. Sangiovanni, G. Toraldo, and M. R. Guarracino, ‘‘Semi-
supervised generalized eigenvalues classification,’’ Ann. Oper. Res.,
vol. 276, nos. 1–2, pp. 249–266, 2019.

[53] S. S. Mullick, S. Datta, and S. Das, ‘‘Adaptive learning-based k-nearest
neighbor classifiers with resilience to class imbalance,’’ IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 29, no. 11, pp. 5713–5725, Nov. 2018.

[54] G. Rätsch, ‘‘Ida benchmark repository,’’ 2018. [Online]. Available:
http://www.raetschlab.org/Members/raetsch/benchmark

[55] T. Diethe, ‘‘13 benchmark datasets derived from the UCI,
DELVE and STATLOG repositories,’’ 2015. [Online]. Available:
https://github.com/tdiethe/gunnar_raetsch_benchmark_datasets/

[56] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. ICML, vol. 30, no. 1, Jun. 2013,
p. 3.

[57] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1026–1034.

[58] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, ‘‘Fast and accu-
rate deep network learning by exponential linear units (Elus),’’ 2015,
arXiv:1511.07289. [Online]. Available: https://arxiv.org/abs/1511.07289

SYUKRON ABU ISHAQ ALFAROZI (Member,
IEEE) received the B.Eng. degree in electri-
cal engineering and information technology from
Universitas Gadjah Mada, Yogyakarta, Indone-
sia, in 2014. He is currently pursuing the Ph.D.
degree in information technology with the King
Mongkut’s Institute of Technology Ladkrabang,
Bangkok, Thailand, under the sandwich program
with Hokkaido University, Sapporo, Japan. His
research interests include machine learning and its

application, computer vision, and signal processing.

VOLUME 8, 2020 20361

http://dx.doi.org/10.1007/s12293-017-0238-1

S. A. I. Alfarozi et al.: Local Sigmoid Method

KITSUCHART PASUPA (Senior Member, IEEE)
received the B.Eng. degree in electrical engineer-
ing from the Sirindhorn International Institute
of Technology, Thammasat University, Thailand,
in 2003, and the M.Sc. (Eng.) and Ph.D. degrees
in automatic control and systems engineering from
the Department of Automatic Control and Sys-
tems Engineering, The University of Sheffield,
in 2004 and 2008, respectively. He was a Research
Fellow with the University of Southampton and

The University of Sheffield. He is currently an Associate Professor with the
Faculty of Information Technology, KingMongkut’s Institute of Technology
Ladkrabang, Bangkok, Thailand. His main research interests include the
application of machine learning techniques in the real world application.

MASANORI SUGIMOTO (Member, IEEE)
received the B.E., M.E., and D.E. degrees in
aeronautics and astronautics from The Univer-
sity of Tokyo, Tokyo, Japan, in 1990, 1992 and
1995, respectively. He is currently a Professor
with the Graduate School of Information Science
and Technology, Hokkaido University, Sapporo,
Japan. His research interests include acoustic engi-
neering, signal processing, artificial intelligence,
and human–computer interaction technologies for

designing smart systems and environments.

KUNTPONG WORARATPANYA (Member,
IEEE) received the B.Ind.Tech. degree in com-
puter technology, the M.Eng. degree in computer
engineering, and the D.Eng. degree in electrical
engineering from the King Mongkut’s Institute
of Technology Ladkrabang, Bangkok, Thailand,
in 1992, 1996, and 2005, respectively. He is cur-
rently an Assistant Professor with the Faculty of
Information Technology, KingMongkut’s Institute
of Technology Ladkrabang. His research interests

include stereoscopic acquisition and compression, multimedia coding and
processing, signal processing, speech recognition and processing, pattern
recognition and image processing, computer vision, and machine learn-
ing/deep learning.

20362 VOLUME 8, 2020

