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ABSTRACT Due to the influence of wind speed disturbance, there are some uncertain phenomena in the
parameters of the nonlinear wind turbine model with time in an actual working environment. In order to
mitigate the side effects of uncertainties in speed models of wind turbines, researchers have designed a
variety of controllers in recent years. However, traditional control methods require more knowledge of
dynamics. Therefore, based on reinforcement learning and system state data, a robust wind turbine controller
that adopts adaptive dynamic programming (ADP) is proposed. The ADP algorithm is a combination of
Temporal-Difference (TD) algorithm and actor-critic structure, which can guarantee the rotor speed is stable
around the rated value to indirectly adjust the wind energy utilization coefficient by changing the pitch angle
in the area of high wind speed and achieve online learning in real-time. In addition, the variation of the pitch
angle command of the proposed controller is relatively gradual, which can reduce the energy consumption
of the variable pitch actuator, and extend the service life of the equipment. Finally, the wind speed model
is simulated by combined wind speed based on Weibull distribution, the comprehensive simulation results
show that the proposed controller has better control effect than some existing ones.

INDEX TERMS Neural dynamic programming, reinforcement learning, robust control, wind turbine system.

I. INTRODUCTION
With the growth of the energy demand in the world, envi-
ronmental problems are becoming more and more serious;
thus, attracting a lot of attention from renewable energies.
As a kind of renewable clean energy, wind energy can be
applied as an essential energy source into different fields.
Wind power is one of the most effective methods to utilize
wind energy. However, because of the uncertainties of the
environment about the wind farm, and the stochastic change
of high fluctuation wind speed and other factors, the control
of wind turbines has brought great difficulties [1].

The traditional regulation methods mainly include fixed
pitch stall control and variable pitch control. The variable
pitch control method adjusts the blade pitch angle according
to the change of wind speed to control the stability of the rotor
speed of the wind turbines. Traditional variable pitch control
inevitably increases pitch servo fatigue and blade stress due to
frequent adjustment of pitch angle, thus reducing the service
life of wind turbines [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Canbing Li.

At present, most wind turbines adopt Proportion-
Integration- Differentiation (PID) or Proportional-Integral
(PI) control. The PI control method is simple and easy to
implement, but there may be large overshoot. The PID con-
troller with fixed parameters is difficult to ensure the stability
of output power. Among them, there is a fuzzy adaptive
PID control, which is used to adjust the hydraulically driven
variable pitch system [3]. However, the algorithm parameters
need to be reset according to the actual situation in the
application process, which does not have a perfect generaliza-
tion. A Proportional-integral-resonance (PI-R) pitch control
method based onMBC coordinate transformation is proposed
in literature [4]. It can suppress the low frequency and high-
frequency components of the unbalanced load, which is easily
disturbed by other random frequency components.

Based on the above problems and combined with the anal-
ysis of the wind turbine models in [5], [6], this paper designs
a pitch angle controller based on reinforcement learning with
stable pitch angle change, which stabilizes the rotor speed at
the rated value in an environment with higher wind speed than
the rated speed. Thereby the power generation stability of the
wind turbine is indirectly controlled.
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In a high wind speed environment, the rotor speed will
increase with the rise of the wind speed, so that the centrifugal
force generated on the blade will explode, which will damage
the blade. The controller proposed in this paper controls the
speed of the rotor to be stable at the rated value, which can
avoid rotor over-speed to reduce the damage to the equipment
and prolong the service life of the equipment.

Reinforcement learning is a type of machine learning,
which is an approach for solving optimization prob-
lems. Meanwhile, it is based on real-time evaluation infor-
mation about the environment [7], [8], so it can be called
action-based learning, that is, it converts the action to a
predetermined goal by reward or punishment.

One type of reinforcement learning algorithms makes use
of the actor-critic structure shown in Fig.1 [9]. Therein, the
machine learning mechanism employs the actor-critic struc-
ture includes two steps, namely policy assessment, which is
run by the critic; and policy improvement, which is performed
by the actor. To be specific, the structure shows the policy
evaluation step by observing the results of applying current
actions from the environment. Besides, using performance
indicators or value functions assess the results in [8], and [10],
which quantifies the extent to which the current action is close
to optimal.

FIGURE 1. Schematic diagram of the actor-critic structure.

Werbos [11] developed actor-critic techniques for feed-
back control of discrete-time dynamical systems [9]. These
methods are known as approximate dynamic programming
(ADP) or adaptive dynamic programming. ADP has been
widely used in feedback control applications such as aircraft
landing control [12], [13], missile control [14], power system
control [15], and automotive control [16]. Therefore, it is a
significant attempt to apply the ADP method based on rein-
forcement learning to the design of the feedback controller of
the wind turbines.

We can study reinforcement learning to use a framework
based on the Markov decision process (MDPs). The basics
of MDP and Bellman Equation will be covered in part C of
section II.

A. RESEARCH CONTRUBUTIONS
1) A robust wind turbine controller that adopts adaptive
dynamic programming (ADP) is proposed. The ADP algo-

rithm is a combination of Temporal-Difference (TD) algo-
rithm and actor-critic structure, it can guarantee the rotor
speed is stable around the rated value to indirectly improve
the efficiency of use of wind energy by changing the pitch
angle in the area of high wind speed and achieve online
learning in real-time. In conclusion, the controller can adjust
the system to the preset objective so that the speed of wind
turbines is stable at the rated speed and the range of pitch
angle is smaller.

2) The variation of the pitch angle command of the pro-
posed controller is relatively gradual, which can reduce the
energy consumption of the variable pitch actuator, and extend
the service life of the equipment.

3) Compared with the previous work, the method proposed
in this paper only needs to set the control objective and does
not need to know how to reach the objective, for example,
it does not need to adjust the control parameters.

B. PAPER STRUCTURE
The rest of this paper is organized as follows.
In section II, some preliminary knowledge and prepara-
tion for the subsequent controller design are introduced.
In section III, the design ideas are presented as well as the
details of the variable pitch robust controller based on rein-
forcement learning. In section IV, the simulation experiment
is given. Finally, the conclusion and prospects are provided
in section V.

II. PROBLEM FORMULATION AND PRELIMINARIES
This section respectively gives the energy transmissionmodel
of the wind turbine and the mathematical simulation of
wind speed prediction in parts A and B, including the sim-
ple derivation of these models. Markov’s decision-making
process and the Bellman equation are essential knowledge
and foundation in reinforcement learning. Due to the better
understanding of controller’s design principles, the decision-
making process and formula will be briefly introduced
in part C.

A. WIND TURBINE ENERGY TRANSMISSION MODEL
A simple structure diagram of the wind turbine is showed in
Fig. 2. In the energy transmission model of the wind turbine,
there is a wind energy utilization coefficient Cp. Assuming
that the wind speed is the same at the surface of the wind
wheel, Cp can be expressed approximately by the following
equation (1) [17].

Cp = 0.52 sin
(
116
3
− 0.4β − 5

)
e−21/3

1
3
=

1
λ+ 0.08β

−
0.035
β3 + 1

 (1)

where β is the pitch angle,3 is the intermediate variable, and
λ is the tip speed ratio; λ can be defined by equation (2).

λ =
ωR
v

(2)
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FIGURE 2. The simple structure diagram of the wind turbine.

In equation (2),ω is the angular velocity of wind rotor rotates,
R is the radius of the rotor, and v is the wind speed.
With reference to literature [18], ignoring the transmission

damping of the wind turbine and the generator, the simplified
motion equation of the wind turbine’s transmission system is
defined by equation (3).(

Jr + N 2Jg
) dω
dt
=

1
2
ρARCT ν2 − NTe (3)

where Jr , Jg, N, ρ, A and Te denote the inertia of the rotor,
inertia of the generator, transmission ratio, air density, sweep-
ing area of the wind turbine and counter-torque of the engine,
respectively; CT is represented by equation (4).

CT =
1
λ
Cp (4)

B. WIND SPEED PREDICTION SIMULATION MODEL
To accurately describe the randomness and intermittency of
wind speed, four wind speed component combination wind
speed mathematical model are adopted in this paper. The four
components are basic wind, gust, gradual wind, and random
wind, respectively [19].

1) BASIC WIND
The Weibull distribution parameters can approximate the
basic wind vb [20]:

vb = C · 0(1+
1
k
) (5)

where C , k is the scale parameter and form parameter of
Weibull distribution respectively.0 (·) is the gamma function.
In practice and simulation, we can approximate that vb is a
component that does not change with time, that is, vb is taken
as a constant.

2) GUST OF WIND
Gust vg describes a sharp shift of wind speed what causes the
wind power ramp. The wind speeds in two time periods is
different:

vg =

{
vgcos T1g < t < T2g
0 else

(6)

where vgcos denotes:

vgcos =
Gmax
2

[
1− cos2π

(
t − T1g
T1g − T2g

)]
(7)

Gmax is the maximum gust, T1g is the start time of gust, T2g
is the dead time, t is the time in a cycle.

3) GRADIENT WIND
Gradient wind vr can simulate the gradual change of wind
speed:

vr =


0 else

Rmax ·
t − T1r
T2r − T1r

T1r ≤ t ≤ T2r

Rmax T2r < t ≤ T2r + Tr

(8)

where Rmax the maximum gradient wind, T1r is the start time
of gradient wind, T2r is the dead time, Tr is the gradual time
hold time.

4) RANDOM WIND
Random wind vn reflects the randomness of wind speed
variation, and its model is:

vn = vnmax · Rn (−1, 1) · cos (ωv + ϕv) (9)

where vnmax is the maximum random wind, Rn (−1, 1) is a
random number uniformly distributed in (−1, 1), ωv is the
average distance of wind speed fluctuations, ϕv is a uniformly
distributed random quantity in (0, 2π).
In conclusion, the combined wind speed can be expressed

by the following equation:

v = vb + vg + vr + vn (10)

which the Specific parameter value is will be given in
Section IV.

Considering the limitation of wind speed detection,
the time interval of wind speed change is set as 1s to make
up for the operational impact caused by the insufficient wind
speed detection equipment in simulation.

C. MARKOV DECISION PROCESSES (MDP) AND
BELLMAN EQUATION
According to [9], it is understandable that a fundamen-
tal MDPs problem can be expressed as a five-tuple
(S, A, P, R, γ ), where S is a set of states, and A is a set
of actions or controls. The transition probability P describes,
for each state s ∈ S and action a ∈ A; and the conditional
probability Pass′ of transition to state s′ ∈ S since the MDP
is in state s and takes action a. The reward function R is
the expected immediate cost paid after the transition to state
s′ ∈ S and takes action a′ ∈ A. It represents the short-term
return. γ is a discount factor that is mainly used to balance
current and future rewards.

The objective of MDPs is to find a policy π (s, a) that
allows the agent to get the maximum return Gt when taking
the corresponding action a under state s. The return Gt is
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the total discounted reward from time-step t . Gt is defined
as equation (11).

Gt = Rt+1 + γ 1Rt+2 + γ 2Rt+3 + . . . (11)

where 0 < γ < 1 is a discount factor that reduces the weight
of rewards incurred further in the future. Rt+1 represents the
reward of the state st to st+1.

Since Gt is not a determined value (it involves a proba-
bilistic selection action in the process), the cumulative return
function is calculated using the expectation. The state value
function vπ (s) is the expected value of being in the state s
given that the policy π . It is determined by action a, so add
the actions to the equation. The action-value function can be
defined as qπ (s, a).

The key to finding optimal values and optimal policies
that can be executed is the Bellman equation [7], [21]. The
Bellman equation of the action-value function is as follows:

qπ (s, a) = Ras + γ
∑

s′∈S
Pa
ss′
∑

a′∈A
π
(
s′, a′

)
qπ
(
s′, a′

)
(12)

where Ras is the expected return in state s and takes action a.
The Bellman equation is utilized to solve the MDP prob-

lem, which is to find the optimal policy and its corresponding
action-value function. The optimal action-value function is
defined as follows:

q∗ (s, a) = maxπqπ (s, a) . (13)

by solving (9), the optimal action taken under the optimal
policy can be obtained; that is, the learning objective of
reinforcement learning is achieved.

III. DESIGN OF PITCH ROBUST CONTROLLER BASED
ON REINFORCEMENT LEARNING
This section introduces the main controller design ideas and
the control process of the controller. Then the design of the
neural network is presented in detail. The controller pro-
posed in this paper is based on the MDP framework, and
its goal is to find the optimal strategy to satisfy the Bellman
equation.

A. MAIN DESIGN IDEAS
The agent learns of reinforcement learning in a ‘‘trial and
error’’ way, and through the interaction with the environ-
ment to obtain reward and punishment guidance action; the
learning objective is to make the agent get the maximum
reward. Therefore, the reinforcement learning algorithms are
constructed on the idea that effective control decisions should
be remembered, by a feat of a reinforcement signal, such that
they become more likely to be used a second time. In the
interaction, the reinforcement signal r(t) is an evaluation
index to judge the performance of an action.

From equation (1)–(4) of the energy transmission model of
the wind turbine, we can find that the rotor speed can be mod-
ified by controlling β. However, how to obtain the control
value through the current state, which involves the knowledge

of dynamics and has high requirements for the solution of
the nonlinear equation; and the processes are complicated.
Thus, the excellent learning ability of neural networks can
be utilized to combine neural networks with reinforcement
learning, take the change value of the data of system state
andwind speed as input, and through the training of the neural
network, get an output. Then this output is passed through the
mapping function to get the corresponding control value β.
Based on the principle of reinforcement learning and the

control objective of the controller, a robust variable pitch
controller based on reinforcement learning is proposed, and
intended to be applied to the variable pitch control of the wind
turbines in this paper. The control objective is tantamount to
control the output rotor speed of the wind turbine to stabilize
at the rated speed in the high wind speed zone. The controller
fully considers the disturbance factors such as the nonlinear-
ity of the system transmission model and the error of the wind
speed detection signal.

The proposed controller is a type of ADP controller, which
is composed of an action network to generate action and a
critic network to evaluate this action. In the initial state of the
system, the weights/parameters of the action network and the
critic network are random. Firstly, the upper limit of rotation
speed error of the wind wheel is preset. If the initial state
is within the preset range, the corresponding reinforcement
signal r is ‘‘0’’, indicating success. In the subsequent process,
if the error exceeds the upper limit, r is ‘‘−1’’, indicating
failure. The controller is only reinforced when control fails.

When the system state and the corresponding wind speed
disturbance are observed, combining the wind speed dis-
turbance at the previous moment, it will generate a cor-
responding action through the action network under the
weight parameters based on the current state. The critic net-
work ‘‘critiques’’ the generated action value to optimize a
future ‘‘reward-to-go’’ by propagating a temporal difference
between two consecutive estimates from the critic network.
Then the critic network updates the weight with the rein-
forcement signal to get the optimal approximation value. This
formulation is utterly consistent with the Bellman equation.
It uses the obtained approximation to affect the weight update
of the action network, to reduce the defined performance
function value, and to get the current optimal output value
of the action network. Finally, the output value yields a better
control value through the mapping function

The connection and memory between the input of the
action network and control output will strengthen the con-
trol output every time, thus making the control value of the
output value mapping better control effect. In the case of a
specific system state and corresponding wind speed, a better
action output value will make the optimization equation more
balanced.

B. THE CONTROL FLOW OF THE CONTROLLER
Each control process of the controller is completed by two
neural networks adaptive learning. Fig.3 displays a schematic
diagram of the data flow of the controller designed in

20496 VOLUME 8, 2020



P. Chen et al.: Reinforcement-Based Robust Variable Pitch Control of Wind Turbines

FIGURE 3. The schematic diagram of controller data flow.

this paper. The specific process of its control at time t is as
follows:

1) To determine whether the angular velocity ω(t) of the
wind turbine observed by the sensor exceeded the preset
range or not, select the reinforcement signal r(t).
2) Obtain wind speed disturbance data v(t) through

wind speed simulation system; and then, compared it with
v(t − 1) to get the wind speed variation 1v(t). Similarly,
compared angular velocity ω(t) with the rated value ωrate(t)
to get the difference value 1ω(t). 1v(t) and δω(t) are taken
as the input of the action network. The output u(k) is obtained
through the action network, k is the number of internal
iterations.

3) 1v(t), 1ω(t) and u(t) is used as input to the critic
network. The cumulative return approximation through the
critic network is J (k).

4) Train the critic network and update the network weight
with the reinforcement signal r(t). In conclusion, the critic
network obtains the final J (t)

5) The neural network indirectly back propagates J (t) to
update the weights of the action network. Then when the
iteration of the internal cycle for the action network complete,
the final u(t) is obtained.

6) Firstly, judge whether the previous control is successful
or not. If it get failure, break out of the loop and start learning
again from the initial state, and vice versa, move on to the
next step.

7) Input u(t) into the control signal generation system,
obtain the corresponding control value and then update the
wind turbine system states, enter the next cycle.

In order to better quantify the ‘‘performance’’ of the output,
as shown in Fig.3, the critic network takes the input and
output of the action network as the input of the network at
the same time, and the output value J can approximate the
discounted total reward-to-go referring to the equation (11)
of accumulative reward. The approximate R(t) at time t can
be defined, as shown in equation (14).

R (t) = r (t + 1)+ α1r (t + 2)+ α2r (t + 3) . . . (14)

where R (t) is the value of the cumulative future reward at
time t, and α is the discount factor for the infinite-horizon
problem (0 < α < 1). α = 0.9 will be used in the imple-
mentations. r (t + 1) is the value of the external reinforcement
signal when the time is t+1.
The controller designed in this paper is based on [22] and

combinedwith the actual situation of thewind turbine system.
The detailed design process of the neural network will be
given in parts C and D.

C. CRITIC NETWORK
The output value J (t) of the critic network is used as the
approximate value of R(t) in (10) to predict the accumulative
‘‘reward-to-go’’ of the control output of the action network.

The TD algorithm updates the value function online, and it
will get the state value of the current state that only needs to
wait until the jump to the next state. However, there is an error
between the real value and the evaluated value. As it is an
update process, the purpose is to minimize the error between
the final predicted value and the actual value. Therefore,
the learning goal of the critic network in the controller is
to minimize the error between the amount of J (t) and the
real value function, while optimizing the future accumulative
‘‘reward-to-go.’’ It shows the parameter tuning diagram in
Fig.4.Thus, based on the above ideas, the prediction error for
the element of the critic is defined as equation (15).

ec (t) = αJ (t)− [J (t − 1)− r (t)] (15)

FIGURE 4. The schematic diagram for parameter tuning of the critic
network. (solid black line is the signal flow, the gray dashed line is the
parameter tuning path.)

The objective function to be minimized in the critic net-
work is shown in equation (16).

Ec (t) =
1
2
e2c (t) . (16)

Fig.5 is the construction of the critic network. It is a BP
neural network with a hidden layer. Where, {x1, x2, . . . ,xn}
and u are the input and output of the action network, respec-
tively. J is the output of the critic network. J (t) will be
obtained from equation (17)-(19).

qi (t) =
∑n+1

j=1
w(1)cij (t) xj (t) , i = 1, . . . ,Nh (17)
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FIGURE 5. The schematic diagram of the critic network using a
feedforward network with one hidden layer.

pi (t) =
1− exp−qi(t)

1+ exp−qi(t)
(18)

J (t) =
∑Nh

i=1
w(2)ci (t)pi(t) (19)

where
- qi is the ith hidden node input of the critic network,
- pi is the corresponding output of the ith hidden node,
- Nh is the total number of the hidden nodes in the critic

network,
- n+1 is the total number of inputs into the critic network,

including the action value u(t) from the action network,
- wc is the weight vector in the critic network.
According to the error propagation equation of the back-

propagation algorithm, and the chain rule, the adaptation of
the critic network is summarized as follow:

1)1w(2)
c (hidden to output layer)

1w(2)ci (t) = lc (t)

[
−
∂Ec (t)

∂w(2)ci (t)

]
= lc (t) [−αec (t) pi (t)] (20)

2)1w(1)
c (input to hidden layer)

1w(1)cij (t) = lc (t)

[
−
∂Ec (t)

∂w(1)cij (t)

]
= −αlc (t) ec (t)w(2)ci (t)

·[
1
2
(1−p2i (t))]xj(t) (21)

where lc (t) > 0 is the learning rate of the critic network at
time t , which usually decreases with time to a small value.

D. ACTION NETWORK
The action network expects that the mapping control value of
each output can make the control successful. The parameter
tuning diagram of the action network is shown in Fig.6.
In the preceding part of the text, ‘‘0’’ was defined as the
reinforcement signal for ‘‘success,’’ in order to satisfy the
Bellman equation and maximize the state value function,
the ultimate learning target denoted by Uc, is set to ‘‘0’’ in
the paradigm. Through observation, it is found that the prin-
ciple of the adjustment of the action network is to indirectly

FIGURE 6. The schematic diagram for parameter tuning of the action
network. (solid black line is the signal flow; the gray dashed line is the
parameter tuning path.)

back-propagate the error between the approximate J function
from the critic network and Uc. Let:

ea (t) = J (t)− Uc(t) (22)

The objective of updating the weights in the action network
is to minimize the following performance error measure:

Ea (t) =
1
2
e2a(t) (23)

The action network implemented by a feedforward net-
work is similar to the critic network that is shown in Fig.5.
Except that the inputs are system states and wind speed
disturbances, and the output is u (t). The relevant equations
of the action network are defined as follows:

mi (t) =
∑n

j=1
w(1)aij (t) xj (t) , i = 1, . . . , Nh (24)

ni (t) =
1− exp−mi(t)

1+ exp−mi(t)
(25)

v (t) =
∑Nh

i=1
w(2)ai (t)ni(t) (26)

u (t) =
1− exp−v(t)

1+ exp−v(t)
(27)

where
- mi is the ith hidden node input of the action network,
- ni is the corresponding output of the ith hidden node of

the action network,
- v is the ith output node input of the action network,
- u is the corresponding output of the ith output node of the

action network, control value,
- wa is the weight vector in the action network.
The number of inputs to the action network and the critic

network is different, and the input of the action network is
the difference value of the measured states and wind speed
disturbances of two adjacent steps. The action network adds
a transfer function to the output layer that the critic network
does not. Referring to the parameter update rules of the critic
network, and the parameter update rules of the action network
are summarized, as shown in equation (28)-(31).
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1)1w(2)
a (hidden to output layer)

1w(2)ai (t) = la (t) [−
∂Ea(t)

∂w(2)ai (t)
] (28)

∂Ea (t)

∂w(2)ai (t)
= ea (t)

[
1
2

(
1− u2 (t)

)]
ni (t)

·

∑Nh

i=1

[
1
2
w(2)ci (t)(1−p

2
i (t))w

(1)
ci,n+1 (t)

]
(29)

2)1w(1)
a (input to hidden layer)

1w(1)aij (t) = la(t)

[
−
∂Ea(t)

∂w(1)aij (t)

]
(30)

∂Ea (t)

∂w(1)aij (t)
= ea (t)

[
1
2

(
1− u2 (t)

)]
·w(2)ai (t)

[
1
2

(
1− n2i (t)

)]
xj (t)

·

∑Nh

i=1

[
1
2
w(2)ci (t)(1−p

2
i (t))w

(1)
ci,n+1 (t)

]
(31)

where la (t) > 0 is the learning rate of the action network at
time t .
In conclusion, normalization is executed in both networks

to confine the values of the weights into appropriate scope by
equation (32)-(33).

wa (t + 1) =
wa (t)+1wa(t)
‖ wa (t)+1wa(t)‖1

(32)

wc (t + 1) =
wc (t)+1wc(t)
‖ wc (t)+1wc(t)‖1

(33)

IV. SIMULATION
The simulation experimental environment is shown in
Table 1.

TABLE 1. Experimental environment.

In the simulation experiment, the dynamic model of the
wind turbine is shown in equation (3). By combining equa-
tion (1) and (2), the nonlinear differential equation of the
system can be solved, and obtain the current state of the
angular velocity of the wind rotor. The data of a 1.5MW large
variable-rotor wind turbine is used to test the effectiveness of
the proposed controller. The main parameters are shown in
the Table 2 as follows [23]:

The accurate mathematical model of wind speed is one
of the important conditions for evaluating the performance
of the variable pitch control system. Then, the wind speed
model adopted in this simulation can be obtained from

TABLE 2. Parameters for wind turbine.

equation (5)-(10). Table 3 shows the values of the parameters
of themodel, and T is the wind speed period. After simulation
in MATLAB, we can obtain a typical analog signal diagram
of wind speed in Fig.7.

FIGURE 7. A typical wind speed analog signal diagram based on the
ARMA model. (Average of 19m/s wind speed curve.)

The values and symbolic meanings of the learning param-
eters of the neural network in the controller are as the same as
the one in [22], which is the usual setup for neural networks
and depends on some prior experience. The specific settings
are as follows:

-lc (0) 0.3, initial learning rate of the critic network,
-la(0) 0.3, initial learning rate of the action network,
- lc(t) learning rate of the critic network at time t that

is decreased by 0.05 every five-time steps until it reaches
0.005 and it stays at 0.005 thereafter,

- la(t) learning rate of the action network at time t that
is decreased by 0.05 every five-time steps until it reaches
0.005 and it stays at 0.005 thereafter,

- Nc 50, internal cycle of the critic network,
- Na 100, internal cycle of the action network,
- T c 0.05, internal training error threshold for the critic

network,
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TABLE 3. Parameters for wind speed model.

- Ta 0.005, internal training error threshold for the action
network,

- Nh 6, number of the hidden nodes.
In the simulation, the target set is that the error between the

speed and the rated speed is within 0.05. If the goal is met,
the control is successful, that is, the reinforcement signal r(t)
is 0; otherwise, r(t) is 1.
The weight update of the action network and critic network

is realized through its internal cycle. In each step, the max-
imum number of parameter updates of each neural network
is the number of the set internal loop value (Na and Nc).
Alternatively, the training error of the neural network is less
than the set error threshold (Tc and Ta). This processing limits
the number of training for the neural network and to stop
training when the value reaches the predetermined threshold.

To observe the influence of different factors on the con-
troller, three implementation scenarios were studied in var-
ious settings. In Setting 1, the run consists of a maximum
of 1000 consecutive trials. It is considered successful if the
last trial (the number less than 1000) of the run has lasted
5000-time steps (with a step size of 0.02s). In Setting 2, the
run consists of a maximum of 2000 consecutive trials, and
the other parameters are the same as Setting 1. In Setting 3,
the step size is 0.01s, and the other parameters are the same
as Setting 1; if the last trial (the number less than 1000) of
the run has lasted 10000-time steps, this trial is considered
auspicious.

The proposed variable pitch robust controller, which is
based on reinforcement learning, has been evaluated, and it
summarizes the results in Table 4. The simulation results of
the experiments in Table 4 are the data averages of 100 simu-
lation experiments, and the initial state of each experimental
run is random. If a run is unbeaten, it then records the number
of trials. The number of trials in Table 4 is the average of
successful trials. The percentage of successful experiments
(out of 100) is also necessary to record.

TABLE 4. Performance evaluation of proposed variable pitch robust
controller.

According to the Table 4, compare the data onto Setting 1
and Setting 2, it can be concluded that if the learning chance
of the controller increase appropriately, the success rate of
the controller will increase obviously. By comparing Settings
1 and 3, it can also be concluded that the success rate of the
controller can be improved if the step size is appropriately
reduced while other Settings remain unchanged.

In the wind turbines system, the disturbance of the random-
ness of wind speed is significant, and the uncertain factors
more, so that the relationship between different states is dif-
ficult to find the regularity. However, the proposed controller
is required to seek out the association rules between differ-
ent states and their corresponding control actions to control
the stability of the system. Therefore, it is difficult for the
controller to reinforce the process of positive reinforcement.
Due to the randomness of wind speed and the existence of
uncertain factors, the time required for the controller to learn
successfully will also be different. Since the increase in the
maximum number of experiments will make the controller
have more chances to learn, the success rate of the controller
will increase. By narrowing the step size, the controller can
find the changing trend of the system state more quickly in
order to adjust the control action in time and to fluctuate the
output of the system within the specified range.

FIGURE 8. A typical schematic diagram of the speed trajectory during a
successful learning trial for the wind turbine. The solid line represents the
trajectory of the proposed controller; the dashed line is the rated speed
of the wind turbine.

Fig.8 is a typical schematic diagram of the speed trajectory
during a successful learning trial for the wind turbine. It car-
ries the simulation out under the premise that the wind speed
is higher than the rated wind speed. Combined with Fig. 7,
we can observe that the speed of the wind turbine fluctuates
within a tiny range of rated speed when the wind speed is
random with a large disturbance. Continue to observe that in
the gust wind speed section where the wind speed changes
sharply, the wind rotor speed can still be stable near its rated
value, and its error is within the objective error. Therefore,
the variable pitch robust controller based on reinforcement
learning proposed in this paper can effectively achieve reli-
able control and has good robustness.
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The evolution of the use of wind energy Cp during the con-
trol process of Fig. 9 can be observed. Under the circumstance
of random variation of wind speed and fluctuation of rotor
speed around the rating value, we can find a pattern that Cp
value will decrease when the wind speed increases; and Cp
value will increase when the wind speed decrease. Therefore,
Cp value can be adjusted to some extent by controlling the
stability of wind rotor speed, so that the power of wind turbine
can be adjusted accordingly.

FIGURE 9. The change curve of wind energy utilization cp during the
control process.

β, as the input of wind turbine, controls the stability of the
rotor speed. The curves of the input as shown in Fig.10. Then,
we can observe that the pitch angle has a smaller interval,
so its response time will be relatively short. This improves
the control accuracy to some extent.

In the past, some variable pitch controllers of wind turbine
proposed to control the power and rotate speed. The com-
parison between the data and simulation results shows the
advantages of the new controller in the context of controlling
errors. The relevant comparison of the new controller based
on reinforcement learning and the controllers in other litera-
tures is shown in Table 5. The error floating ratio is defined
as follows:

ga =
ea
ω∗

(34)

gb =
eb
ω∗
. (35)

where ga is the upper floating error ratio, gb is the lower float-
ing error ratio. ea represents the maximum value of the float-
ing error above the rated speed, that is, the value of the
floating number above the maximum rated speed minus the
rated speed. Similarly, eb represents the maximum value of
the floating error below the rated speed. ω∗ is the rated speed
of wind turbines. Where ga is the upper floating error ratio,
gb is the lower floating error ratio.

As can be seen from Table 5, compared with the previous
work, the controller proposed in this paper has a smaller error
between the wind rotor speed and the rated value, and its
stability is stronger. Wind speed changes at random and the
disturbance is large, but the control effect of the proposed
controller is proper, so the controller has strong robustness.

FIGURE 10. The change curve of pitch angle β during the control process.

TABLE 5. The floating error ratio between the proposed controller and
controllers from other literatures.

V. CONCLUSION
This paper combines adaptive control with optimal control
using computer intelligence technology; and introduces the
method from reinforcement learning to the adaptive con-
troller. By measuring the objective data of the system, it con-
verges to the optimal control solution in real-time.

When the operating state of thewind turbines deviates from
the stable point, it will significantly reduce the control effect
of the ordinary PID, and most of the pitch angle controllers
based on modern control theory are sometimes difficult to
implement. In this paper, a robust variable pitch controller
based on reinforcement learning is proposed. Of which the
purpose is to stabilize the output speed of the control system
at the rated speed when the wind turbine is in an environment
with higher wind speed than the rated speed. On the basis
of the simulation results, it is concluded that the control
performance of the proposed controller is better than others,
and system speed can be maintained at the rated rotor speed
basically; and it also controls the fluctuation in a small range.

However, the proposed controller still has some problems,
such as failure rate, the number of successful tests is large,
and it needs to be improved in terms of duration. The next
step should be to solve these issues, analyze more connection
between the dynamics of the system, and improve the training
of the neural networks to achieve the effect of increasing
the success rate and speeding up learning. In the following
research, I will further try to study the wind turbine model
under the action of wake interaction and tower shadow effect,
as well as the power level variation of the system at the
load side. On this premise, the design of the controller can
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minimize the consumption of the equipment, find the optimal
rotational speed of the wind turbine in different wind speed
segments, and achieve the optimal utilization rate of wind
energy of the wind turbine.

At the same time, the development of machine learning is
rapid, and new learning algorithms emerge endlessly. In the
process of research, to further solve problems that the conver-
gence success rate of machine learning in the control system,
different algorithms need to be tried to improve the design of
the controller. According to the advantages of the algorithms,
the algorithm is combined with practical application to design
better controllers to efficiently solve problems. While the
theory is developing, the practical application should keep up
with the theory. That is what must be carried out in the future.
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