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ABSTRACT Smart grids have become susceptible to cyber-attacks, being one of the most diversified cyber–
physical systems. Measurements collected by the supervisory control and data acquisition system can be
compromised by a smart hacker, who can cheat a bad-data detector during state estimation by injecting biased
values into the sensor-collected measurements. This may result in false control decisions, compromising the
security of the smart grid, and leading to financial losses, power network disruptions, or a combination
of both. To overcome these problems, we propose a novel approach to cyber-attacks detection, based
on an extremely randomized trees algorithm and kernel principal component analysis for dimensionality
reduction. A performance evaluation of the proposed scheme is done by using the standard IEEE 57-bus
and 118-bus systems. Numerical results show that the proposed scheme outperforms state-of-art approaches
while improving the accuracy in detection of stealth cyber-attacks in smart-grid measurements.

INDEX TERMS Machine learning, KPCA, extra-trees, cyber-attacks, cyber-security.

I. INTRODUCTION
The notion of smart grids (SGs) is realized by mod-
ern computing and bi-directional communications systems
being combined with the typical electrical power grid. Due
to increased dependence on communications technologies,
the SG’s susceptibility to cyber-attacks has escalated. Con-
ventionally, the measurement data are collected from the
electric power grid by a supervisory control and data acquisi-
tion (SCADA) system, which is composed of remote terminal
units (RTUs) and communications networks. The RTUs con-
sist of sensors to collect the data, and actuators to execute the
control commands initiated by the energy management sys-
tem (EMS) in the power control center (PCC). The suitability
and fitness of the collected data are exceedingly substantial
in order to initiate precise and accurate control decisions.
Hence, the legacy systems employ a device called a bad-
data detector (BDD) to analyze the reliability of the sensor-
collected measurement data. However, the newly discovered
stealthy cyber-attack (SCA) [1] is considered capable of
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dodging the legacy BDD. A smart hacker can intelligently
craft the attack vector to inject biased values into the sensor-
collected measurement data [1]. Such a malicious attack can-
not be identified by the legacy BDD, and can result in fiscal
loss, a fractional interruption in power system operations,
or a combination of financial loss and disruption [2], [3].
Due to the detrimental effects of such malicious activities
on the secure and reliable operations of SGs, there exists the
necessity to study attack-detection measures.

The meter measurements collected by the PCC from every
subsystem of the smart grid are the bus voltages, branch reac-
tive power flows, and bus real and reactive power injections
[1]. Then, the state variables are estimated at the PCC via
the state estimation process based on the meter measurement.
In this paper, we refer to state estimation-measurement fea-
tures (SE-MF) as the meter measurements collected from the
components of the SG, which are used to estimate the state
variables.

Many sensors are utilized to collect parameters from the
electric power transmission network due to its lengthened
geographic span. Machine learning (ML)-based approaches
are becoming popular among researchers, because these
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techniques exploit the sensor measurements directly to detect
an SCAwithout needing detailed mathematical models of the
power grid. Moreover, ML-based detection utilizes histori-
cal measurements to perceive the data patterns of the nor-
mal (unattacked) system, and no prior information is needed
about the subsystems of the power network.

In the literature, several approaches that do not use ML
algorithms have been introduced for SCA-attack detection
[4], [5]. However, the use of ML-based schemes is becom-
ing popular among researchers owing to their efficacy in
classification problems involving complex data distributions.
Fadlullah et al. [6] proposed a Gaussian process regression
scheme to forecast malicious attacks, and it is based on
probabilistic distributions to predict abnormal operational
behavior. Zhang et al. [7] presented a distributed system
based on the support vector machine (SVM) to detect cyber-
attacks, in which the authors considered the deployment
of intelligent modules at different levels of the SG col-
laborating amongst themselves. Hink et al. [8] investigated
ML-based approaches to differentiate between normal oper-
ations, cyber-attack events, and natural disruptions in SGs,
where the authors compared ML algorithms such as random
forest, naïve Bayes, the SVM, and AdaBoost. Hao et al. [9]
studied random and targeted attacks in SGs, where they
proposed robust principal component analysis (PCA) for the
detection of false data–injection attacks. Ozay et al. [10]
provided a comparison study of several ML algorithms, such
as the SVM, AdaBoost, and perceptron, for attack detec-
tion in SGs, in which the ML-based approaches achieved
a higher performance, compared with state vector estima-
tion methods. The aforementioned approaches did not use
dimension reduction (DR) methods or feature selection (FS)
techniques to tackle the dimensionality issue, which becomes
more important as the power system size increases, since the
computational complexity is higher as the number of features
increases.

Esmalifalak et al. [11] proposed reducing the dimension-
ality of data by using a PCA-based technique, and then,
an SVM is trained over labeled data to detect stealthy false-
data injection. Ahmed et al. [12] presented a genetic algo-
rithm (GA) as an FS scheme to deal with the dimensionality
issue, and an SVM-based algorithm, using a Gaussian kernel,
to detect covert cyber-deception attacks in SGs. A study
for unlabeled historical SE-MF data was presented in [13],
where the authors tackled the dimensionality issue with a
PCA-based technique and introduced the unsupervised isola-
tion forest (iForest) algorithm to detect covert data-integrity
assaults in SGs. However, PCA is only suitable for linear
dimensionality reduction, and complex data structures cannot
be well projected in a linear subspace [14]. Furthermore,
FS methods are based on removing insignificant features and
selecting only the most important ones based on the accuracy
of the classifier or the value of a problem-dependent function.
But in SGs, a feature of the SE-MF dataset represents infor-
mation about the buses in the power system. Hence, using
historical data, the feature selection procedure may remove

non-attacked features from the SE-MF dataset while consid-
ering them insignificant. Nonetheless, during the deployment
of the model, a malicious user can attack a different RTU that
was not affected in the historical data, making it difficult to
detect the cyber-attack, since the related feature could have
been removed for the FS algorithm.

Unlike previous studies, in this paper, we tackle the dimen-
sionality issue with a Kernel PCA (KPCA)-based technique,
which is a generalization of PCA for nonlinear dimensional-
ity reduction. KPCA is a DR method that does not remove
any features, and instead, projects the features into a new
lower-dimensional space, where a classifier algorithm can
easily recognize and separate normal and attacked samples.
Thus, the computational cost at the PCC is reduced, since we
decrease the number of features, where a fast and efficient
classification algorithm is needed to keep the computational
cost of the entire process as low as possible. Based on this
objective, we propose an extremely randomized trees (Extra-
Trees)-based approach to detect SCA attacks in SGs. The
Extra-Trees algorithm is an ensemble method characterized
by being computationally efficient and providing high accu-
racy [15], where the strength of the randomization helps to
achieve a greater reduction in the variance, compared with
other ensemble methods like random forest or AdaBoost.
Furthermore, to study a more realistic dataset, this paper is
the first one to investigate the impact of noisy labels in an
SE-MF dataset in SGs. Thus, the main contributions of this
paper are summarized as follows.
• We study the SCA attack on SE-MF datasets, and how
a BDD is not able to detect such attacks in conventional
power systems.

• We propose KPCA as a nonlinear dimensionality reduc-
tion method to handle the increasing computational
complexity in big power systems. KPCA represents the
dataset in a lower-dimensional space while preserving
most of the original information. Furthermore, the Extra-
Trees algorithm is used to detect the presence of SCA
attacks in the SE-MF dataset. Thus, the projected fea-
tures of KPCA are used as input to the Extra-Trees
algorithm to classify normal and attacked samples.

• We investigate a realistic scenario, where a percent-
age of the labels in the SE-MF dataset are corrupted.
In particular, we study the classification problem with
noisy labels, where a percentage of the true labels in the
training dataset are independently flipped.

• The performance of the proposed scheme is compared
with several approaches in the literature, such as SVM
and iForest, by using standard IEEE 57-bus and 118-bus
test systems. The numerical results show that the pro-
posed scheme achieves the highest accuracy and the low-
est computational time among the compared ML-based
approaches. In addition, we compare the efficiency of
the proposed KPCA technique for DR with state-of-art
methods such as PCA, fast independent component anal-
ysis (ICA), neighborhood components analysis (NCA),
binary particle swarm optimization (PSO), and the GA.

19922 VOLUME 8, 2020



M. R. Camana et al.: Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks

FIGURE 1. Stealthy cyber attack in a smart grid communications
network.

The paper is structured as follows. State estimation, tra-
ditional bad-data detection, and the nature of an SCA attack
in SG networks are described in Section II. In Section III,
we present the proposed scheme for SCA detection based
on KPCA and Extra-Trees. The simulation results are
provided in Section IV. Finally, conclusions are made
in Section V.

II. SYSTEM MODEL
A. ELECTRIC POWER NETWORK
Several electric generators are connected to a large number
of consumers across a wide topographical expanse in the
power transmission system. Several paths and lines, gen-
erally deployed in a redundant manner, aim to guarantee
the supply of power to any consumer from the generating
source, taking into account the expenses and frugality of the
transmission path. Figure 1 illustrates the communications
network used to interconnect the devices and the power
system to the power control center, where the objective is
to provide efficient monitoring and control of the power
system.

B. STATE ESTIMATION
Sensors and actuators are installed in different entities of
the electric power grid. The measurements are gathered via
SCADA systems in the PCC, where the power system states
(composed of bus voltage angles and magnitudes) are esti-
mated by utilizing the sensor-collected data. The estimation
of the state variables, γ = [γ1, γ2, . . . , γn]T , are carried out
considering the meter measurements, z = [z1, z2, . . . , zm]T ,
of the power system, where n and m are positive integers,
and γi, zj ∈ R with i = 1, 2, . . . , n and j = 1, 2, . . . ,m.
The process to obtain the state variables at the PCC is called
the state estimation. The state estimation process is based on
the meter measurement and uses a power flow model, which
is composed of a set of equations to represent the energy
flow on each transmission line of the SG. The alternating
current (AC) power flow model is composed of nonlinear
equations considering real and reactive power. The state

variables are related to the measurements in the AC power
flow model as follows:

z = h(γ )+ e, (1)

where h(γ ) represents the non-linear relation between state
γ and measurement z, and e = [e1, e2, . . . , em]T is the
Gaussian measurement noise vector where elements have
standard deviation σ . However, the AC power flow model
can be computationally expensive and there is no guarantee to
converge to a solution [1]. Therefore, it is a common approach
in the literature [10], [11], [13], [16] to approximate the AC
power flowmodel using a linearized power flowmodel called
the direct current (DC) power flow model. Then, the non-
linear model in (1) can be reformulated as an (DC) power
flow model as follows:

z = Hγ + e, (2)

where H refers to the Jacobian matrix, which can be approx-
imated as follows [17], [18]:

H =
∂h(γ )
∂γ

∣∣∣∣
γ=0

. (3)

H consists of impedance and topological measurements.
To calculate the estimation of γ , which is represented by γ̂
and defines the best fit for the meter measurements, the statis-
tical criteria weighted least squares (WLS) [19] is generally
employed. Hence, by using the WLS criterion and assuming
that the sensor error follows a normal distribution with zero
mean, the estimated state is given as follows:

γ̂ = (HT�H)−1HT�z = Gz, (4)

where the matrix G = (HT�H)−1HT� with a diagonal
matrix �, whose elements are given by

� =


σ−21

.

.

σ−2m

 (5)

C. CONVENTIONAL BAD-DATA DETECTION
The measurements collected by the sensors can be compro-
mised and damaged due to several potential reasons, such as
medium noise in wireless communications, erroneousmeters,
and malicious user behavior. Traditional power systems use a
residual-based detector for a BDD to detect any corruption in
the measurements of the sensors [11]. Let r be the residual,
calculated as the difference between observed sensor mea-
surements z and estimated measurements ẑ at the PCC, and it
is defined as follows:

r = z− ẑ = z−Hγ̂ . (6)

The BDD in the PCC detects the presence of corrupted
measurements by evaluating the L2 − norm

∥∥z−Hγ̂
∥∥ and
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comparing it with a predefined threshold, τ [1]. Then, the cur-
rent sensor measurement is considered not attacked if the
following condition is satisfied:

max
i
|ri| < τ, (7)

where ri is the i− th component of the residual vector r, and
τ is a predefined threshold. Otherwise, the measurement is
considered to be corrupted, and an alarm is executed.

D. STEALTHY CYBER-ATTACK: BASIC PRINCIPLE
Equipped with knowledge of the topology of the power
system, a hacker might insert corrupted data into meter
measurements z by designing an assault vector, a =

[a1, a2, . . . , am]T , to dodge the BDD [20]. Let za = z + a,
be the observedmeasurement that may contain corrupted data
due to an SCA. The attack-space is large for the attacker, who
selects any of the non-zero arbitrary elements in attack vector
a. Thus, an attack on the i− thmeasurement, zi, is created by
altering it with a fake measurement, zi+ai, which means that
element ai of the attack vector has a non-zero value.

The BDD calculates the L2 − norm of residual vector r
to identify the existence of corrupted or erroneous measure-
ments. Nevertheless, if the assailant crafts attack vector a by
using a = Hα, where the vector α has length n with non-
zero elements, the observed measurement vector, za (holding
the attack vector) can evade conventional detection. Note that
the vector α has the same dimension as the state variables
γ = [γ1, γ2, . . . , γn]T .
To explain the reason, let γ̂ a represent the estimate of state

variables when we have attacked meter measurements za, i.e.,

γ̂ a = Gz+Ga = γ̂ +GHα = γ̂ + α. (8)

Next, we calculate the L2− norm of the attacked measure-
ments residual, ra, as follows:

‖ra‖2 =
∥∥za −Hγ̂ a

∥∥
2

=
∥∥(z+ a)−H(γ̂ + α)

∥∥
=
∥∥(z−Hγ̂

)
+ (a−Hα)

∥∥
2 =

∥∥((z−Hγ̂
))∥∥

2

= ‖r‖2. (9)

Then, we can see that the attacked measurement residual
is the same as that without altered data. Therefore, if the
original measurement, z, can pass the BDD, then za will be
able to bypass the BDD. One requirement for SCA is to know
the topology of the power system, which is available at the
PCC of the power companies [1]. Although the access to the
PCC can be difficult, we consider the case that the hacker can
obtain the information of the topology of the power system,
which is a common assumption in several other studies of the
literature [11], [12], [13], [16].

E. STEALTHY CYBER-ATTACK MODEL
Generally, SCA attacks are separated into two categories:
1) the load change attack, and 2) the load redistribution attack
[20]-[22]. The objective of the hacker is to obtain a specific

change in the state variables of the power system. Then,
we can create a vector by injecting an attack in a set of state
variables. Next, using a = Hα, the hacker is able to corrupt
the observed measurements za = z + a, which will not be
detected by the BDD. In this paper, we focus on real-time
detection of the SCA in sensor-collected measurements. Con-
sequently, we create a generalized attack, assuming that the
assailant has sufficient information about the power network
topology.

In the SCA attack, to obtain a specific change in the
state variables of the power system, the attacker adds a fake
value to the sensor-collectedmeasurements, changing the real
power insertion and real power flows. For example, with the
target being to modify state variable γ2 by injecting an attack
of 6%, we can create an attack vector, α, using the following
equation:

α = [0, 0.06γ2, 0, . . . , 0]. (10)

Then, we obtain the attack vector a = Hα, whose non-
zero elements represent the i-th meter measurements to be
attacked. The aforementioned general procedure has been
widely used in the literature [11], [12], [13], [20], [16] for
false data injection attacks or SCA in SGs.
Employing state vector γ̂ a = γ̂ + α and power flow

equations, the measurements corrupted due to the SCA are
given as follows:

za = Hγ a + e. (11)

III. PROPOSED SCHEME FOR SCA ASSAULT
DETECTION
In this section, a fast and accurate ML-based scheme is
proposed to detect SCA attacks. The features used by the
proposed approach are the meter measurements of the SG,
and each sample of the SE-MF dataset corresponds to the
meter measurements at a specific time. For example, zt0 =[
z1t0 , z2t0 , . . . , zmt0

]T
is the first sample of the SE-MF dataset

and corresponds to the meter measurements collected at the
PCC at time t0 and the last sample of the dataset ztN =[
z1tN , z2tN , . . . , zmtN

]T
corresponds to the meter measure-

ments collected at the PCC at time tN . The main objec-
tive is to detect the presence or absence of an SCA in a
sample at the PCC. Then, we can use an ML-based algo-
rithm with two labels corresponding to attack and non-attack,
respectively.

In addition, the evaluation method is based on k-fold
cross-validation which splits the whole SE-MF dataset into
K roughly equal parts and performs K independent evalua-
tion instances of the proposed model. In the first evaluation
instance of the k-fold cross-validation, the first part is used
as testing data and the rest is used as training data which
guarantees unseen data to evaluate the model. In the second
instance, the second part serves as testing data while the
rest is being used for training, where the process continues
until reach K evaluation instances. A flowchart for the model
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FIGURE 2. Evaluation methodology based on k-fold cross-validation.

evaluation of the proposed scheme for the classification of
assaulted and normal measures is illustrated in Figure 2,
where we show one instance of k-fold cross-validation.

The first step in the proposed scheme is employ-
ing KPCA to tackle the dimensionality issue, and then,
we utilize the Extra-Trees algorithm as an attack detec-
tion approach. In order to study a more realistic sce-
nario, we consider an attack detection problem where the
labels of the samples are randomly corrupted. In partic-
ular, a percentage of the true labels of the training data
are independently flipped, which is called label noise [23].
However, there are testing data with noise-free labels,
which are used to evaluate the performance of the proposed
approach.

A. KERNEL PRINCIPAL COMPONENTS
Acommon approach for dimensionality reduction is principal
component analysis [13], [11], [24]. PCA is a linear technique
to project the data to a low-dimensional space with little loss
of information, where the new features can achieve the largest
variance [14]. However, PCA does not consider nonlinearities
inherent in data with complicated structures. To copewith this
problem, Kernel PCA is presented as a nonlinear generaliza-
tion of PCA. In general, KPCA is composed of two steps: (1)
mapping the training data from the original space into a high-
dimensional feature space, and (2) performing traditional
PCA in the feature space [25], [26]. To address the computa-
tional cost of high-dimensional mapping, KPCA uses kernel
methods.

We consider a training dataset, X = {x1, x2, . . . , xN },
xi ∈ RD with i = 1, ..,N , which can be projected to an M -
dimensional feature space, withM >> D, through nonlinear
transformation φ (x). Therefore, each point of the training
dataset is projected to a point, φ (xi), in the extended feature
space.

First, we assume that the features in the M -dimensional
space have a zero mean, as follows:

1
N

N∑
i=1

φ (xi) = 0. (12)

Then, we compute the covariance matrix, with dimension
M ×M of the projected features, as

C =
1
N

N∑
i=1

φ (xi) φ(xi)T . (13)

The eigenvalues, λk , and eigenvectors, vk , of the covari-
ance matrix are computed by solving the eigenvalue problem:

λkvk = Cvk , k = 1, . . . ,M . (14)

Based on (13) and (14), we obtain

λkvk =
1
N

N∑
i=1

φ (xi) φ(xi)T vk . (15)

The eigenvector can be rewritten as a linear combination
of the projected training data points, as follows:

vk =
N∑
i=1

αkiφ (xi). (16)

Substituting (16) into (15), we have

λk

N∑
i=1

αkiφ (xi) =
1
N

N∑
i=1

φ (xi) φ(xi)T
N∑
j=1

αkjφ
(
xj
)
. (17)

Then, the kernel trick is applied by defining the kernel
function, κ (x, y), and the kernel matrix, K, as follows:

Kij = κ
(
xi, xj

)
= φ(xi)Tφ

(
xj
)
. (18)

Now by substituting (18) into (17), and multiplying both
sides by φ(xk)T , we have

λk

N∑
i=1

αkiκ (xk , xi)=
1
N

N∑
i=1

κ (xk , xi)
N∑
j=1

αkjκ
(
xi, xj

)
. (19)

In matrix notation, (19) can be represented as

λkNKαk = K2αk , (20)

where αk is defined as αk = [ak1, ak2, . . . , akN ]T and can be
found by solving the following:

λkNαk = Kαk . (21)

The centered kernel matrix K̃ substitutes for kernel matrix
K when the projected training dataset does not have a zero
mean. The centered kernel matrix is given by

K̃ = K− UK−KU+ UKU, (22)

whereU is the N ×N matrix with each element equal to 1
/
N

[14], [26].
For any point x, the resulting kernel principal components

can be represented as the following set of features:

yk (x) =
N∑
i=1

αkiκ (x, xi), k = 1, . . . ,M (23)
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Finally, we can limit the number of principal components
to P ≤ M for dimensionality reduction. Hence, the new
features for point x are xnew = [y1, . . . , yP]T .

In this paper, we use the Gaussian kernel, defined as
follows:

κ (x, y) = exp

(
−
‖x− y‖2

2σ 2

)
, (24)

where σ is a free parameter.
Note that the features in the SE-MF dataset are the meter

measurements z = [z1, z2, . . . , zm]T of the power system,
which are reduced to P features by using KPCA. Then,
the input dataset of the Extra-Trees algorithm is composed
of the transformed P features of KPCA. The steps in KPCA
for dimensionality reduction are summarized in Table 1.

TABLE 1. Kernel PCA for dimensionality reduction.

B. EXTREMELY RANDOMIZED TREES
Tree-based ensemble methods are popular approaches for
supervised classification and regression problems [27], [28],
[29]. The robustness of ensemble methods relies on the
capacity to combine the prediction of several models, which
results in better performance compared to what could be
obtained from a single model. The best performance of tree-
based ensemble methods is achieved when the base learners
are independent of one another, which can be achieved by
using very different training algorithms for every decision
tree, or by randomization [30]. Randomization when growing
trees entails greater tree diversity, and helps to reduce the
correlation, i.e. making the decision trees more indepen-
dent. However, an ensemble method can result in a substan-
tial increase in computational cost, since it needs to train
several individual classifiers, and its computational require-
ments can grow exponentially when it deals with a large
dataset. Therefore, we focus on the Extra-Trees algorithm
[15], which works similar to, but much faster than, random
forest [31].

Extra-Trees consist of a large number of individual deci-
sion trees, where the whole training dataset is used to grow
each decision tree. A decision tree is composed of a root
node, child nodes, and leaf nodes, as illustrated in Figure 3.
Starting at the root node, the Extra-Trees algorithm essen-
tially chooses a split rule based on a random subset of

FIGURE 3. Illustration of a decision tree.

TABLE 2. Extra-trees splitting algorithm.

features and a partially random cut point. This process is
repeated in each child node until reaching a leaf node.
The Extra-Trees algorithm consists of three fundamental
parameters: the number of decision trees in the ensem-
ble (M ), the number of features to select randomly (K ),
and the minimum number of instances needed to split a
node (nmin ).
Formally, given a training dataset, X = {x1, x2, . . . , xN },

where the sample xi = {f1, f2, . . . , fD} is a D-dimensional
vector with fj as the feature and j ∈ {1, 2, . . . ,D}, Extra-Trees
generatesM independent decision trees. In each decision tree,
Sp denotes the subset of training dataset X at child node p.
Then, at each node p, the Extra-Trees algorithm selects the
best split based on Sp and a random subgroup of features by
following the algorithm described in Table 2.

In detail, subset Sp at child node p is divided into two sets:
Srightp containing those samples satisfying the condition of the
split rule, and Sleftp containing the rest of the training samples.
In order to select the best split, we use Gini impurity [30] as
a score function, i.e. the candidate split with the lowest value
for Gini impurity is chosen as the best split rule, which is kept
constant while the tree is growing. The process is repeated
in each child node until it achieves a minimum number of
samples required to split (nmin), or when all the samples in
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subset Sp have an identical label. Finally, each leaf node is
represented by the label of the samples in subset Sp.
In the testing phase, a test sample passes to each of the

decision trees and across each child node, where the best
splits are used to forward the test sample to the left or
right child node until reaching a leaf node. The class for
the test sample for any decision tree is defined by the leaf
node where the test sample arrives, and the total prediction
of the Extra-Trees algorithm is defined as the majority of
votes by the M decision trees. Note that in the proposed
scheme, the inputs for Extra-Trees are the transformed fea-
tures of KPCA, i.e. the number of features defined by
D in the Extra-Trees algorithm matches the value of the
number of principal components, P, selected in the KPCA
technique.

The Extra-Trees algorithm is able to reduce the variance
and bias more strongly than other randomization schemes,
like those used in random forest. The variance is created
by the excessive sensitivity of the model to small fluctua-
tions in the training dataset (high variance can cause over-
fitting), and it is reduced due to the explicit randomization
in the selection of the subset of features and the choice of
the cut-point. On the other hand, the bias, which can be
measured as the ability to correctly generalize unseen data
(high bias can cause underfitting), is minimized because the
full original training dataset is used to learn each decision
tree [15].

When a SG is composed of separated subregions located in
different geographical areas, large-scale SG, it is necessary
to take into account important factors such as bandwidth,
latency and computational capabilities. In [32], the authors
study a wide-area SG represented by a set of local control
centers connected to a global control center, where each local
control center is responsible for a set of meters of the SG.
Therefore, a hacker can block or manipulate the smart meters
and control centers, and also can attack the communication
channels. Furthermore, in a wide-area SG, collecting and
processing a huge amount of data in a centralized setup is
susceptible to node failure and has limitations such as energy
and bandwidth [32]. Then, we present two schemes to apply
the proposed approach in a large-scale SG: centralized setup
and distributed setup.

In a centralized setup, all the meter measurements are
processed at the PCC and the procedure for the attack detec-
tion follows the description of Section III. In this case,
we consider that the communication network infrastructure
of the SG is robust and has enough resources to transmit
the meter measurements to the PCC. We refer to the com-
munication network infrastructure presented in [33]. In this
architecture, the generation, transmission, and distribution
systems are interconnected through substations and transmis-
sion lines, while the communication toward the operation
center is composed of wide area network (WAN), local area
network (LAN) and field area network (FAN). The collected
measurements are transmitted to the control center through
remote terminal units (RTU) in the SCADA system, while

in the distribution system, the advanced metering infras-
tructure (AMI) provides real-time (RT) communication to
millions of smart meters [33]. The WAN can be supported
by different communication technologies such as WiMax,
Cellular, fiber optic, etc [34], [35]. The requirements of a
WAN in SG according to [35] are a data rate higher than
10Mbps and coverage distance up to 100km. In addition,
optical communication is commonly used for the transmis-
sion between the transmission/distribution substations and
the PCC since it provides high data rates and low latency. For
instance, using wavelength-division multiplexing (WDM)
the maximum theoretical data rate is 40Gbps with cover-
age up to 100km [35]. Therefore, the PCC is capable to
receive all the information from the meter measurements
to perform the state estimation and the attack detection
procedure.

In addition, the proposed scheme based in Extra-Trees with
KPCA does not require high computational capabilities to
detect an SCA. In particular, the simulation time to verify
if a sample composed of meter measurements was attacked
or not, in an SG using an IEEE 118-bus system, is around
3 ms. Furthermore, in a real power grid, the measurements
are taken in an interval of a fewminutes, e.g. 15-minutes [36],
which can provide enough time to overcome possible delays
in the communication network. In addition, even though
the centralized approach becomes difficult to implement for
a wide-area SG where each sub-area communicates to the
global center with a wireless communication infrastructure
[34], forthcoming 5G technology for the development of
smart grids can provide critical and timely services for the
centralized approach.

In a distributed setup, the local centers have the task of
collecting and processing the meter measurements in their
respective subregions, while maintaining a communication
link with their neighboring local control centers and the
global center. In [32], the authors proposed a system model
for a distributed setup in SGs, where we can obtain a set of
state variables that depend on the measurements collected
at each local center. For instance, we refer to the exam-
ple in [32]. Given a system composed of two subregions
with a state vector γ = [γ1, γ2, γ3, γ4]T and a particu-
lar measurement matrix H, the local state vector for the
first local center is γ 1

= [γ1, γ2, γ3]T and for the sec-
ond local center is γ 2

= [γ2, γ3, γ4]T at a specific time,
where the meter measurements are z1 = [z1, z2]T and z2 =
[z3, z4, z5]T for the first and second local center, respectively.
Note that local centers can share one or more state variables,
where meter measurements from neighbor local centers can
provide information about the same state variable. Please
refer to [32], [34] for a detailed description of a distributed
system in SGs.

To describe an extension of the proposed approach to
distributed systems, we assume that exist L subregions, where
the meter sends their measurements to only one local center
l with l = 1, . . .L. The measurement vector collected at
the l-th local center is denoted as zl and the state vector

VOLUME 8, 2020 19927



M. R. Camana et al.: Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks

is defined as γ l . Therefore, we can deploy an instance of
the proposed KPCA-ExtraTreess algorithm in each l-th local
center to detect an SCA over one possible state estimate γ l .
The features could be the meter measurements collected at
the local center zl and those reported by their neighboring
local centers (in a distributed SG system, pre-processedmeter
measurements are shared between neighboring local centers
to perform the state estimation, where the transmission of
local statistics and control signals between local centers and
the global center is assumed to be instantaneous according
to the reference [32]). Then, the results obtained from the
algorithm in each local center are transmitted to the global
center to make a decision.

IV. SIMULATION RESULTS
In this section, we numerically evaluate the performance of
our proposed approach to detecting SCA attacks in state
estimation. We used standard IEEE 118-bus and 57-bus test
systems, where the simulation results were averaged over
10 experiments in each system, performing five-fold cross-
validation in each experiment. The simulation of the power
network (in particular, the Jacobian matrix) was developed
with the Matpower 6.0 toolbox [37]. The DC power flow
analysis was used to approximate the state vector and mea-
surement dataset from the AC power flow model. In the
proposedmodel, state variable vector γ in the T -bus system is
composed of (T − 1) bus voltage phase angles, and the meter
measurement vector is composed of branch-active power
flows and a set of active power injections into the buses.
In order to carry out a more realistic power grid scenario,
we used stochastic loads following a uniform load distribu-
tion [11] in the range of [0.9× L0 − 1.1× L0], where L0 is
the base load. The attack was generated based on the attack
model in [20], where the malicious user has total information
on the topology of the power grid, and is able to access several
sensors. We considered the degree of damage (defined as the
difference between the real value and the attacked value to the
state variables) as being randomly selected from between 4%
to 6%. Furthermore, we studied an attack detection problem
where the labels of the samples were randomly corrupted
(training samples), and there existed unseen data with noise-
free labels (testing samples), as illustrated in Figure 2.

The proposed scheme was compared with several
ML-based schemes discussed in the literature, such as
AdaBoost [38], random forest [31], andmultilayer perceptron
(MLP), where we used one hidden layer, and set the number
of hidden neurons at 2/3 of the size of the features, following
the recommendation in [39]. Furthermore, we evaluated some
approaches with dimensionality reduction methods proposed
in the literature for SCA attack detection, such as PCA with
an SVM using a Gaussian kernel [11], a GA with an SVM
using a Gaussian kernel [12], and PCA with iForest [13].

To evaluate the performance of the proposed scheme,
we selected three metrics: accuracy, receiver operating char-
acteristic (ROC) curves, and the value of the area under the
ROC curve (ROC AUC).

• The accuracy is the ratio of correct detections, which is
evaluated as follows:

Accuracy =
TP+ TN

Total samples
, (25)

where TP is the number of true positives, i.e. the samples
that are detected as attacked and that are, in fact, attacks,
and TN is the number of true negatives, i.e. the samples
that are classified as normal and that are, in fact, normal.

• The ROC curve illustrates the true positive rate (TPR)
versus the false positive rate (FPR). TPR represents
the ratio of attacked samples that are correctly detected
by the algorithm, and FPR represents the ratio of
normal instances that are incorrectly classified as an
attack. The expressions for TPR and FPR are as
follows:

TPR =
TP

TP+ FN
, (26)

and

FPR =
FP

TN + FP
, (27)

where FN is the number of false negatives, i.e. attack
samples incorrectly classified as normal, and FP is the
number of false positives, i.e. normal samples incor-
rectly detected as an attack.

• The ROC AUC is the area enclosed by the ROC curve,
and provides a single scalar value representing the ROC
performance. The ROC AUC measures how good the
algorithm is at distinguishing between an attack and a
non-attack. In this way, a perfect classifier has ROC
AUC = 1, and a totally random classifier has ROC
AUC = 0.5.

Table 3 shows a comparison of the KPCA technique for
several numbers of principal components using the standard
IEEE 118-bus and 57-bus systems with 1000 training sam-
ples. We can see that the accuracy and the AUC value are
similar among the six principal components, where we can
see that the accuracy reached by using two components is
the highest, which also allows decreasing the number of
features, thus, reducing the computational complexity. Hence
in the experiments, the proposed scheme uses two principal
components for the kernel PCA technique, with σ = 0.1 for
the IEEE 118-bus system, and σ = 0.2 for the IEEE 57-bus
system. Therefore, the features are reduced from 489 in the
118-bus system, and from 216 in the 57-bus IEEE system,
to two features through the KPCA algorithm. Then, the new
training dataset is composed of two features per sample, and
the Extra-Trees algorithm uses the number of decision trees
in the ensemble as M = 50, and the number of features to
select randomly as K = 2. We also compared the proposed
scheme with the Extra-Trees algorithm without KPCA, using
M = 100 and the default values from [15], to demonstrate
the benefits of including dimensionality reduction in the pro-
posed approach.
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TABLE 3. Performance comparison of the number of principal
components from the KPCA technique in the IEEE 118-bus
and 57-bus systems.

FIGURE 4. Accuracy vs. percentage of label noise of the proposed KPCA
Extra-Trees scheme compared with state-of-art ML approaches.

First, we studied the impact of the percentage of label
noise in the standard IEEE 118-bus system, where we used
a dataset with 1000 training samples. Figure 4 illustrates
the accuracy in the prediction versus the percentage of label
noise introduced into the training data. We observe that as we
increase the percentage of label noise, the accuracy decreases
in all the schemes except in PCA–iForest, since the algo-
rithms are trained with noisy labels that affect the ability
of the algorithm to generalize for unseen data. Based on
[15], the values of nmin in the Extra-Trees algorithm depend
on the level of noisy labels in the training dataset, where
a slight increase in the value of nmin is able to deal with
an increment in the percentage of label noise. In this way,
we select and reduce the value of nmin from nmin = 10 for
0% to 20% of the label noise until nmin = 60 for 40% to
45% of the label noise. Furthermore, the KPCA technique
does not use the labels to perform dimension reduction, which
is a significant factor for dealing with noisy labels, as we
notice when we compare the proposed KPCA Extra-Trees
scheme versus Extra-Trees without DR. With iForest, we see
that the accuracy increases as we introduce more label noise
up to 20%; after that, the accuracy starts to decrease. This
behavior is because iForest is an unsupervised algorithm, i.e.
it does not take into account the labels, and in the literature
is trained with just normal samples; however, in this exper-
iment, we observe that a small number of attack samples in
the training phase can improve the overall accuracy, which
was validated in the experiments in [40]. Furthermore, we can

FIGURE 5. ROC AUC vs. percentage of label noise of the proposed KPCA
extra-trees scheme compared with state-of-art ML approaches.

see that the proposed KPCA Extra-Trees scheme achieves the
better accuracy among the compared approaches for all the
percentages of label noise following the GA–SVM scheme
from [12].

Figure 5 illustrates the ROCAUC value versus the percent-
age of label noise introduced in the training data. We observe
behavior similar to Figure 4, where the best value for ROC
AUC is reached by the proposed KPCA Extra-Trees scheme,
with GA–SVM as the second-best approach. In order to study
a hard realistic scenario, in the following simulations, we use
10% as the percentage of label noise.

Figure 6 presents the accuracy in prediction versus the
number of training samples in the IEEE 118-bus and 57-bus
systems. We observe that the proposed KPCA Extra-Trees
algorithm detects the SCA attack reliably from 500 train-
ing samples, and a further increase in the training samples
does not provide a significant improvement in accuracy.
As a result, we see that the proposed KPCA Extra-Trees
scheme outperforms other approaches, and the best accuracy
is reached with a lower number of training samples. Besides,
GA–SVM [12] and PCA–iForest [13] present good accuracy
in SCA attack detection, where PCA–iForest exhibits one of
the best accuracies of all the ML schemes when we deal with
a low number of training points (i.e., less than 250 training
samples).

Figure 7 shows the ROC AUC value versus the number
of training samples in the IEEE 118-bus and 57-bus sys-
tems. Similar to the results obtained in Figure 6, the high-
est AUC value in the proposed KPCA Extra-Trees scheme
is reached with 500 training samples, KPCA Extra-Trees
being the scheme with the highest AUC value among all
the considered ML approaches. Note that the PCA–iForest
[13] scheme can be considered the second-best approach
from the point of view of the ROC AUC metric, out-
performing other approaches, such as GA–SVM [12] and
PCA–SVM [11].

Figure 8 presents the computational time used for the
considered approaches during the training phase versus the
number of training samples. We performed the simulations
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FIGURE 6. Accuracy vs. number of training samples of the proposed KPCA
extra-trees scheme compared with state-of-art ML approaches.

on an Intel Core i7-6700K CPUwith 16 GB of main memory.
We observed that the proposed KPCA Extra-Trees scheme
can achieve the lowest computational time among all the
algorithms with a high amount of training samples. These
results are because of the dimensionality reduction per-
formed by KPCA, which allows reducing the features from
489 in the IEEE 118-bus and from 216 in the IEEE
57-bus system to two features. Furthermore, the Extra-
Trees splitting algorithm described in Table 2 allows us
to significantly reduce the training time of the Extra-Trees
algorithm.

Figure 9 shows the ROC curves in the standard IEEE
118-bus and 57-bus systems, where we used 1000 training
samples. We observe that the highest area under the curve is
achieved by the proposed KPCA Extra-Trees scheme, with
a detection accuracy nearing 1 for both test buses. Note that
the ROC AUC parameter, studied in Figure 7, validates the
results illustrated in the ROC curves.

Finally, we compared the proposed KPCA method for
dimensionality reduction with other methods, such as PCA
[13], fast independent component analysis (ICA) [41], locally
linear embedding (LLE) [42], Neighborhood Components
Analysis (NCA) [43], binary PSO (BPSO) [44] and the GA
[12]. The simulations were carried out using Extra-Trees as

FIGURE 7. ROC AUC vs. number of training samples of the proposed
KPCA extra-trees scheme compared with state-of-art ML approaches.

FIGURE 8. Computational training time vs. number of training samples of
the proposed KPCA extra-trees scheme compared with state-of-art ML
approaches.

the algorithm for SCA attack detection with 1000 training
samples in the standard IEEE 118-bus system. In the dimen-
sionality reduction methods of KPCA, PCA, and Fast ICA,
we used two components, i.e. the new training dataset was
composed of two features per sample. For the LLE and NCA
algorithms, we achieved the best accuracy by using 20 fea-
tures. Furthermore, the feature selection algorithms used for
the comparison, i.e. BPSO and GA, follow the approach
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FIGURE 9. ROC curve of the proposed KPCA extra-trees scheme
compared with state-of-art ML approaches.

TABLE 4. Performance comparison between KPCA and other feature
selection algorithms in the IEEE 118-bus and 57-bus systems.

in [12] by using the filter-based FSmechanism to be indepen-
dent of the classifier algorithm. In the experiments, the BPSO
algorithm used five particles and 25 iterations, selecting on
average 253 features among the original 489 features, and the
GA algorithm used a population of 10 and 20 generations,
selecting on average 251 features. Table 4 shows the accu-
racy and ROC AUC value of the proposed KPCA, compared
with other dimension-reduction and feature-selection algo-
rithms, where Time of alg. refers to the computational time
to train the dimension-reduction/feature-selection algorithm,
and Time Extra-Trees is the computational time to train the
Extra-Trees algorithm using the output features obtained by
the considered algorithms. We observe that the proposed
KPCA algorithm for dimensionality reduction achieves the

best accuracy and ROC AUC value, with a low value in
computational time. Furthermore, it is observed that by using
KPCA we can reduce the training time for the Extra-Trees
algorithm by about 15 times.

V. CONCLUSION
In this paper, we propose a DR-based ML scheme for the
detection of SCA attacks in SG networks. In order to solve
the computational complexity created by a high-dimensional
space in large-sized power systems, we apply the KPCA
technique to transform the data into a lower-dimensional
space. The data transformed by KPCA become the input
for the Extra-Trees algorithm, which is a fast and efficient
algorithm to detect SCA attacks. We selected the standard
IEEE 118-bus and 57-bus systems for the performance eval-
uation, taking into account the metrics of accuracy, ROC
curve, and ROC AUC value. The dataset is composed of
historical active power flow measurements and active power
injections into the buses, which were collected at the PCC
of the power network. The proposed scheme was com-
pared with several ML-based approaches described in the
literature. The numerical results validate that the proposed
KPCA Extra-Trees–based detection approach outperforms
the state-of-art ML-based schemes in terms of accuracy and
ROC AUC value. A more realistic scenario was evaluated
by considering training data corrupted with noisy labels,
where the proposed scheme provides robust performance
against noisy labels, mainly because KPCA does not take the
labels into account when performing dimension reduction,
and the Extra-Trees algorithm can deal with a noisy label by
tuning the parameter of the minimum number of instances
required in a child node to perform the split. In addition,
we compared the computational complexity of all considered
ML-based schemes, and found that the proposed scheme has
the lowest computational time, which means that the pro-
posed scheme can provide fast and accurate detection of SCA
attacks in SGs.

REFERENCES
[1] Y. Liu, P. Ning, andM. K. Reiter, ‘‘False data injection attacks against state

estimation in electric power grids,’’ TISSECACM Trans. Inf. Syst. Secur.,
vol. 14, no. 1, pp. 1–33, May 2011.

[2] K. Khanna, B. K. Panigrahi, and A. Joshi, ‘‘Data integrity
attack in smart grid: Optimised attack to gain momentary
economic profit,’’ IET Gener., Transmiss. Distrib., vol. 10, no. 16,
pp. 4032–4039, Dec. 2016.

[3] X. Liu and Z. Li, ‘‘Local load redistribution attacks in power systems with
incomplete network information,’’ IEEE Trans. Smart Grid, vol. 5, no. 4,
pp. 1665–1676, Jul. 2014.

[4] B. Li, R. Lu, W. Wang, and K.-K. R. Choo, ‘‘Distributed host-based
collaborative detection for false data injection attacks in smart grid cyber-
physical system,’’ J. Parallel Distrib. Comput., vol. 103, pp. 32–41,
May 2017.

[5] Y. Huang, J. Tang, Y. Cheng, H. Li, K. A. Campbell, and Z. Han, ‘‘Realtime
detection of false data injection in smart grid networks: An adaptive
CUSUM method and analysis,’’ IEEE Syst. J., vol. 10, no. 2, pp. 532–543,
Jun. 2016.

[6] Z. Fadlullah, M. Fouda, N. Kato, X. Shen, and Y. Nozaki,
‘‘An early warning system against malicious activities for smart
grid communications,’’ IEEE Netw., vol. 25, no. 5, pp. 50–55,
Sep. 2011.

VOLUME 8, 2020 19931



M. R. Camana et al.: Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks

[7] Y. Zhang, L. Wang, W. Sun, R. C. G. Ii, and M. Alam, ‘‘Distributed
intrusion detection system in a multi-layer network architecture of smart
grids,’’ IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 796–808, Dec. 2011.

[8] R. C. B. Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari, and
S. Pan, ‘‘Machine learning for power system disturbance and cyber-attack
discrimination,’’ in Proc. 7th Int. Symp. Resilient Control Syst. (ISRCS),
Aug. 2014, pp. 1–8.

[9] J. Hao, R. J. Piechocki, D. Kaleshi, W. H. Chin, and Z. Fan, ‘‘Sparse
malicious false data injection attacks and defense mechanisms in smart
grids,’’ IEEE Trans. Ind. Informat., vol. 11, no. 5, pp. 1–12, Oct. 2015.

[10] M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V. Poor,
‘‘Machine learning methods for attack detection in the smart grid,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp. 1773–1786, Aug. 2016.

[11] M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, and Z. Han, ‘‘Detecting
stealthy false data injection using machine learning in smart grid,’’ IEEE
Syst. J., vol. 11, no. 3, pp. 1644–1652, Sep. 2017.

[12] S. Ahmed, Y. Lee, S.-H. Hyun, and I. Koo, ‘‘Feature selection–based
detection of covert cyber deception assaults in smart grid communications
networks using machine learning,’’ IEEE Access, vol. 6, pp. 27518–27529,
May 2018.

[13] S. Ahmed, Y. Lee, H. Seung-Ho, and I. Koo, ‘‘Unsupervised machine
learning-based detection of covert data integrity assault in smart grid
networks utilizing isolation forest,’’ IEEE Trans. Inf. Forensics Security,
vol. 14, no. 10, pp. 2765–2777, Mar. 2019.

[14] Q.Wang, ‘‘Kernel principal component analysis and its applications in face
recognition and active shape models,’’ Aug. 2014. arXiv:1207.3538v3.
[Online]. Available: https://arxiv.org/abs/1207.3538

[15] P. Geurts, D. Ernst, and L. Wehenkel, ‘‘Extremely randomized trees,’’
Mach. Learn., vol. 63, no. 1, pp. 3–42, Mar. 2006.

[16] R. Deng, G. Xiao, and R. Lu, ‘‘Defending against false data injection
attacks on power system state estimation,’’ IEEE Trans. Ind. Informat.,
vol. 13, no. 1, pp. 198–207, Feb. 2017.

[17] A. Abur and A. G. Expósito, Power System State Estimation: Theory and
Implementation. Boca Raton, FL, USA: CRC Press, 2004.

[18] J. Casazza and F. Delea, Understanding Electric Power Systems: An
Overview of the Technology and the Marketplace. Hoboken, NJ, USA:
Wiley, 2011.

[19] A. Abdallah and X. Shen, Security and Privacy in Smart Grid (Springer-
Briefs in Electrical and Computer Engineering). Cham, Switzerland:
Springer, 2018.

[20] S. K. Singh, K. Khanna, R. Bose, B. K. Panigrahi, and A. Joshi, ‘‘Joint-
transformation-based detection of false data injection attacks in smart
grid,’’ IEEE Trans. Ind. Informat., vol. 14, no. 1, pp. 89–97, Jan. 2018.

[21] Y. Yuan, Z. Li, and K. Ren, ‘‘Modeling load redistribution attacks in power
systems,’’ IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 382–390, Jun. 2011.

[22] S. Bi and Y. J. Zhang, ‘‘Using covert topological information for defense
against malicious attacks on DC state estimation,’’ IEEE J. Sel. Areas
Commun., vol. 32, no. 7, pp. 1471–1485, Jul. 2014.

[23] T. Liu and D. Tao, ‘‘Classification with noisy labels by importance
reweighting,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 3,
pp. 447–461, Mar. 2016.

[24] C. Jing and J. Hou, ‘‘SVM and PCA based fault classification
approaches for complicated industrial process,’’Neurocomputing, vol. 167,
pp. 636–642, Nov. 2015.

[25] S. W. Choi, C. Lee, J.-M. Lee, J. H. Park, and I.-B. Lee, ‘‘Fault detection
and identification of nonlinear processes based on kernel PCA,’’ Chemo-
metrics Intell. Lab. Syst., vol. 75, no. 1, pp. 55–67, Jan. 2005.

[26] R. T. Samuel and Y. Cao, ‘‘Nonlinear process fault detection and identifi-
cation using kernel PCA and kernel density estimation,’’ Syst. Sci. Control
Eng., vol. 4, no. 1, pp. 165–174, Jan. 2016.

[27] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
‘‘A review on ensembles for the class imbalance problem: Bagging-,
boosting-, and hybrid-based approaches,’’ IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 42, no. 4, pp. 463–484, Jul. 2012.

[28] O. Sagi and L. Rokach, ‘‘Ensemble learning: A survey,’’Wiley Interdiscipl.
Rev. Data Mining Knowl. Discovery, vol. 8, no. 4, p. e1249, Feb. 2018.

[29] C. E. G. Moreta, M. R. C. Acosta, and I. Koo, ‘‘Prediction of digital
terrestrial television coverage using machine learning regression,’’ IEEE
Trans. Broadcast., vol. 65, no. 4, pp. 702–712, Dec. 2019.

[30] A. Geron, Hands-On Machine Learning With Scikit-Learn and Tensor-
Flow, 1st ed. Sebastopol, CA, USA: O’Reilly, Mar. 2017.

[31] L. Breiman, ‘‘Random forest,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[32] M. N. Kurt, Y. Yilmaz, and X. Wang, ‘‘Distributed quickest detection of
cyber-attacks in smart grid,’’ IEEE Trans. Inf. Forensics Security, vol. 13,
no. 8, pp. 2015–2030, Aug. 2018.

[33] H. He and J. Yan, ‘‘Cyber-physical attacks and defences in the smart grid:
A survey,’’ IET Cyber-Phys. Syst., Theory Appl., vol. 1, no. 1, pp. 13–27,
Dec. 2016.

[34] S. Li, Y. Yilmaz, and X. Wang, ‘‘Quickest detection of false data injection
attack in wide-area smart grids,’’ IEEE Trans. Smart Grid, vol. 6, no. 6,
pp. 2725–2735, Nov. 2015.

[35] M. Kuzlu, M. Pipattanasomporn, and S. Rahman, ‘‘Communication net-
work requirements for major smart grid applications in HAN, NAN and
WAN,’’ Comput. Netw., vol. 67, pp. 74–88, Jul. 2014.

[36] J. Jiang and Y. Qian, ‘‘Defense mechanisms against data injection attacks
in smart grid networks,’’ IEEE Commun. Mag., vol. 55, no. 10, pp. 76–82,
Oct. 2017.

[37] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, ‘‘MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,’’ IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 12–19, Feb. 2011.

[38] T. Hastie, S. Rosset, J. Zhu, and H. Zou, ‘‘Multi-class AdaBoost,’’ Statist.
Interface, vol. 2, no. 3, pp. 349–360, Jan. 2009.

[39] S. Karsoliya, ‘‘Approximating number of hidden layer neurons in multiple
hidden layer BPNN architecture,’’ Int. J. Eng. Trends Technol., vol. 3, no. 6,
pp. 714–717, Dec. 2012.

[40] F. T. Liu, K. M. Ting, and Z.-H. Zhou, ‘‘Isolation sforest,’’ in Proc. 8th
IEEE Int. Conf. Data Mining, Dec. 2008, pp. 413–422.

[41] A. Hyvärinen and E. Oja, ‘‘Independent component analysis: Algorithms
and applications,’’Neural Netw., vol. 13, nos. 4–5, pp. 411–430, Jun. 2000.

[42] S. T. Roweis, ‘‘Nonlinear dimensionality reduction by locally linear
embedding,’’ Science, vol. 290, no. 5500, pp. 2323–2326, Dec. 2000.

[43] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, ‘‘Neighbour-
hood components analysis,’’ in Proc. Adv. Neural Inf. Process. Syst., 2004,
pp. 513–520.

[44] S. M. Vieira, L. F. Mendonça, G. J. Farinha, and J. M. C. Sousa, ‘‘Modified
binary PSO for feature selection using SVM applied to mortality prediction
of septic patients,’’ Appl. Soft Comput., vol. 13, no. 8, pp. 3494–3504,
Aug. 2013.

MARIO R. CAMANA received the B.E. degree in
electronics and telecommunications engineering
from Escuela Politécnica Nacional (EPN), Quito,
Ecuador, in 2016. He is currently pursuing the
degree with the School of Electrical Engineer-
ing, University of Ulsan, Ulsan, South Korea. His
research interests include machine learning, opti-
mizations, and MIMO communications.

SAEED AHMED received the B.E. and M.E.
degrees in electrical engineering from the Uni-
versity of AJ&K, Pakistan, in 2005 and 2010,
respectively, and the Ph.D. degree from the
University of Ulsan, South Korea, in 2019.
He served as a Transmission Engineer with tele-
com industry for eight years. He has a vast
experience in planning, surveying, and deploying
microwave and optical fiber-based core and access
PDH/SDH/SONET/DWDM networks. He joined

the Mirpur University of Science and Technology (MUST), Mirpur, Pak-
istan, as an Assistant Professor, in 2012. His research interests include
energy-efficient resource allocation in cognitive radios, smart grid (SG)
communication technologies, smart grid cyber security, and the Internet of
Things (IoT).

19932 VOLUME 8, 2020



M. R. Camana et al.: Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks

CARLA E. GARCIA received the B.E. degree in
electronics and telecommunications engineering
from Escuela Politécnica Nacional (EPN), Quito,
Ecuador, in 2016. She is currently pursuing the
degree with the School of Electrical Engineer-
ing, University of Ulsan, Ulsan, South Korea. Her
main research interests include machine learning,
MIMO communications, NOMA, and optimiza-
tions.

INSOO KOO received the B.E. degree from
Konkuk University, Seoul, South Korea, in 1996,
and the M.Sc. and Ph.D. degrees from the
Gwangju Institute of Science and Technology
(GIST), Gwangju, South Korea, in 1998 and
2002, respectively. From 2002 to 2004, he was
a Research Professor with the Ultrafast Fiber-
Optic Networks Research Center, GIST. In 2003,
he was a Visiting Scholar with the Royal Institute
of Science and Technology, Stockholm, Sweden.

In 2005, he joined the University of Ulsan, Ulsan, South Korea, where he
is currently a Full Professor. His current research interests include spec-
trum sensing issues for CRNs, channel and power allocation for cognitive
radios (CRs) and military networks, SWIPT MIMO issues for CRs, MAC,
and routing protocol design for UW-ASNs, and relay selection issues in
CCRNs.

VOLUME 8, 2020 19933


	INTRODUCTION
	SYSTEM MODEL
	ELECTRIC POWER NETWORK
	STATE ESTIMATION
	CONVENTIONAL BAD-DATA DETECTION
	STEALTHY CYBER-ATTACK: BASIC PRINCIPLE
	STEALTHY CYBER-ATTACK MODEL

	PROPOSED SCHEME FOR SCA ASSAULT DETECTION
	KERNEL PRINCIPAL COMPONENTS
	EXTREMELY RANDOMIZED TREES

	SIMULATION RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	MARIO R. CAMANA
	SAEED AHMED
	CARLA E. GARCIA
	INSOO KOO


