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ABSTRACT Spontaneous speech emotion recognition is a new and challenging research topic. In this
paper, we propose a new method of spontaneous speech emotion recognition on the basis of binaural
representations and deep convolutional neural networks (CNNs). The proposed method initially employs
multiple CNNs to learn deep segment-level binaural representations such as Left-Right and Mid-Side pairs
from the extracted image-like Mel-spectrograms. These CNNs are fine-tuned on target emotional speech
datasets from a pre-trained image CNN model. Then, a new feature pooling strategy, called block-based
temporal feature pooling, is proposed to aggregate the learned segment-level features for producing fixed-
length utterance-level features. Based on the utterance-level features, linear support vector machines (SVM)
is adopted for emotion classification. Finally, a two-stage score-level fusion strategy is used to integrate the
obtained results from Left-Right andMid-Side pairs. Extensive experiments on two challenging spontaneous
emotional speech datasets, including the AFEW5.0 and BAUM-1s databases, demonstrate the effectiveness
of our proposed method.

INDEX TERMS Spontaneous speech emotion recognition, binaural representations, deep convolutional
neural networks, temporal feature pooling.

I. INTRODUCTION
Speech signals are one of the most natural ways of human
emotion expression. Speech emotion recognition (SER) has
become an important and challenging task in the fields of
signal processing, artificial intelligence, pattern recognition,
etc, because of its potential applications to human-computer
interaction [1].

Most prior works [2]–[4] in the past several decades focus
on SER tasks with collected data in laboratory controlled
environment, such as the popular acted EMO-DB [5] dataset
developed to distinguish acted emotions. Although acted
emotions are usually classified with good performance, they
are easily exaggerated. Therefore, acted emotions fail to
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faithfully represent the characteristics of human emotion
expression in real sceneries. In recent years, emotion recog-
nition in the wild has drawn increasingly extensive attention,
because such spontaneous emotions in the wild are more
challenging and difficult to classify in comparison with con-
ventional acted emotions.

Audio feature extraction is a key step in a fundamental
SER system. It aims to extract effective feature representa-
tions characterizing human emotion expression. The early-
used typical audio features [6]–[10] for SER are low-level
descriptors (LLDs), such as prosody features like pitch and
intensity, voice quality features like formants, and spectral
features like Mel-frequency cepstral coefficients (MFCCs).
In recent years, several extensive features with thousands
of LLDs, including the INTERSPEECH 2010 [11], Com-
ParE [12], AVEC-2013 [13], and GeMAPS [14] feature sets,
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have been widely used for SER. However, these extracted
LLDs are low-level hand-crafted features, so that they are
not very effective to represent emotional characteristics of
speech [4]–[6]. Therefore, it is needed to develop automatic
feature learning methods for extracting high-level affective
features that effectively characterize speakers’ emotions.

To tackle the abovementioned problem, deep learning
methods [15], [16] may provide an alternative solution.
To date, two popular deep learning algorithms, i.e., deep
neural networks (DNNs) [15], and deep convolutional neural
networks (CNNs) [17], have been employed to learn high-
level feature representations for SER. When using DNNs
for SER, hand-crafted acoustic features are often utilized.
In [18], the authors used a DNN to learn high-level features
from hand-crafted spectral features like MFCCs, followed
by an extreme learning machine (ELM) for SER. In [19],
MFCCs was used as inputs of DNNs, and then a hybrid of
a cascaded Gaussian mixture model and deep neural network
(GMM-DNN) was developed for SER. In [20], several per-
ception features such as perceptual linear predictive cepstrum
(PLPC), revised perceptual linear prediction coefficients
(RPLPs) and inverted Mel-frequency cepstral coefficients
(IMFCCs), were employed as inputs of DNNs for SER.

When using CNNs for SER, the raw waveforms or spec-
trograms are usually adopted as inputs of CNNs to learn
high-level feature representations. In [21], the authors divided
the raw waveform to fixed-length segments as inputs of a
2-layer CNN, and then conducted temporal 1D convolution,
followed by a 1-layer long short-term memory (LSTM) [22]
for modeling long-range dependencies. In [23], a 2-layer
CNN combined with 2-layer LSTM was used for SER on
the basis of the divided segments from the raw waveforms.
In [24], the authors employed the spectrograms as inputs of
a sparse auto-encoder, followed by a 1-layer CNN, to learn
salient features for SER. Due to the limited emotional data,
these works adopt shallow CNNs containing 1 or 2 convolu-
tional layers to learn high-level features for SER.

Recently, a variety of deep CNNs like AlexNet [17],
VGG [25], and ResNet [26], have been widely utilized to con-
duct various object detection and classification tasks. More-
over, these deep CNNs usually perform better than shallow
CNNs. This is because deep CNNs adopt deep multi-level
convolutional and pooling layers to capture mid-level fea-
ture representations from input image data. To date, explor-
ing deep spectrum feature extraction with deep CNNs has
become a new research trend in SER. In [27], [28], the authors
leveraged attention-based bidirectional LSTMwith fully con-
volutional networks to learn deep spectrum features for SER.
In our recent work [29], we designed an image-like spectro-
gram as inputs of deep CNNs like AlexNet to learn high-level
segment-level feature representations for SER. Such learned
deep spectrum features benefit from the advantages of cross-
media transfer learning, since they are developed by fine-
tuning pre-trained deep CNNs on image classification tasks.

Although these recent works [18]–[29] employed deep
learning techniques such as DNNs or CNNs, and achieved

FIGURE 1. Different Mel-spectrograms of binaural representations.

good performance on SER tasks, they just concentrated on
monaural audio signals and their related features. In partic-
ular, they usually made the record audios in stereo in real
sceneries monaural by keeping its left channel while discard-
ing its right channel prior to processing. As a result, these
works [18]–[29] usingmonaural audio signals for SER ignore
the advantages of binaural representations in stereo such as
Left-Right or Mid-Side pairs. The Mid channel is calculated
as L + R and the Side channel is L − R. Fig. 1 shows the dif-
ference of extracted Mel-spectrograms of binaural represen-
tations from the same emotional speech sample. From Fig. 1,
we can see that these binaural representations, i.e., the Left-
Right orMid-Side pairs, containmuch richer temporal-spatial
information than monaural representations. In particular, Left
Mel-spectrograms show different features in comparisonwith
Right Mel-spectrograms. For Mid-Side pairs, they are similar
due to the calculation with L + R and L − R. Nevertheless,
both of them are related to speech emotion expression, and
may do good to identify speech emotions. This indicates
that binaural representations, i.e., the Left-Right or Mid-
Side pairs, may provide complementary information for emo-
tion identification. In addition, recent works [30]–[32] show
that binaural representations performs better than monaural
representations for speech segregation or speaker recogni-
tion. Therefore, learning deep binaural representations may
present better performance than commonly-used monaural
representations on SER tasks.

Inspired by the abovementioned advantages of binaural
representations, this paper proposes a new CNNs-based SER
method with binaural representations. Initially, for the Left-
Right or Mid-Side pairs, we use multiple deep CNNs to
separately learn high-level segment-level features from the
extracted image-like Mel-spectrograms. We fine-tune each
CNN on target emotional speech datasets from a pre-trained
image CNN model. Then, a new feature pooling strategy,
called block-based temporal feature pooling, is proposed
to produce fixed-length utterance-level features from the
learned segment-level features, followed by linear support
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FIGURE 2. The flowchart of our proposed learning deep binaural representations with DCNNs for speech emotion recognition.

vector machines (SVM) for emotion classification. Finally,
we implement two-stage score-level fusion to integrate the
obtained results from the Left-Right andMid-Side pairs. Two
challenging spontaneous emotional speech datasets, includ-
ing the AFEW5.0 [33] and BAUM-1s [34] databases, are
employed to conduct SER experiments. Experiment results
demonstrate the effectiveness of our proposed method on
SER tasks.

The major contributions of this paper can be summarized
as follows:

(1) Considering the rich temporal-spatial information of
binaural representations, we propose a new SER method
based on CNNs and binaural representations. To the best
of our knowledge, we are the first to consider and employ
binaural representations for SER.

(2) To form fixed-length utterance-level features, we
propose a new feature pooling method, i.e., block-based tem-
poral feature pooling. It takes the temporal clues of an utter-
ance into account in the process of aggregating the learned
segment-level features. Extensive experiments on two spon-
taneous datasets demonstrate that our method outperforms
state-of-the-arts.

The remainder of this paper is organized as follows.
Section 2 describes the details of our proposed method.
Experiment results and analysis are presented in Section 3.
Section 4 provides the conclusions and future work.

II. OUR PROPOSED METHOD
Fig. 2 provides the flowchart of our proposed learning deep
binaural representations with CNNs for speech emotion

recognition. Our method contains four steps: (1) generation
of audio CNN inputs, (2) learning segment-level features
with deep CNNs, (3) block-based temporal feature pooling,
(4) two-stage score-level fusion. In the followings,
we describe the abovementioned four steps of our method
in details.

A. GENERATION OF AUDIO CNN INPUTS
To employ the pre-trained image CNNs (AlexNet) [17]
for cross-media transfer learning, from the original 1D
audio sample we create three channels of Mel-spectrogram
segments similar to the color RGB image. The created
Mel-spectrogram segments are then transformed into suitable
inputs of AlexNet with a fixed input size of 227× 227× 3.

Following in [29], we adopt 64 Mel-filter banks spanning
from 20 Hz to 8000 Hz to produce the whole log Mel-
spectrogram by using a Hamming window size of 25 ms
with an overlap of 10 ms. Then, we use a context window
of 64 frames to divide the whole log Mel-spectrogram into
fixed-length segments with a size of 64× 64. Finally, on the
basis of the static segment of 64 × 64, we compute its first
order and second order regression coefficients along the time
axis, thereby producing the delta and delta-delta coefficients
of the static segment. Consequently, similar to the color
RGB image, three channels (static, delta, and delta-delta)
of Mel-spectrogram segments with a size of 64 × 64 × 3
can be created as inputs of audio CNNs. Subsequently,
we resize 64 × 64 × 3 with bilinear interpolation into the
fixed size of 227 × 227 × 3 as inputs of AlexNet. In this
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way, we can generate individually the Left, Right, Mid, and
Side Mel-spectrogram segments for learning deep binaural
representations, as depicted in Fig. 2.

B. LEARNING SEGMENT-LEVEL FEATURES WITH DEEP
CNNs
As described in Fig. 2, the used deep CNNs are the same
as the original AlexNet [17]. It includes five convolution
layers (Conv1, Conv2, Conv3, Conv4, and Conv5), three
max-pooling layers (Pool1, Pool2, and Pool5), and three
fully connected (FC) layers (fc6, fc7, and fc8). The fc6 and
fc7 have 4096 neurons, whereas fc8 denotes a label vec-
tor corresponding to data categories. It is noted that fc8 in
AlexNet equals to 1000 image categories on the ImageNet
data. We do not employ other CNN models with deeper
structure than AlexNet, because there is no any improvement
with them due to the limited emotional datasets.

To deeply learn segment-level features, we adopt a fine-
tuning strategy for cross-media transfer learning. In computer
vision [35], [36] have proved that it is feasible to fine-tune the
pre-trained CNNs on target data to relieve the problem of data
insufficiency. To achieve segment-level feature learning with
CNNs, we use target emotional speech data to fine-tune the
AlexNet [17] model pre-trained on the large-scale ImageNet
data. Specially, we initialize the used CNN network by means
of copying the network parameters from pre-trained AlexNet.
Next, the fc8 layer in AlexNet is replaced with a new class
label vector corresponding to speech emotion categories used
in our experiments. Finally, we retrain the CNN models by
using the standard back propagation strategy. The following
minimizing problem is solved to update the CNN network
parameters:

min
W ,ϑ

N∑
i=1

H (softmax (W · ϒ (ai;ϑ)) , yi) , (1)

where W represents the weight values of the softmax layer
for the network parameters ϑ . γ (vi;ϑ) denotes the 4096-D
output of the fc7 layer for input data ai, and yi represents the
class label vector of the i-th segment. H denotes the softmax
log-loss function:

H (ϑ, y) = −
C∑
j=1

yj log
(
yj
)
, (2)

where C denotes the total number of speech emotion cate-
gories. After fine-tuning the CNN models, the 4096-D out-
puts of their fc7 layers are the learned deep segment-level
feature representations in audio Mel-spectrogram segments.

It is pointed out that we split the whole Mel-
spectrogram from an audio sample into a certain number of
Mel-spectrogram segments to conduct segment-level feature
learning with CNNs. In this situation, we set the emo-
tion category of each Mel-spectrogram segment to be the
utterance-level emotion category.

C. BLOCK-BASED TEMPORAL FEATURE POOLING
Once the CNN training is finished, the 4096-D outputs of
their fc7 layers represent the learned segment-level features.
Because the duration time for utterances is unfixed, the num-
ber of divided segments in utterances varies. Therefore, it is
needed to aggregate segment-level features in an utterance
into utterance-level features with fixed dimensionality. This
process is also called feature pooling.

So far, there are two popular feature pooling methods,
i.e., average-pooling and max-pooling, which aim to cal-
culate the average and maximum values for local feature
maps to produce global feature representations, respectively.
For instance, in computer vision they are used to aggregate
frame-level features on videos into video-level features [37].
Likewise, they can be also employed to perform average and
maximum operation for all divided segment-level features
in an utterance to form fixed-length utterance-level features.
However, owing to the useful temporal clues of an utterance
for emotion expression, these two feature pooling methods
discard the temporal information in an utterance for speech
emotion recognition. To make use of the temporal clues
of an utterance, we propose a simple yet effective feature
pooling strategy, i.e., block-based temporal feature pooling.
Here, we take max-pooling as an example, Fig. 3 shows the
flowchart of the proposed feature pooling method.

As depicted in Fig. 3, the proposed feature pooling method
contains three steps:

(1) For the obtained CNN-learned segment-level fea-
tures X , we calculate its first-order regression coefficients
along the time axis, i.e., delta_X . This aims to exhibit the
temporal dynamic information among adjacent segments in
an utterance.

(2) X and delta_X are equally divided into successive
non-overlapping sub-blocks, respectively, and then a fea-
ture pooling operation like max-pooling is implemented on
each divided sub-block. Here, two sub-blocks associated with
max-pooling are taken as an example.

(3) The achieved sub-blocks based features are concate-
nated and produce global utterance-level features f m(X ). This
can be expressed as

f m(X ) =
(
f ml (X ), f ml (delta_X )

)
, (3)

where f ml (X ) and f ml (delta_X ) are max-pooling operations
performed on l successive non-overlapping sub-blocks from
X and (delta_X ), respectively.

Both X and (delta_X ) are equally split into l succes-
sive sub-blocks along the time axis at multiple levels with
l = 1, 2, 3, . . . ,L. This can be expressed as

X = (X1,X2, · · · ,XL) , (4)

delta_X = (delta_X1, delta_X2, · · · , delta_XL) , (5)

Given a sub-block Xl = (x1, x2, · · · , xn) ∈ Rd×n with n
segments associated with d dimensionality, max-pooling on
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FIGURE 3. The flowchart of block-based temporal feature pooling. Here,
two sub-blocks associated with max-pooling are taken as an example.

this sub-block is calculated as

f ml (Xl) =
n∑
j=1

max
∣∣xj∣∣ , (6)

For a sub-block delta_Xl =
(
x ′1, x

′

2, · · · , x
′
n
)
∈ Rd×n,

we also compute max-pooling by

f ml (delta_Xl) =
n∑
j=1

max
∣∣∣x ′j ∣∣∣ , (7)

Our block-based temporal feature pooling strategy con-
siders the useful temporal clues for emotion expression in
two aspects. First, the first-order regression of segment-
level features along the time axis, i.e., delta_X , is used to
reveal the temporal dynamic emotional information among
adjacent segments in an utterance. Second, the divided non-
overlapping sub-blocks from X and delta_X along the time
axis also contain certain temporal emotional information to
some extent.

When we obtain fixed-length utterance-level features with
the proposed block-based temporal feature pooling strategy,
the linear SVM is employed to conduct the final emotion
classification. In detail, we adopt the obtained utterance-
level features from training samples to train the linear SVM,
and then evaluate the trained SVM model on each testing
sample with utterance-level features, producing final emotion
classification results. Similarily, in Fig. 3 average-pooling
can be used instead of max-pooling.

It is noted that for the final emotion classification we do
not employ other typical emotion classifiers such as Random
Forest, K-Nearest Neighbor, etc., because SVM usually per-
forms better than them, as demonstrated in [38].

D. TWO-STAGE SCORE-LEVEL FUSION
Considering the complementarity between binaural repre-
sentations, such as Left-Right Mel-spectrogram, and MS
Mel-spectrogram, we adopt a two-stage score-level fusion
strategy to implement final emotion classification. In par-
ticular, we initially separately combine the emotion recog-
nition results from Left-Right, and Mid-Side pipelines at
score-level. Then, we implement score-level fusion further
on the basis of the first-stage obtained results. This can be

expressed as

scoreefusion1 = α ∗ scoreleft + (1− α) ∗ scoreright , (8)

scorefusion2 = β ∗ scoremid + (1− β) ∗ scoreside, (9)

scorefusionfinal = λ ∗ score
fusion
1 + (1− λ) ∗ scorefusion2 , (10)

where α, β and λ are the weight values corresponding to the
emotion classification score values. For simplicity, α, β and
λ are decided by an exhaustive search in a range of [0,1] with
an interval of 0.1 in this work. The optimal weight values
correspond to the best performance of score-level fusion.

III. EXPERIMENT STUDIES
To evaluate the performance of the proposed method on
spontaneous SER tasks, we conduct experiments on two
challenging spontaneous emotional speech datasets, i.e.,
the AFEW5.0 [33] and BAUM-1s [34] databases. It is noted
that in this work we concentrates on spontaneous SER rather
than the conventional acted SER, because spontaneous emo-
tions in the wild are more challenging and difficult in com-
parison with acted emotions. Hence, we just employ the
abovementioned spontaneous emotional speech datasets for
experiments.

A. DATASETS
AFEW5.0: AFEW5.0 [33] was developed for audiovisual
emotion recognition in the wild challenge in 2015. It is
a spontaneous audiovisual video dataset, and comprises of
seven emotional categories,i.e., anger, joy, sadness, disgust,
surprise, fear, and neutral. Three annotators are invited
to annotate these emotions. This dataset includes three
parts: the Train (723 samples), Val (383 samples), and Test
(539 samples) sets. This work adopts the Train and Val sets
for experiments, because the Test set is only open for the
participants in emotion recognition competitions.
BAUM-1s: BAUM-1s [34] is a recently-developed spon-

taneous audio-visual emotional dataset. It comprises of not
only six basic emotional categories, i.e., anger, joy, sadness,
disgust, fear, surprise, but also other mental states, such
as unsure, thinking, concentrating, and bothered. Following
in [34], this work focus on identifying six basic emotions,
thereby producing 521 video samples in total from 31 Turkish
subjects.

B. SETTINGS
For CNN training, the mini-batch size of input data is 30.
The learning rate is 0.001 and the maximum of epoch
number is 300. An NVIDIA GTX TITAN X GPU with
12GB memory is used to accelerate the CNN’s training.
We employ the MatConvNet [39] software to perform deep
CNNs. We conduct SER experiments by using a subject-
independent cross-validation strategy, which is most uti-
lized in real sceneries. Specially, on the AFEW5.0 database,
the Train and Val sets divided by the data developers are used
for experiments. On the BAUM-1s database with 31 Turkish
subjects, we adopt a leave-one-subject-group-out (LOSGO)

23500 VOLUME 8, 2020



S. Zhang et al.: Learning Deep Binaural Representations With Deep CNNs

TABLE 1. Recognition accuracy (%) of different monaural representations
with block-based temporal Max-pooling.

strategy with five subject groups for experiments. And the
average recognition accuracies in five test-runs are obtained
to evaluate the performance of all used methods. For block-
based temporal feature pooling, l = 2 is used for its good
performance and computation efficiency.

We divide an audio sample into a certain number of
audio segments as inputs of CNNs, thereby augmenting the
amount of training data to some extent. In particular, on the
AFEW5.0 database we produce 5,141 segments from the
Train set (723 samples), and 2,484 segments from the Val
set (383 samples), respectively. On the BAUM-1s database,
we produce 6,386 segments from 521 video samples.

C. RESULTS AND ANALYSIS
1) EFFECTS OF DIFFERENT MONAURAL REPRESENTATIONS
We initially evaluate the performance of different monaural
representations. Table 1 gives the recognition results of four
monaural representations such as Left-Right or Mid-Side
pairs with block-based temporal max-pooling.

As shown in Table 1, we can see that: (1) the obtained
performance with Left-Right pairs on the AFEW5.0 dataset
is very close, but very different on the BAUM-1s dataset.
This is because the difference of used datasets. In particular,
on the AFEW5.0 dataset our method separately presents an
accuracy of 32.64% for Left Mel-spectrogram and 32.90%
for Right Mel-spectrogram. On the BAUM-1s dataset, we
obtain an accuracy of 43.37% for Left Mel-spectrogram,
and 33.77% for Right Mel-spectrogram, respectively,
(2) for Mid-Side pairs, Mid Mel-spectrogram outperforms
Side Mel-spectrogram. On the AFEW5.0 dataset Mid
Mel-spectrogram is significantly higher than Side Mel-
spectrogram with an accuracy of 7.57%. On the BAUM-1s
dataset Mid Mel-spectrogram exceeds Side Mel-spectrogram
with an accuracy of 1.44%.

To verify whether the complementarity between Left-Right
or Mid-Side pairs exists or not, Fig. 4 shows the confusion
matrices of recognition results of different monaural repre-
sentations on the AFEW5.0 database. From Fig. 4, we can
see that for Left-Right pairs, Right Mel-spectrogram obtains
an accuracy of 15.38% for disgust emotion, whereas Left
Mel-spectrogram gives an accuracy of 0%. This indicates that
Left-Right pairs are complementary when identifying disgust
to some extent.

Similarily, for Mid-Side pairs, the obtained results are
also complementary when classifying disgust and surprise.

For instance, Mid Mel-spectrogram achieves an accuracy of
6.90% for disgust, and 37.04% for surprise, respectively.
By contrast, Side Mel-spectrogram provides an accuracy
of 35.29% for disgust and 10.34% for surprise, respectively.
The results in Fig. 4 demonstrate that fusing different monau-
ral representations may improve the recognition performance
for certain emotions further due to the existing complemen-
tarity between Left-Right or Mid-Side pairs.

2) EFFECTS OF DIFFERENT FEATURE POOLING
To evaluate the effectiveness of block-based temporal feature
pooling, Tables 2-5 separately present the performance of
four feature pooling methods, including block-based tem-
poral max-pooling, block-based temporal average-pooling,
global max-pooling, and global average-pooling. Note
that global max-pooling or average-pooling demonstrates
the global max or average operation is implemented on the
whole divided segments.

From Tables 2-5, we can observe that block-based
temporal feature pooling methods perform better than
global feature pooling methods on the AFEW5.0 and
BAUM-1s datasets, when using Left, Right, Mid and Side
Mel-spectrograms. Specially, block-based temporal max-
pooling and average-pooling are much better than global
max-pooling and average-pooling for Mid and Side Mel-
spectrograms. This indicates that block-based temporal pool-
ing methods, which consider the useful temporal clues, are
capable of producing better feature representations when
aggregating segment-level features in an utterance into
utterance-level features. Besides, max-pooling outperforms
average-pooling at most cases, as max-pooling may be more
suitable for the learned segment-level sparse features.

3) EFFECTS OF TWO-STAGE SCORE-LEVEL FUSION
Table 6 lists recognition results of two-stage score-level
fusion, associated with the corresponding weight val-
ues α, β and λ in Eqs. (8)-(10). We initially fuse the
results obtained with block-based temporal max-pooling
from Left-Right pairs, and Mid-Side pairs, respectively.
Then, we perform the second integration at score-level
on the basis of the obtained results of the initial fusion.
The results in Table 6 show that fusing Left, Right,
Mid, and Side Mel-spectrograms outperforms integrating
Left-Right pairs or Mid-Side pairs. In particular, on the
AFEW5.0 dataset, fusing Left, Right, Mid, and Side Mel-
spectrograms presents an accuracy of 36.29%, thereby mak-
ing an improvement of 1.78% over Left-Right pairs, and
1.3% over Mid-Side pairs. On the BAUM-1s dataset, fusing
Left, Right, Mid, and Side Mel-spectrograms achieves an
accuracy of 44.31%, which is higher than Left-Right pairs
by over 0.61%, and Mid-Side pairs by over 1.59%, respec-
tively. In addition, compared with monaural representations
as shown in Table 2-5, binaural presentations perform better
on SER tasks because they contain more temporal-spatial
information. This demonstrates the advantages of fusing
binaural presentations on SER tasks.
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FIGURE 4. Comparisons of confusion matrices obtained by different monaural representations on the AFEW5.0 database.

TABLE 2. Precognition accuracy (%) of different feature pooling methods
with left mel-spectrogram.

In addition, we also conduct emotion classification exper-
iments at feature-level fusion. Specially, we concatenate
utterance-level features of binaural presentations, followed
by the linear SVM for emotion classification. Table 7 shows
the results of feature-level fusion. From Table 6 and 7, we can
see that our two-stage score-level fusion method performs
better than feature-level fusion method. This indicates the
effectiveness of two-stage score-level fusion in our work.

To further present the recognition performance per emo-
tion, Fig. 5 and 6 individually provide the confusion matrices

TABLE 3. Precognition accuracy (%) of different feature pooling methods
with Right mel-spectrogram.

of recognition results when our method performs best on
two used datasets. The results in Fig. 5 indicate that on
the AFEW5.0 dataset ‘‘anger’’, ‘‘neutral’’ and ‘‘fear’’ are
identified with an accuracy of 59.38%, 49.21% and 45.65%,
respectively, whereas other three emotions are identified with
an accuracy of less than 40%. The results in Fig. 6 show that
on the BAUM-1s dataset ‘‘sadness’’ and ‘‘joy’’ are classified
with an accuracy of 70.90%, and 55.49%, respectively. The
remaining three emotions are distinguished with an accuracy
of less than 30%.
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TABLE 4. Precognition accuracy (%) of different feature pooling methods
with mid mel-spectrogram.

TABLE 5. Precognition accuracy (%) of different feature pooling methods
with side mel-spectrogram.

TABLE 6. Precognition accuracy (%) of two-stage score-level fusion.

TABLE 7. Precognition accuracy (%) of feature-level fusion.

TABLE 8. Performance (%) comparisons of state-of-the-arts.

4) COMPARISONS OF STATES-OF-THE-ARTS
To evaluate the effectiveness of our proposed method,
we directly compare our reported results with pre-
vious works on used two emotional datasets. The

FIGURE 5. Confusion matrix of recognition results with two-stage
score-level fusion on the AFEW5.0 database.

FIGURE 6. Confusion matrix of recognition results with two-stage
score-level fusion on the BAUM-1s database.

experimental settings in these comparing works are similar
to ours. Specially, the subject-independent cross-validation
strategy is used. Table 8 presents the comparisons of state-
of-the-art methods. From Table 8, we can see that our pro-
posed method performs better than state-of-the-art meth-
ods on used two datasets. This exhibits the superiority of
our proposed method over previous works. In particular,
on the AFEW5.0 dataset [11], [40]–[42] adopted typical
hand-crafted INTERSPEECH 2010 set (1582 LLDs), which
were extracted from monaural representations such as the
left channel of audio signals. They used common emotion
classifiers, such as SVM, recurrent neural network (RNN),
partial least squares regression (PLSR), and principal com-
ponent analysis (PCA) associated with SVM. In comparison
with [11], [40]–[42], our learned deep binaural represen-
tations with CNNs gives much higher performance. This
demonstrates the advantages of deep learned features over
hand-crafted features. On the BAUM-1s dataset, our method
based on learned binaural representations with CNNs is also
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superior to other CNN-learned methods [29], [43] which
employ monaural representations. This indicates the effec-
tiveness of learning binaural representations compared with
monaural representations.

IV. CONCLUSION AND FUTURE WORK
Motivated by the fact that binaural representations in stereo
contain much more information than conventional monaural
representations, this paper proposes a new spontaneous SER
method by learning deep binaural representationswith CNNs.

Our method consists of three key steps: (1) multiple CNNs
are separately employed to learn deep segment-level fea-
tures from the extracted image-like Mel-spectrograms, (2) a
block-based temporal feature pooling strategy is proposed
to aggregate the learned segment-level features to fixed-
length utterance-level features, (3) a two-stage score-level
fusion strategy is adopted to combine the obtained results
with different binaural representations. Experiment results
on two challenging spontaneous emotional datasets, i.e.,
AFEW5.0 and BAUM-1s, show that our proposed method
outperforms state-of-the-art methods. In future, we will
investigate more advanced deep models to learn deep dis-
criminative features for SER. It is also interesting to extend
our work to develop a real-time SER system. Additionally,
our proposed method is not an end-to-end learning since
we finish each step individually. It is thus interesting to
develop an automatic end-to-end learning system to improve
performance further. Besides, this work performs a simple
score-level fusion strategy to integrate different binaural rep-
resentations. We will explore other advanced fusion methods
such as graph-based fusion graph-based fusion with metric
learning [44].
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