
Received December 28, 2019, accepted January 17, 2020, date of publication January 23, 2020, date of current version February 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2969054

A Motor Imagery EEG Feature Extraction Method
Based on Energy Principal Component Analysis
and Deep Belief Networks
LIWEI CHENG 1, DUANLING LI 1,2, GONGJING YU 3, ZHONGHAI ZHANG 3,
XIANG LI 3, AND SHUYUE YU 3
1School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China
2College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 712000, China
3Beijing Aerospace Measurement and Control Technology Company, Ltd., Beijing 100041, China

Corresponding authors: Liwei Cheng (liwei_cheng89@163.com) and Duanling Li (duanlingli@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51775052, in part by the Natural
Science Basic Research Plan in Shaanxi Province of China under Grant 2019JM-181, and in part by the Beijing Key Laboratory of
Space-Ground Interconnection and Convergence.

ABSTRACT The motor imagery electroencephalography (MI-EEG) reflects the subjective motor intention,
which has received increasing attention in rehabilitation. How to extract the features of MI-EEG accurately
and quickly is the key to its successful application. Based on the analysis and comparison of the existing
feature extraction algorithms, a feature extraction method based on principal component analysis (PCA) and
deep belief networks (DBN) is proposed, namely PCA-DBN. Firstly, the second-order moment is used to
analyze the time-domain of MI-EEG, select the effective time interval. Secondly, PCA is used to analyze the
selected time-domain interval and obtain the principal component feature points. Then, feature points are
imported into DBN to realize the final feature extraction. Finally, use the softmax classifier to complete task
classification. Perform algorithm validation on the BCI Competition II Data set III and BCI Competition
IV Data sets 2b, classification accuracies are 96.25% and 91.71%, kappa values are 0.925 and 0.8342. The
paired-sample t-test with FDR correction is carried out on the verification results, and the comparison with
some better classification algorithms shows that the algorithm has better performance. In the end, this method
is used to extract the features of laboratory data, the optimal classification accuracy is 97.69% and kappa
value is 0.9538, the validity of the method is further verified.

INDEX TERMS Deep belief networks, motor imagery electroencephalogram, principal component analysis,
second-order moment, softmax classifier.

I. INTRODUCTION
Brain-computer interface [1] (BCI) technology is a new
human-computer interaction mode that directly connects
the human brain to external devices without peripheral
nerves and muscle tissues. This special way of interaction
makes it have a great application prospect in the fields of
motor function rehabilitation, information communication,
and equipment control. As a new interdisciplinary subject,
BCI has become a hot spot of interdisciplinary research
in biomedicine, communication engineering, computer tech-
nology, etc. [2]. Motor imagery electroencephalography
(MI-EEG) is an important branch of BCI research. Because
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the MI-EEG itself is a weak signal of non-stationary, non-
periodic, and time-varying complex. To quickly and effec-
tively identify the components of different consciousness
activities, feature extraction and recognition classification
play a very important role, which directly affects the accuracy
of EEG signal task classification.

At present, there are several methods of MI-EEG fea-
ture extraction: autoregression model (AR) [3], wavelet
packet transformation (WPT) [4], discrete wavelet transform
(DWT) [5], common spatial patterns (CSP) [6], power spec-
tral density (PSD) [7], and principal component analysis
(PCA) [8]. AR, the parameters change with the input of
each sample point, better reflecting the state of the brain,
and it requires less computation and does not require prior
knowledge of the relevant frequency band, but it is not
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good for nonstationary signals. As a time-frequency analysis
method, WT is suitable for non-stationary signal processing.
WPT can decompose the low and high frequency information
at the same time, DWT can extract more abundant features.
But both of them need too much computational information
when the signal quantity is large, and the extracted charac-
teristic information has a large redundancy. CSP algorithm is
based on the simultaneous diagonalization of two covariance
matrices to design the optimal spatial filter, there is no need
to extract the characteristics of the selected frequency band,
but it needs multi-channel analysis and is easily disturbed
by noise. PSD estimates the power spectral density of the
EEG signal by using a finite length signal, which can reflect
the energy change of the EEG signal, but the signal time
information will be lost. When the EEG data length is short,
the signal statistical characteristics obtained by this method
are not obvious. PCA is an effective method of dimension
reduction, the feature dimension reduction of EEG signals
can be achieved with shorter training time and lower algo-
rithm complexity. But some of the extracted features are still
redundant information for classification, this part of redun-
dant information needs to be removed to improve classifica-
tion accuracy.

In this situation, it is an effective method to extract second
features from redundant information. Among them, the use of
a deep learning model can eliminate redundant information,
retain better features and ultimately achieve higher classifi-
cation accuracy. Common deep learning models are convolu-
tional autoencoder (CAE) [9], convolutional neural network
(CNN) [10], neural network (NN) [11], sparse autoencoder
(SAE) [12], deep belief networks (DBN) [13]. Among them,
DBN has been well studied in redundant information elimi-
nation and feature extraction and recognition.Weilong Zheng
et al. introduced the differential entropy characteristics of
multi-channel EEG into DBN as input, higher classification
accuracy was achieved [14]. Li et al. proposed an emotional
state recognition model based on DBN for EEG signals,
this model can process the signals of each EEG channel
and effectively extract key information from thousands of
features [15]. Li et al. applied DBN to EEG fatigue detection,
through the training of the initial feature, the model to better
identify the performance was obtained [16]. Wulsin et al.
used DBN to detect the characteristics of abnormal EEG
signals and got good results [17]. Altan et al. proposed the
classification of brain activity based on DBN, the difference
between positive and negative tasks in patients with cerebral
apoplexy was highly accurate [18].

In some studies where the experimental data is BCI
Competition II Data set III. Minyou Chen et al. pro-
posed a phase space feature extraction method (AFAPS).
This method revealed various information in the original
sequence through phase space reconstruction (PSR), then
the amplitude-frequency analysis (AFA) method was used
to extract the signal characteristics in the phase space. The
extracted features not only maintained the continuity of
the original information but also contained the nonlinear

information in the original information very well [19].
Wanzhong Chen et al. proposed a motor imagery recogni-
tion method based on masking empirical modal decompo-
sition (MEMD), the windowed EEG was decomposed by
MEMD and hybrid features were then extracted from the first
two intrinsic mode functions (IMFs). A good classification
result was obtained by importing the feature results in the
linear discriminant analysis (LDA) [20]. Önder Aydemir et
al. proposed an optimum combination of sub-band power
features amethod for improving the classification accuracy of
motor imagery electroencephalogram. The sub-band power
features were extracted from the best time segment of elec-
troencephalogram trials and the proposed training model
determined the optimum combination of sub-bands. Better
classification accuracy was obtained [21]. Yan Wang et al.
proposed a feature extraction method combined spectrum
analysis with wavelet packet analysis. The linear discrimi-
nant classifier, Self-Organizing Feature Map (SOFM) neural
network, and Back Propagation (BP) neural network were
compared, and the result that BP neural network had a higher
recognition rate [22]. Rajdeep Chatterjee et al. proposed a
fuzzified adaptation of discernibilitymatrixwith four variants
of dissimilarity measures to deal with continuous data. Then
support vector machine (SVM) was used to classify the sim-
plified data set. Compared with the original difference matrix
method and the PCAmethod, the performance of this method
was improved greatly [23]. Nguyen et al. proposed a multi-
sphere approach to SVDD to have a better description for
the brain data, this method was a fuzzy clustering approach
to optimize SVDD parameters, achieved a better description
of the MI-EEG data [24]. Steven Lemm et al. proposed
an online classification algorithm for a single experiment
based on random wavelet filtering, which had adapted to
individual EEG spectra, and reduced the error rate of signal
recognition and classification [25], [26]. Kübra Saka et al.
proposed a novel Fast Walsh Hadamard Transform based
feature extraction method for classification of EEG signals
recorded during left/right hand movement imagery. It did
not only provided well-discriminative attributes but also the
computational time of extracting the features from a single
EEG trial was fast [27]. Jie Zhou et al. proposed a method of
EEG signal classification based on wavelet envelope analysis
and long-short time memory classifier, this method combined
Hilbert transform (HT) and DWT, the significant features
of the signal were extracted. Then entered into the LSTM
classifier for classification [28]. Guo and Wu proposed a
dynamic ICA base on sliding window Infomax algorithm to
analyze motor imagery EEG, by used the feature patterns
based on total energy of dynamic mixing matrix coefficients
in a certain time window, better classification accuracy was
achieved [29].

In some studies where the experimental data is BCI Com-
petition IV dataset 2b. Gaowei Xu et al. proposed a CNN
framework based on VGG-16, this framework consisted of
a VGG-16 CNN model pre-trained on ImageNet and a tar-
get CNN model with the same structure as VGG-16 except
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for the softmax output layer. The accuracy and efficiency
of EEG signal classification were improved [30]. Ha and
Jeong proposed a novel method based on CapsNet to classify
two-class motor imagery signals, this method used short-time
Fourier transform (STFT) to transform EEG signals into
time-frequency image, then the capsule network was intro-
duced for training and testing. Better and more reliable per-
formance than the traditional CNNmethodwas obtained [31].
Wang et al. proposed a method designated frequency domain
CSP (FDCSP), this method used the fast Fourier transform
(FFT) algorithm to obtain uniform frequency domain sam-
ples in the range of 8 to 30Hz as the input signal of CSP,
the classification performance was improved [32]. Hai-Jun
Rong et al. proposed an incremental adaptive EEG clas-
sification method. In this method, an Extended sequential
adaptive fuzzy inference system (ESAFIS) was used to evolve
its structure dynamically and adapted the classifier auto-
matically online to address the non-stationarity of the EEG
signals. A better classification effect was achieved [33].
Bentlemsan et al. proposed a method to classify the EEG
signal by FBCSP and RF, this method improved the clas-
sification accuracy effectively [34]. Bustios and Rosa
proposed a novel method to select these subject-specific
frequency bands in a new configuration for the Filter Bank
CSP approach, this method used exhaustive search to find
the best subset of the frequency band that contained the
most discriminating patterns, the data sets were classified
more accurately [35]. Muthong et al. proposed a method to
captured all the change points in EEG signals and divided
them into a group of signals, the regularized LDA was then
applied to each partition signal, the classification accuracy of
EEG signals was higher [36]. Tian and Liu proposed a classi-
fication method of two-class MI-EEG signals based on CNN,
the prediction accuracy of left/right hand motor imagery task
was greatly improved [37]. Jun Cai et al. proposed a new
model called Convolutional Gated Recurrent Neural Network
that combined CNN and Gated Recurrent Unit (GRU). This
model extracted the combinatorial features of the prepro-
cessed MI-EEG by CNN, it enriched the GRU input, and
then it used GRU to extract some sequence information hid-
den in the EEG signals to improve the classification accu-
racy of MI-EEG [38]. Jin et al. proposed a sparse Bayesian
ELM (SBELM) algorithm based on probabilistic reasoning,
combined the advantages of ELM and sparse Bayesian learn-
ing, this algorithm could automatically control the complex-
ity of the model, eliminated redundant hidden neurons, and
achieved better classification accuracy in the verification of
common set data [39]. Zhang et al. proposed an EEG clas-
sification method based on multi-kernel ELM (MKELM),
which could effectively mine supplementary information in
multi-nonlinear feature space and provided stronger robust-
ness for the classification of EEG signals [40]. Jiao et al.
proposed a new sparse group representation model (SGRM),
which used intersubject information to improve the efficiency
of MI based BCI and effectively reduced the training sam-
ples required by target objects [41]. Zhang et al. proposed a

temporally constrained sparse group spatial pattern (TSGSP)
to optimize both the filter band and the time window
in the CSP to further improve the classification accuracy
of MI-EEG [42].

In this paper, a method ofMI-EEG feature extraction based
on PCA and DBN is proposed. The remaining sections are
organized as follows: Section 2 introduces the basic theory
used in this paper, including second-order moment, PCA,
DBN, and softmax classifier. Section 3 introduces the public
data sets used in this article, the performance evaluation
index, the data analysis method, and the algorithm flow of
PCA-DBN. Section 4 introduces the comparison and analysis
of the experimental verification results of different data sets.
Section 5 introduces the algorithm in this paper and com-
pared it with the previous research results, and the potential
limitations and future research directions of this method are
discussed. Section 6 summarizes the whole thesis and gives
the conclusion.

II. PRIMARY METHODS
A. ONLINE RECURSIVE ESTIMATION OF THE
NORMALIZED SECOND-ORDER MOMENT
For a random signal with zero average value x ji (t), the nor-
malized second-order moment is defined as:

m2 = E ji [x
2(t)] = [x ji (t)]

2 (1)

For a signal x ji (t) of length N , the second-order moment
defined by formula (1) is estimated by the following
formula [43]:

m2 = E ji [x
2(t)] ≈

1
N

N∑
n=1

[x ji (n)]
2 (2)

In the actual processing of MI-EEG, new samples are
constantly collected and input. Therefore, in order to reflect
the dynamic change of signal statistical characteristics in
real-time, a second-order moment recursive algorithm is
established. There are two second-order moment estimation
algorithms, one is based on sliding window length, the other
is based on variable window length.

Second-order moment estimation of sliding window: sup-
pose the window length isN , the current moment is n, the data
in the window is x(n − N + 1), . . . , x(n − 1), x(n), where
the second-order moment at a time n is m2(n), and the newly
arrived signal sample at a time n+ 1 is x(n+ 1). x(n− N +
2), . . . , x(n), x(n + 1) is the data in the window at this time,
easy to figure out:

m2(n+ 1) = m2(n)−
1
N
{x2(n− N )− x2(n+ 1)} (3)

Estimation of second-order moment cumulant with vari-
able window length: if the left end of the window is fixed,
suppose the first sample point x(1) of the data as the starting
point, the second-order moment is updated with the coming
of data, another recursion of second-order moments can be
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obtained, the formula is:

m2(n+ 1) =
n

n+ 1
m2(n)+

x2(n+ 1)
n+ 1

(4)

In practical application, the two algorithms can be com-
bined. At the beginning of data receiving, the data length
cannot reach the specified length, and formula (4) can be
used for online recursive estimation of the second-order
moment. When the data length reaches the window length,
the online recursion method of the second-order moment in
formula (3) is used. It is worth noting that the above normal-
ized second-moment recurrence formula is established on the
premise that the average value of the input signal must be
zero. Considering that the EEG data has been processed by
band-pass filtering without the dc component, the recurrence
formula is valid [44].

B. PRINCIPAL COMPONENT ANALYSIS
PCA is based on the variance maximization principle, rep-
resenting the rows (or columns) of the original data matrix
with a new set of linearly independent and orthogonal vec-
tors, to compress the number of variables, eliminate redun-
dant information and maximize effective information. The
PCA is solved as follows [45]:

(1) Average value processing of the original data x ji (t), and
then take its covariance matrix Cp∗p:

cov(x, y) =
1
n

n∑
i=1

(xi − x)(yi − y), 1≤x≤p, 1≤y≤p (5)

where n is the number of samples, p is the number of features,
x and y is a certain feature.

(2) The characteristic root decomposition of the covariance
matrix C is carried out, get characteristic root 3p∗p, and the
eigenvector Up∗p, the eigenvector is used as the coordinate
axis of the main component to form the new vector space,
the size of each characteristic root represents the information
contained in each principal component.

Cp∗p = Up∗p3p∗pUp∗p (6)

(3) Find the projection Fn∗p of the original data x
j
i (t) in the

new coordinate system:

Fn∗p = Xn∗pUn∗p (7)

(4) Accumulation contribution. The characteristic root size
of each main component represents how much information is
contained, the cumulative contribution rate of the former k
main component:

prek =
k∑
i=1

λi

/ p∑
i=1

λi (8)

λi is the ith characteristic root of the solution.
(5) Select the appropriate cumulative contribution pre,

make the previous d main component Fn∗d as a new data,
alternative raw data x ji (t) for pattern classification (In general:
d < p).

FIGURE 1. RBM structural representation.

C. DBN ALGORITHM
1) RBM MODEL
Restricted Boltzmann Machine (RBM) is an energy-based
neural network model, and its undirected graph model is
shown in Fig. 1. Where h is the hidden layer unit and v is the
visible layer unit, w is the connection weight matrix between
the hidden layer and the visible layer [46].

The energy of the joint configuration is:

E(v, h/θ ) = −
n∑
i=0

aivi −
m∑
j=1

bjhj −
n∑
i=1

m∑
j=1

viwijhj (9)

In the formula: m and n are respectively the number of
neurons in the hidden layer and the visible layer, v and
h are respectively the number of neurons in the visible layer
and the hidden layer, vi represents the state of the i visible
neuron in the visible layer, and hi represents the state of
the j hidden unit. θ = {wij; ai; bj} is a parameter of RBM,
they’re all real numbers. wij represents the connection weight
matrix between the visible element i and the hidden element j,
ai represents the bias of the visible element i, bj represents the
bias of the hidden element j.

2) GRBM MODEL
RBM does not work well with continuously valued data, but
the Gaussian restricted Boltzmann machine (GRBM) model
can well model the continuous values [47]. Both hidden and
visible nodes in the RBM undirected graph model are fully
connected, nodes within layers are independent of each other.
The joint distribution described by the RBM graph model can
be decomposed into the following form:

P(v, h) = P(h)P(v|h) (10)

In the formula: P(h) can be seen as the Gaussian mixing
coefficient, if P(v|h) is the Gaussian distribution, RBM under
this condition is equivalent to the Gaussian mixture distri-
bution. To assume that P(v|h) is the Gaussian, the energy of
GRBM is defined as follows:

E(v, h) = −
∑
i=vis

(vi − bi)2

2σ 2
i

−

∑
j=hid

bjhj −
∑
i,j

vi
σi
hjwij (11)

Parameter requirements are: θ = {W , bi, bj, σi, σj},
the learning between parameters is also realized by the con-
trastive divergence (CD) algorithm.

3) THE STRUCTURE MODEL AND TRAINING PROCESS OF
DBN
Because of the complexity of the signal, single-layer RBM
cannot extract the high-dimensional features of the signal.
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FIGURE 2. DBN structural representation.

DBN is composed of multiple RBM networks, each of which
can act as a feature extractor. Therefore, the DBN model
is formed by stacking multiple RBM to extract high-level
features. The structure of the DBN is shown in Fig. 2.

The training process of the DBN model is divided into two
steps:

Step 1. Use unsupervised learning to train each layer of
RBM, the output of each RBM can be used as input to the
next layer of RBM.

Step 2. Use a supervised way to train the entire network
and fine-tune the entire network.

D. SOFTMAX CLASSIFIER
Softmax classifier is an extension of the logistic regression
model, often used in conjunction with DBN [48]. The sample
of m training sets is {(x(1), y(1)), . . . , (x(m), y(m))}, the label is
y(i) ∈ {1, 2, 3, . . . , k}, probability P(y = j|x) means the input
is x, the probability that the sample is defined as j, the one
has the highest probability is defined as the one. That is, for a
K class classifier, the output is a vector of k dimensions (the
sum of the elements of vectors is 1), the output is:

hθ(x) = p(y(i) = k|x(i); θ ) =
exp(θTk x(i))
k∑
j=1

exp(θTj x(i))

(12)

In the formula: θ is the model parameter, k = 1, 2, . . . ,K ,
it is obtained by minimizing the cost function J (θ ) shown in
formula (13):

J (θ ) = −
1
m
[
m∑
i=1

l∑
j=0

1{y(i) = j} log p(y(i) = 1|x(i); θ )] (13)

In the formula:

p(y(i) = j|x(i); θ) =
exp(θTj x(i))
k∑
j=1

exp(θTj x(i))

(14)

FIGURE 3. Electrode positions (left) and timing scheme (right).

By adding weight attenuating term to the cost function,
penalize parameters that have too much weight, and make the
parameters converge to the optimal.

III. MATERIALS AND ALGORITHM FLOW
A. DATASET
1) BCI COMPETITION II DATA SET III
Dataset 1 is from BCI Competition II Data set III. This is
an open dataset for BCI Competition and provided by the
Department of Medical Informatics, Institute for Biomedical
Engineering, Graz University of Technology. In the experi-
ment, a female subject (25y) controlled a feedback bar by
imagining the movement of her left and right hands. The
experiment consisted of 7 runs with 40 trials each, a total
of 280 trials. The training group and the testing group each
had 140 trials. The samples were collected every 9s, when
t = 0∼2s, the subject was in a ready state and did not make
any movement. Started from t = 2s, voice prompt; during
the period of t = 3∼9s, subjects exercised imagination. Data
were collected from the 10∼20 pilot system of the interna-
tional standard, and three bipolar EEG channels (anterior ‘+’,
posterior ‘−’) were measured over C3, Cz, and C4.
The sampling frequency was 128Hz, which was fil-
tered by a 0.5∼30Hz bandpass filter. Fig. 3 is elec-
trode positions and timing scheme [49]–[52]. For more
information on the dataset, please refer to the website
http://bbci.de/competition/ii/.

2) BCI COMPETITION IV DATA SETS 2b
Dataset 2 is from BCI Competition IV Data sets 2b. This
is an open dataset for BCI Competition and provided
by the Institute for Knowledge Discovery (Laboratory of
Brain-Computer Interfaces), Graz University of Technology.
The data were EEG data from the left/right hand motor
imagery of 9 subjects. There were five groups of data, the
first three sessions (01∼03T) were training data and the last
two sessions (04∼05E) were test data. The first two sessions
(01∼02T) contained 120 trails per session without feedback,
and the last three sessions (03T, 04∼05E) contained 160 trails
per session with smiley feedback. Data were collected from
the 10∼20 pilot system of the international standard, and
three bipolar EEG channels were measured over C3, Cz,
and C4. The sampling frequency was 250Hz and filtered
by a 0.5∼100Hz bandpass filter, and 50Hz power frequency
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FIGURE 4. Timing scheme of the paradigm. (a) The first two sessions,
(b) the last three sessions (BCI Competition IV Data sets 2b).

was eliminated. In the first two sessions. When t = 0∼3s,
the subject was in a ready state, and a brief prompt (1kHz,
70ms) on 2s. Visualize left/right hand movement cues at
random in 3∼4.25s. During 4∼7s, the subjects performed
motor imagery Each experiment was followed by a short
break of 1.5∼2.5s. In the last three sessions. When t =
0∼3s, the subject was in a ready state, and a brief prompt
(1kHz, 70ms) on 2s. Visual cue time was followed
within 3∼7.5s, the feedback period was within 3.5∼7.5s.
Subjects imagined moving their left or right hands, the smi-
ley face turned green when it moved correctly and red
when it moved incorrectly. Each experiment was followed
by a short break of 1.5∼2.5s. The timing scheme of
the paradigm is shown in Fig. 4 [53]–[56]. For more
information on the dataset, please refer to the website
http://bbci.de/competition/iv/desc_2b.pdf.

B. PERFORMANCE EVALUATION INDEX
Different statistical performance indexes are used to objec-
tively compare the performance of different algorithms in
feature extraction, in this study, the accuracy of recognition
classification after feature extraction and the length of train-
ing/test time are used as the performance evaluation index.

In the accuracy of recognition and classification, the first
standard is the accuracy of classification, which is used to
directly measure the accuracy of the classification of signals
after feature extraction.

The second standard is the kappa value [57], which is also
an index used to measure classification accuracy and is often
used for the consistency test of EEG signal classification. The
formula is:

κ =
P0 − Pe
1− Pe

(15)

P0 is the total number of samples (correct classification)
divided by the total number of samples, which is the classi-
fication accuracy. Suppose the actual number of samples for
each category is a1, a2, . . . , ac, The predicted sample number
of each category is b1, b2, . . . , bc, the total number of samples

is n, there is:

Pe =
a1 × b1 + a2 × b2 + · · · + ac × bc

n× n
(16)

In the length of the training/test time, the time consumption
of the algorithm in the training/test process is calculated
separately, which can directly reflect the time efficiency of
the algorithm.

C. DATA ANALYSIS METHOD
In this study, a paired-sample t-test with FDR correction is
used to analyze the experimental data.

1) PAIRED-SAMPLES T-TEST
It is used to test whether the data of two sets of correlated
samples are derived from a normally distributed population
with the same mean, that is to infer whether there is a sig-
nificant difference in the mean values of two related sample
populations. The original hypothesis is H0 : µ1 − µ2 = 0,
where µ1 and µ2 are the mean of the first population and
the second population, respectively. Assume that x1i, x2i
(i = 1, . . . , n) are paired samples, respectively, the sample
difference is di = x1i − x2i, at this point, the test statistic is:

t =
d − (µ1 − µ2)

sd
/
√
n

(17)

where d =
∑n

i=1 di
n is the average of the difference between

the paired samples, sd =
√∑n

i=1 (di−d)2

n−1 is the standard
deviation of the paired sample difference, n is the number of
paired samples. When µ1 − µ2 = 0, the t statistic obeys the
t distribution of degree of freedom n− 1.

2) P-VALUE
In hypothesis testing, when the original hypothesis (H0) is
true, the probability of the resulting sample observations or
more extreme results. If the p-value is small, it means that
if the original hypothesis is true, the probability of this data
being evenmore extreme is small. However, when the p-value
is less than a preset value α (usually 0.05 in biological anal-
ysis), it is more reasonable to reject the original hypothesis
(H0) rather than believe in the occurrence of such a small
probability.

3) FDR CORRECTION
The expected value of the proportion of false rejects (Reject
the true (original) hypothesis) to all rejected original hypothe-
ses. The algorithm steps are:

I. Enter the p-value obtained by the paired-sample t-test
(suppose the number of p-values is m), sort all p-values, that
is p(1) ≤ p(2) ≤ · · · ≤ p(m), k is the ranking corresponding
to the p-value of one of the test results.

II. Calculate in turn and find the maximum value of k
that conforms to the original threshold value α, that’s the
maximum value of k that p(k) ≤ α × k/m.
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III. There are significant differences in all tests from 1
to k , calculate the corresponding q-value of each p-value, that
is q = p× (m/k).

FDR can be controlled at q(0 ≤ q ≤ 1) level by this
algorithm. At this point, a new significance level value will be
obtained. If the p-value is less than this new significance level
value after the statistical test, the result will be considered
statistically significant.

D. THE ALGORITHM FLOW BASED ON PCA-DBN
An MI-EEG feature extraction method is proposed by com-
bining PCA with DBN, the specific steps of the algorithm are
as follows:
Hypothesis MI-EEG is Expressed as:

x ji (t) = [x11 (t), x
2
2 (t), . . . , x

m
n (t)] ∈ R

N×n×m (18)

where N is the total number of sample points, n is the number
of EEG channels, m is the number of sampling points, x ji (t)
(the jth sampling point of ith channel) is a filtered MI-EEG
signal:

t={1, 2, . . . ,N }, i={1, 2, . . . , n}, j={1, 2, . . . ,m} (19)

(1) The time domain characteristics of MI-EEG are ana-
lyzed by the second-order moment method

The MI-EEG signal is collected through the electrode cap
and stored in the form of voltage amplitude. Therefore, for-
mula (20) is used to calculate the instantaneous energy.

E ji [x
2(t)] = [x ji (t)]

2 (20)

In the formula: E ji [x
2(t)] express the jth sampling point of

the ith channel of the tth sample, point of MI-EEG signal of
transient energy.

Suppose E ji is the average energy of the MI-EEG in the jth
sampling point of the ith channel in the N experiments, and
is expressed as:

E ji =
1
N

N∑
n=1

[E ji (n)] (21)

According to formula (21), the average energy of each lead
MI-EEG signal is calculated, and the MI-EEG signals with
distinct time periods are selected for feature extraction.

(2) The selected signals are analyzed by principal compo-
nent analysis

For the MI-EEG signal of an obvious time period selected
in step (1) x ji (t)(i = {1, 2, . . . , n}, j = {1, 2, . . . ,m}) are ana-
lyzed by principal component analysis, compress the number
of data variables and remove redundant features, to maximize
the availability of information.

I. x ji (t) is processed by means of mean processing. Then,
the covariance matrix Cp∗p is obtained through formula (5).

II. The eigenvalue decomposition Cp∗p is carried out
through formula (6), get the eigenvalue 3p∗p and eigenvec-
tors Up∗p.
III. The projection of x ji (t) onto the new coordinate Fn∗p is

obtained by formula (7).

IV. Through formula (8), the cumulative contribution
rate prek of the first k principal components can be
obtained.

V. Select the appropriate pre and use Fn∗d instead of x ji (t)
for pattern classification.

(3) DBN network is used for feature extraction of Fn∗d .
Firstly, take Fn∗d as the input to the DBN network. Then,

unsupervised initialization of all RBMs in DBN from the
bottom up [14].

I. Calculate P(h1|v) based on the visual layer v, so the
hidden layer h1 is P(h1|v).
II. Know the hidden layer h1, calculate Fn∗d for the first

RBM visual layer v, that is v′, and v′ = p(v′|h′1).
III. Repeat calculation step I and II, and use Gibbs sam-

pling calculation vn and hn1, then the weight W1 is updated
according to the CD algorithm.

IV. Repeat step I∼III, up to the maximum number of
iterations, the first RBM pretraining is over.

V. Repeat step I∼IV, train the other RBMs in turn, get the
weight value W2,W3, . . . ,Wn, n is the number of RBMs in
DBN.

(4) The output error C of the DBN network is calcu-
lated, use the back-propagation (BP) algorithm to complete
fine-tuning of weights of the entire network, implement DBN
supervised training. Where, the gradient calculation formula
is ∂C

∂θ
(θ = (W , b)), θ = θ − ε ∂C

∂θ
, the weight matrix of

each layer is updated. The DBN network output is the final
MI-EEG feature.

IV. RESULTS AND ANALYSIS
A. EXPERIMENTAL RESULTS AND ANALYSIS
(EXPERIMENTAL DATA SET: BCI COMPETITION II
DATA SET III)
Experimental verification methods adopt in this study are as
follows:

I. In data selection and partitioning: The 10-fold cross-
validation method was used to classify the experimental
data [58]. The original train sets were divided into new train
sets and validation sets for classifier training, then the trained
classifier was used to classify the test sets. Finally, the average
value of classification results was taken as the final classifi-
cation accuracy.

II. In data processing: Firstly, we selected the time period
suitable for feature extraction through time-domain analysis.
Secondly, we extracted eigenvectors through the PCA feature
extraction algorithm. Thirdly, the extracted eigenvalues are
imported into the DBN network for the second extraction
of eigenvalues. Finally, we imported the final eigenvalues
into the softmax classifier to train the appropriate classifier,
implement the classification of tasks.

III. In the comparison and analysis of data results: Clas-
sification accuracy, kappa value, and training/test time were
used as evaluation criteria.

IV. In the comparison validation method: We proposed two
different ways of contrast. One is the comparative analysis of
six traditional feature extraction algorithms: AR,WPT, DWT,
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FIGURE 5. Energy sequence diagram of imagining left hand motion
(C3, C4).

FIGURE 6. Energy sequence diagram of imagining right hand motion
(C3, C4).

CSP, PSD, PCA. The other is the comparative analysis after
the cross combination of six traditional feature extraction
algorithms (AR, WPT, DWT, CSP, PSD, PCA) and five deep
learning algorithms (CAE, CNN, NN, SAE, DBN). Finally,
the validity of the proposed algorithm is verified.

1) TIME-DOMAIN ANALYSIS OF MI-EEG
According to formulas (3) and (4), calculate when N = 140,
the average energy corresponding to each sampling point of
C3 and C4 leads within 0∼9s when imagining the motion
of the left hand, namely the LC3/LC4. And the average
energy corresponding to each sampling point of C3 and C4
leads within 0∼9s when imagining the motion of the right
hand, namely the RC3/RC4. As shown in Fig. 5 and Fig. 6,
the average power of the left/right movement in the 3∼9s
period is clearly different. Therefore, this paper selects the
brain electrical signals in the 3∼9s section to extract the
features.

FIGURE 7. Principal component mean distribution map.

2) PCA FEATURE SELECTION
Through the time-domain analysis of MI-EEG mentioned
above, 768 sampling points in the range of 3∼9s were
selected, PCA was applied to 140 groups of training data. For
140 groups of training data, after PCA analyzed, the average
value of 86 (d1, d2, . . . , d86) principal component samples of
the two types of samples were obtained, as shown in Fig. 7.
When the accumulative contribution rate is more than 90%,
the principal component is retained, 18 principal components
far apart from each other in Fig. 7 are selected as new feature
points:

d5, d13, d15, d23, d24, d29, d32, d41, d48,

d59, d61, d62, d67, d68, d76, d82, d83, d86

Get an 18-dimensional eigenvector. This eigenvector is the
value imported into the DBN network.

3) DETERMINATION OF DBN PARAMETERS
Parameters of DBN have a great influence on the fea-
ture extraction and recognition results of signals. In this
paper, the optimal DBN parameters are determined through
experience and the test of the experimental data set
(BCI Competition II Data set III).

The main parameters of DBN are network layer number,
iteration times, learning rate, epochs, etc. The number of
DBN layers is generally set as 3∼10 layers, and a soft-
max classifier is adopted. The DBN network parameters
such as learning rate, iteration times and momentum are set
as shown in Table 1, the experimental results are shown
in Table 2 [59], [60].

Table 2 shows that, with the increase of DBN layers,
the capacity of themodel to accommodate informationwill be
enhanced, and the classification effect will show an upward
trend. When the number of network layers increases to 6,
the classification accuracy reaches 95.01%. With the further
increase in the number of network layers, the classification
accuracy begins to decline. This may be due to the net-
work underfitting when the training data amount remains
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TABLE 1. DBN main parameter settings.

TABLE 2. Classification accuracy of different DBN layers.

FIGURE 8. Classification accuracy of different training epochs.

unchanged and the number of network layers increases to a
certain value. Therefore, the DBN layer number is set to 6 in
the subsequent experimental study.

The 6-layer DBN network consists of 1 input layer, 4 hid-
den layers, and 1 output layer, the number of units of the
4 hidden layers is 16, 12, 8, 4 in order, the classification
accuracy of different training epochs is shown in Fig. 8.

As can be seen from Fig. 8, when epochs are less than
40, the classification accuracy rate gradually increases from
65% to 70%. With the increase of epochs, the classification
accuracy is significantly improved, reaching 93.87% at 140.
After that, as epochs continued to increase, the classification
accuracy increased slowly and reached a maximum value
of 95.01% around 160. With the increase of epochs, the train-
ing time keeps increasing, and the increase of classification
accuracy of epochs in the range of 150∼160 tends to be
flat. Considering the time and classification accuracy, epochs
are 150 in this paper.

4) COMPARISON OF EXPERIMENTAL RESULTS
a: COMPARATIVE ANALYSIS OF TRADITIONAL FEATURE
EXTRACTION ALGORITHMS
Table 3 shows the classification accuracy, kappa value, and
training/test time of signals processed by six different tradi-
tional feature extraction algorithms.

In Terms of Classification Accuracy and Kappa Value:
As a relatively basic feature extraction algorithm, AR has

poor performance in processing such highly non-stationary
signals as EEG, and its classification accuracy and kappa
value are relatively low (64.26% and 0.2852). The clas-
sification accuracies of DWT and WPT are 68.35% and
68.29% respectively, and the kappa values are 0.367 and
0.3658 respectively. WPT and DWT are better than AR in
the fine degree of decomposition and have a great advantage
in the decomposition of low-frequency signals such as EEG.
Because the EEG of left/right hand movement is mainly in
the Mu rhythm and Beta rhythm, the two frequency bands
are not continuous. Compared with AR, WPT and DWT can
accurately extract the information of these two frequency
bands. Therefore, compared with AR, WPT and DWT have
certain advantages, which are conducive to extracting EEG
features related to the imaginary task and improving the
classification effect. As a spatial filtering feature extraction
algorithm for two classification tasks, CSP can extract the
spatial distribution component characteristics of each cate-
gory from the BCI data of multiple channels, so its classi-
fication accuracy and kappa value (70.31% and 0.4062) are
slightly higher than that of WPT and DWT. However, it is
susceptible to noise interference, which makes it not very
effective in feature extraction of EEG. PSD, as a method to
reflect the energy change of EEG signals, has no obvious
statistical characteristics when the data length of EEG signals
is short. The classification accuracy and kappa value are 65%
and 0.3, only slightly higher than AR and lower than WPT,
and the feature extraction performance is relatively general.
As a dimensionality reduction technology with good per-
formance, PCA can achieve better dimensionality reduction
for high-dimensional EEG signals and obtain better feature
extraction accuracy and kappa value, its classification accu-
racy and kappa value are 72.85% and 0.457.
In Terms of Training/Test Time:
CSP training/test time are minimal (1.4449s and 0.0098s),

WPT has the most training/test time (3.8991s and 0.0373s).
The training/test time of the other four feature extraction
algorithms is within this range, with little time difference and
relatively average time.

On the whole, using these feature extraction algorithms
alone, the feature extraction effect is relatively average in
the case of little difference in training/test time, where the
accuracy is below 75% and the kappa value is below 0.46.
It indicates that the extracted eigenvalue is not good enough
to reflect the signal, and there is still a long way from the good
feature extraction performance, and the feature extraction
performance of the signal needs to be further improved.

b: A COMPARATIVE ANALYSIS OF THE CROSS
COMBINATION OF TRADITIONAL FEATURE EXTRACTION
ALGORITHMS AND DEEP LEARNING ALGORITHMS
Table 4 shows the classification accuracy, kappa value,
and training/test time of signals processed by the cross
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TABLE 3. Comparison of traditional feature extraction algorithms (BCI Competition II Data Set III).

TABLE 4. Results of the traditional feature extraction algorithm combined with a deep learning algorithm (BCI Competition II Data Set III).

combination of traditional feature extraction algorithm and
deep learning algorithm.
In Terms of Classification Accuracy and Kappa Value:
In horizontal contrast. The classification accuracy and

kappa value of CAE combined with WPT, DWT and PCA
are higher, the classification accuracy is higher than 85.5%,
and kappa value is higher than 0.71. DWT+CAE has the
highest classification accuracy and kappa value, which are
86.74% and 0.7348. The classification accuracy and kappa
value of CNN combined with WPT, DWT, and PCA are
higher, the classification accuracy is higher than 88.5%, and
kappa value is higher than 0.77. CNN+PCA has the highest
classification accuracy and kappa value, which are 93.16%
and 0.8632. The classification accuracy and kappa value
of NN combined with WPT, DWT, and PCA are higher,
the classification accuracy is higher than 85.5%, and kappa
value is higher than 0.71. NN+PCA has the highest clas-
sification accuracy and kappa value, which are 89.32% and
0.7864. The classification accuracy and kappa value of SAE

combined with AR and PCA are higher, the classification
accuracy is higher than 86.5%, and kappa value is higher
than 0.73. SAE+AR has the highest classification accuracy
and kappa value, which are 87.58% and 0.7516. The classi-
fication accuracy and kappa value of DBN combined with
WPT, DWT, and PCA are higher, the classification accuracy
is higher than 91%, and kappa value is higher than 0.82.
DBN+PCA has the highest classification accuracy and kappa
value, which are 96.25% and 0.925.

In vertical contrast. The classification accuracy and kappa
value of AR combined with SAE and DBN are higher,
the classification accuracy is higher than 87%, and kappa
value is higher than 0.74. AR+SAE has the highest classi-
fication accuracy and kappa value, which are 87.58% and
0.7516. The classification accuracy and kappa value of WPT
combined with CNN and DBN are higher, the classification
accuracy is higher than 88.5%, and kappa value is higher than
0.77. WPT+DBN has the highest classification accuracy and
kappa value, which are 92.01% and 0.8402. The classification
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accuracy and kappa value of DWT combined with CNN and
DBN are higher, the classification accuracy is higher than
88.5%, and kappa value is higher than 0.77. DWT+DBN has
the highest classification accuracy and kappa value, which are
91.43% and 0.8286. The classification accuracy and kappa
value of CSP combinedwith CNN, SAE, andDBN are higher,
the classification accuracy is higher than 86%, and kappa
value is higher than 0.72. CSP+DBN has the highest clas-
sification accuracy and kappa value, which are 87.94% and
0.7588. The classification accuracy and kappa value of PSD
combined with SAE and DBN are higher, the classification
accuracy is higher than 84%, and kappa value is higher than
0.68. PSD+DBN has the highest classification accuracy and
kappa value, which are 86.74% and 0.7348. The classifica-
tion accuracy and kappa value of PCA combined with CNN
and DBN are higher, the classification accuracy is higher
than 93%, and kappa value is higher than 0.86. PCA+DBN
has the highest classification accuracy (96.25%) and kappa
value (0.925).

From the comparison of the above two aspects. In hori-
zontal contrast, in addition to CAE and SAE, PCA combined
with other algorithms has the best results. Because CAE
and SAE belong to the autoencoder class, it is an unsu-
pervised machine learning algorithm similar to PCA. When
the method is applied to the second feature extraction, there
are still redundant features, so the results are not optimal.
In vertical contrast, except for the combination with AR,
the results of DBN combined with other algorithms are the
best. Because AR is a method with poor processing effect for
non-stationary signals, the result after processing is unstable.
Therefore, the result of the second feature extraction is also
unstable.
In Terms of Training/Test Time:
In horizontal contrast. The training/test time of CAE

combined with AR, DWT, CSP, PSD, and PCA are
less, the training/test time are between 2.621∼3.769s and
0.017∼0.032s, respectively. WPT+CAE has the highest
training/test time, which is 5.0752s and 0.0486s. The
training/test time of CNN combined with AR, DWT,
CSP, PSD, and PCA are less, the training/test time are
between 6.603∼7.702s and 0.043∼0.066s, respectively.
WPT+CNN has the highest training/test time, which is
9.0086s and 0.0862s. The training/test time of NN combined
with AR, DWT, CSP, PSD, and PCA are less, the train-
ing/test time are between 3.571∼4.719s and 0.024∼0.040s,
respectively. WPT+NN has the highest training/test time,
which is 6.0253s and 0.0576s. The training/test time of
SAE combined with AR, DWT, CSP, PSD, and PCA are
less, the training/test time are between 3.229∼4.377s and
0.022∼0.037s, respectively. WPT+SAE has the highest
training/test time, which is 5.6835s and 0.0544s. The train-
ing/test time of DBN combined with AR, DWT, CSP,
PSD, and PCA are less, the training/test time are between
3.803∼4.952s and 0.025∼0.042s, respectively. WPT+DBN
has the highest training/test time, which is 6.2581s
and 0.0599s.

In vertical contrast. The training/test time of AR combined
with CAE, NN, SAE, and DBN are less, the training/test
time are between 2.669∼3.853s and 0.019∼0.028s, respec-
tively. AR+CNN has the highest training/test time, which is
6.6032s and 0.0473s. The training/test time of WPT com-
bined with CAE, NN, SAE, and DBN are less, the train-
ing/test time are between 5.075∼6.259s and 0.048∼0.060s,
respectively. WPT+CNN has the highest training/test time,
which is 9.0086s and 0.0862s. The training/test time of DWT
combined with CAE, NN, SAE, and DBN are less, the train-
ing/test time are between 2.975∼4.159s and 0.018∼0.027s,
respectively. DWT+CNN has the highest training/test time,
which is 6.9092s and 0.0434s. The training/test time of CSP
combined with CAE, NN, SAE, and DBN are less, the train-
ing/test time are between 2.621∼3.804s and 0.017∼0.026s,
respectively. CSP+CNN has the highest training/test time,
which is 6.5544s and 0.0445s. The training/test time of PSD
combined with CAE, NN, SAE, and DBN are less, the train-
ing/test time are between 3.768∼4.952s and 0.031∼0.042s,
respectively. PSD+CNN has the highest training/test time,
which is 7.7016s and 0.0651s. The training/test time of PCA
combined with CAE, NN, SAE, and DBN are less, the train-
ing/test time are between 3.178∼4.361s and 0.024∼0.034s,
respectively. PCA+CNN has the highest training/test time,
which is 7.1115s and 0.054s.
From the comparison of the above two aspects. In hori-

zontal contrast, the training/test time consumption of CAE,
CNN, NN, SAE, DBN combined with WPT is the highest.
In vertical contrast, the training/test time consumption of AR,
WPT, DWT, CSP, PSD, PCA combined with CNN are the
highest. The training/testing time of other combinations is not
different, and the time is relatively average.
On the whole, among several combinations with little dif-

ference in training/test time, taking classification accuracy
and kappa value into consideration, it can be concluded that
the PCA-DBN algorithm has better processing results.
It can be seen from the comparison between Table 4 and

Table 3, after the second feature extraction, in terms of clas-
sification accuracy and kappa value, the results are signifi-
cantly improved. The classification accuracies are higher than
80%, and the kappa values are higher than 0.6. The clas-
sification accuracies and the kappa values of WPT+DBN,
DWT+DBN, PCA+CNN, and PCA+DBN are reached over
90% and 0.8. PCA+DBN has the highest performance, its
classification accuracy is 96.25% and the kappa value is
0.925. In terms of training/test time, the increase in training
time is larger, while the increase in test time is smaller.
Although BCI systems are strict about the time required
to process a single sample signal in real time, the offline
training model is usually applied to the online mode. There-
fore, it is not sensitive to the training time of the model and
focuses more on the signal processing time in the test process.
Although the second feature extraction of the results of the
traditional feature extraction method will increase the test
time, the overall time is less than 0.1s, which can meet the
requirements of the control system.
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TABLE 5. The result of the paired-sample t-test with FDR correction (BCI Competition II Data set III).

c: STATISTICAL ANALYSIS AND HYPOTHESIS TESTING
In order to verify the significance of the performance
differences between the combine algorithms, the classi-
fication accuracy (mean value) of the traditional feature
extraction algorithm and the combine algorithm is tested by
paired-sample t-test with FDR correction. The results are
shown in Table 5.

Table 5 shows that. From the results of the t-test, the
p-value is far less than 0.05, and the results of the
paired-sample t-test (q-value) correct by FDR are also far
less than the results calculated by α = 0.05, the results
show that the combined algorithm has a significant influence
on the feature extraction of EEG signals. By analyzing and
comparing the classification accuracy, p-value and q-value of

the traditional feature extraction algorithm and the combine
algorithm, it can be seen that the deep learning algorithm
is integrated into the traditional feature extraction algorithm,
which can effectively improve the feature extraction perfor-
mance of EEG signals and achieve better analysis results.

d: COMPARISON BETWEEN PCA-DBN ALGORITHM AND
EXISTING FEATURE EXTRACTION ALGORITHMS
Table 6 shows the comparison of the PCA-DBN feature
extraction algorithm proposed in this study, the feature extrac-
tion algorithms used in the top three of BCI Competition II
Data set III, and some recent algorithms with high feature
extraction performance.
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TABLE 6. Comparison between PCA-DBN and existing feature extraction algorithms (BCI Competition II Data Set III).

As can be seen from the table, the classification accuracy
of the traditional feature extraction algorithm is less than
90%. For example, Morlet-wavelets, AR and AAR are used
in BCIC II 1st, BCIC II 2nd and BCIC II 3rd in refer-
ence [26]; AF is used in reference [19]; MEMD is used in
reference [20]; FDM is used in reference [23]; AR is used
in reference [24]; FWHT is used in reference [27]; ICA is
used in reference [29]. Although the algorithm used in refer-
ence [26], [19], and [23] is an optimization of the traditional
feature extraction algorithm, the classification accuracy rate
still does not exceed 90%. The classification accuracy of the
composite feature extraction algorithm is above 91%. For
example, reference [21] uses an algorithm combining SBPF
and LOOCV; reference [22] uses an algorithm combining
SC and WPT; reference [28] uses an algorithm combining
HT and DWT. The results of traditional feature extraction
algorithms are lower than that of composite feature extraction
algorithms, it shows that the second extraction of feature can
get better results.

The accuracy and kappa value of the algorithm proposed
in this study are higher than those used by the BCI Competi-
tion champion and some recent researches. It achieves better
feature dimension reduction and achieves better classification
accuracy.

B. EXPERIMENTAL RESULTS AND ANALYSIS
(EXPERIMENTAL DATA SET: BCI COMPETITION
IV DATA SET 2b)
1) EXPERIMENTAL VERIFICATION METHODS
Experimental verification methods adopt in this part are the
same as A in IV:

I. In data selection and partitioning: The 10-fold cross-
validation method was used to classify the experimental data.
The original train sets (01∼03T) were divided into new train
sets and validation sets for classifier training, then the trained
classifier was used to classify the test sets (04∼05E). Finally,

the average value of classification results was taken as the
final classification accuracy.

II∼IV are the same as A.

2) COMPARATIVE STUDY OF VARIOUS FEATURE
EXTRACTION ALGORITHMS
a: COMPARATIVE ANALYSIS OF TRADITIONAL FEATURE
EXTRACTION ALGORITHMS
Table 7 shows the classification accuracy, kappa value, and
training/test time of signals processed by six different tradi-
tional feature extraction algorithms.
In Terms of Classification Accuracy and Kappa Value:
As a relatively basic feature extraction algorithm, AR has

a relatively low classification accuracy and kappa value,
the highest values are 75.81% and 0.5162 of subject 5, and
the average values are 64.57% and 0.2914. The classifica-
tion accuracies and kappa values of WPT, DWT and CSP
algorithms are close. The average of classification accuracies
and kappa values are 69.16%, 69.63%, 69.89%, and 0.3832,
0.3926, 0.3978. The classification accuracy and kappa value
of PSD are 68.28% and 0.3656, which are higher than AR,
but lower than WPT, DWT, and CSP, its feature extrac-
tion performance is relatively general. The average clas-
sification accuracy and kappa value of PCA are 70.24%
and 0.4048.
In Terms of Training/Test Time:
CSP training/test time are minimal (1.8344s and 0.0109s),

WPT has the most training/test time (4.2136s and 0.0384s).
The training/test time of the other four feature extraction
algorithms is within this range.

On the whole, the results are consistent with Table 3. Using
these feature extraction algorithms alone, the feature extrac-
tion effect is relatively average in the case of little difference
in training/test time, where the accuracy is below 71% and
the kappa value is below 0.42. It is still a long way from the
good feature extraction performance.

VOLUME 8, 2020 21465



L. Cheng et al.: MI-EEG Feature Extraction Method Based on Energy PCA and DBNs

TABLE 7. Comparison of traditional feature extraction algorithms (BCI Competition IV Data Sets 2b).

b: A COMPARATIVE ANALYSIS OF THE CROSS
COMBINATION OF TRADITIONAL FEATURE EXTRACTION
ALGORITHMS AND DEEP LEARNING ALGORITHMS
Table 8 shows the average value (classification accuracy,
kappa value, training/test time) of Subject 1-9 processed after
the cross-combination of six traditional feature extraction
algorithms and five deep learning algorithms.

From the comparison of classification accuracy, kappa
value, and training/test time horizontal and vertical, it can be
seen that the results are consistent with Table 4, and the same
conclusion can be drawn.

It can be seen from the comparison between Table 8 and
Table 7, integrating deep learning into traditional feature
extraction algorithms can improve the feature extraction per-
formance of signals. In terms of classification accuracy and
kappa value, classification accuracies are higher than 78%
and kappa values are higher than 0.57. The classification
accuracy and kappa value of AR+DBN are relatively high
in AR class, the classification accuracy and kappa value of
WPT+DBN are relatively high in WPT class, the classifica-
tion accuracy and kappa value of DWT+DBN are relatively
high in DWT class, the classification accuracy and kappa
value of CSP+DBN are relatively high in CSP class, the
classification accuracy and the kappa value of PSD+DBN are
relatively high in PSD class, and the classification accuracy
and the kappa value of PCA+DBN are relatively high in
PCA class. The classification accuracies and the kappa values
of WPT+DBN, DWT+DBN, and PCA+DBN are reached
over 88% and 0.77. PCA+DBN has the highest performance,

its classification accuracy is 91.71% and the kappa value is
0.8342. In terms of training/test time, although the integra-
tion of deep learning into the traditional feature extraction
algorithm increases the test time, the overall time is less than
0.1s, which meets the requirements of the control system.

The comparison results in Table 8 and Table 7 are con-
sistent with those in Table 4 and Table 3, which further
verifies the effectiveness of the combined feature extraction
algorithm.

c: STATISTICAL ANALYSIS AND HYPOTHESIS TESTING
Same as in A, in order to verify the significance of the
performance differences between the combine algorithms,
the classification accuracy (mean value) of the traditional fea-
ture extraction algorithm and the combine algorithm is tested
by paired-sample t-test with FDR correction. The results are
shown in Table 9.

It can be seen from Table 9 that the analysis results are
consistent with those in Table 5, which further proves that
the fusion of traditional feature extraction algorithms and
deep learning algorithms can effectively improve the feature
extraction effect of EEG signals.

d: COMPARISON BETWEEN PCA-DBN ALGORITHM AND
EXISTING FEATURE EXTRACTION ALGORITHMS
Table 10 shows the comparison of the PCA-DBN feature
extraction algorithm proposed in this study, the feature extrac-
tion algorithms used in the top three of BCI Competition IV
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TABLE 8. Results of the traditional feature extraction algorithm combined with a deep learning algorithm (BCI Competition IV Data Sets 2b).

Data sets 2b, and some recent algorithms with high feature
extraction performance.

As can be seen from the table, the classification accuracy
of the traditional feature extraction algorithm is less than
80.3%. For example, FBCSP, CSSD and CSP are used in
BCIC IV 1st, BCIC IV 2nd and BCIC IV 3rd in refer-
ence [34]; STFT are used in reference [30] and [31]; CSP
are used in reference [33], [39], [40], and [41]; FBCSP
are used in reference [34] and [36]. The algorithm used
in reference [37] [42] is an optimization of the traditional
feature extraction algorithm and achieved a high classifica-
tion accuracy. The classification accuracy of the composite
feature extraction algorithm is above 81%. For example, ref-
erence [32] uses an algorithm combining FFT and FDCSP;
reference [35] uses an algorithm combining CSP, SFFS, and
RES. The composite feature extraction algorithm is more
stable than the traditional feature extraction algorithm, which
indicates that the second feature extraction can achieve better
performance.

The accuracy and kappa value of the algorithm proposed
in this study are higher than those used by the BCI Competi-
tion champion and some recent researches. It achieves better
feature dimension reduction and achieves better classification
accuracy.

C. FURTHER VALIDATION OF THE PCA-DBN ALGORITHM
(EXPERIMENTAL DATA SET: LABORATORY DATASET)
In order to further verify the accuracy of the PCA-DBN
algorithm, the experimental data set of Beijing Aerospace
Measurement & Control Technology Co. Ltd. R&D center
was validated by the algorithm.

FIGURE 9. Electrode positions (left) and timing scheme (right) of
laboratory data.

1) DATASET
The experimental data set was collected from 10 subjects,
subjects were 22∼43 years old, each of whom conducted
20 experiments, a total of 200motor imagery experiments, the
left/right hand motor imagery experiments were conducted
100 times each. The samples were collected every 9s, when
t = 0∼2s, the subject was in a ready state and did not make
any movement. Started from t= 2s, voice prompt; during the
period of t = 4∼9s, subjects exercised imagination. Experi-
mental data were collected through a 64-channel Neuroscan,
the sampling frequency is 128Hz, filtered by a bandpass filter
of 0.5∼30Hz, C3, Cz, and C4 were selected. The electrode
positions and timing scheme are shown in Fig. 9. Compared
with the BCI Competition II Data set III, the prompt stage
is extended to 2s, and the effective signal acquisition stage
is 4∼9s.

2) EXPERIMENTAL VERIFICATION METHODS
Experimental verification methods adopt in this study are the
same as A in IV:
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TABLE 9. The result of the paired-sample t-test with FDR correction (BCI Competition IV Data Sets 2b).

I. In data selection and partitioning: The 10-fold cross-
validation method was used to classify the experimental data.
The original train sets were divided into new train sets and
validation sets (validation sets were also test sets) for clas-
sifier training, then the trained classifier was used to classify
the test sets. Finally, the average value of classification results
was taken as the final classification accuracy.

II∼IV are the same as A.

3) EXPERIMENTAL VERIMENTAL RESULTS
Table 11 shows theMI-EEGdata of 10 subjects are processed,
the classification accuracy and kappa value (highest and aver-
age), and the training/test time (fastest and average) of each
subject were obtained respectively. In terms of classification

accuracy and kappa value, only the highest classification
accuracy and the highest kappa value of the 5th subject are
lower, which are 89.33% and 0.7866. The average classifica-
tion accuracies and the average kappa values of subjects 4th
and 5th are lower, which are 89.92%, 87.51% and 0.7984,
0.7502. The classification accuracies of other subjects are
higher than 90%, and the kappa values of other subjects
are higher than 0.8. Among them, subject 3 has the highest
value (classification accuracy and kappa value). In terms of
training/test time, the fastest training time of the 10 subjects
is between 4.13s and 4.29s, and the average training time is
between 4.34s and 4.38s. The fastest test time is between
0.0323s and 0.0334s, and the average test time is between
0.0327s and 0.0337s.
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TABLE 10. Comparison between PCA-DBN and existing feature extraction algorithms (BCI Competition IV Data Sets 2b).

It can be seen that the PCA-DBN algorithm can extract fea-
tures of MI-EEG well, achieve high classification accuracy
and maintain stability in training/test time.

V. DISCUSSION
BCI technology has developed rapidly in recent years, the
classification tasks of MI-EEG range from simple two kinds
of motor recognition to complex two kinds of motor recogni-
tion, and then tomultiple kinds of motor recognition. It makes
feature extraction more and more difficult, a better algorithm
is needed to extract the features of signals so as to obtain
better classification results. At present, some traditional fea-
ture extraction methods, such as AR, WPT, DWT, CSP, PSD,
PCA, etc, they can perform feature extraction for simple
tasks, but their efficiency is low in complex tasks. Therefore,
this study proposes to combine the deep learning model
with the traditional feature extraction method. Deep learning,
which combines the bottom features to form more abstract
high-level features, is used to extract second features from the
results processed by the traditional feature extraction algo-
rithm. This method of second feature extraction can get fea-
ture signals with more features and fewer dimensions, which
can effectively improve the efficiency of feature extraction in
complex tasks.

The previous researches are generally the comparison
between the traditional feature extraction methods and have
not systematically combined the deep learning algorithmwith
the traditional feature extraction methods. In terms of the
types of traditional feature extraction algorithms: Several
commonly used ones are used, such as AR, WPT, CSP, and
PSD. In terms of experimental data: Standard competition
data sets or researcher’s laboratory data sets are usually used.

In terms of evaluation criteria: Classification accuracy and
kappa value are usually used. In terms of the comparison ver-
ificationmethod: The one-dimensional comparisonmethod is
usually adopted. Compared with previous studies, this study
has made corresponding improvements in the above four
aspects. In terms of kind of algorithmic comparisons: Six tra-
ditional feature extractionmethods and the cross combination
of six traditional feature extraction methods and five deep
learning algorithms are compared and analyzed respectively,
it basically covers the existing traditional feature extraction
algorithm and deep learning model. In terms of experimental
data: Use standard competition data sets and data sets from
the researcher’s lab. In terms of evaluation criteria: Classifica-
tion accuracy, kappa value and training/test time are adopted
to better reflect the performance of classification. In terms
of comparison verification method: Firstly, the results of
traditional feature extraction algorithm are compared; then,
the two-dimensional results of the cross combination of tra-
ditional feature extraction algorithm and deep learning are
compared, the results are analyzed by paired-sample t-test
with FDR correction. The verification results show the effec-
tiveness of quadratic feature extraction. Finally, the efficiency
of the PCA-DBN algorithm is verified.

Deep learning has brought new breakthroughs to the study
of BCI, combined with the traditional feature extraction algo-
rithms, it can better improve the accuracy of task classi-
fication and classify complex tasks. However, due to the
complexity of EEG signals and the increasing requirements
on task classification, the main potential limitation of the
PCA-DBN algorithm is that the training time may increase
rapidly in the face of more complex tasks. In view of this
major problem, our next research direction mainly includes:
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TABLE 11. Classification accuracy of different subjects under the PCA-DBN feature extraction algorithm (Laboratory Dataset).

Find a general pattern combining traditional feature extrac-
tion algorithm with deep learning; Establish a suitable and
generalized deep learning network that can process differ-
ent data; Improve classification accuracy while maintaining
classification time efficiency. Through the improvement of
the above research directions, the algorithm is constantly
optimized to improve the efficiency of the algorithm more
comprehensively.

VI. CONCLUSION
To solve the problem of strong temporal variability, large
individual differences, and large redundancy of eigenval-
ues extracted by traditional feature extraction algorithms of
MI-EEG. In this paper, deep learning algorithms are com-
bined with traditional feature extraction algorithms, and an
MI-EEG feature extraction method based on principal com-
ponent analysis and deep belief networks is proposed, namely
PCA-DBN. This method well integrates the characteristics of
PCA and DBN algorithms, not only achieve feature dimen-
sionality reduction of EEG signals in a short time and low
algorithm complexity, but also process the redundant infor-
mation that still exists after feature dimensionality reduction,
and extract higher signal features in MI-EEG. Verification of
two types of public data sets and laboratory data sets shows
that the method is effective, the comparison with other feature
extraction algorithms shows that this method achieves good
results in feature extraction ofMI-EEG, and the classification
accuracy and kappa value are obviously improved. This is a
specific application of deep learning in EEG data processing
and provides a new idea for expanding the application of deep
learning in MI-EEG.
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