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ABSTRACT An augmented coprime array systematically employs two sparse subarrays to produce a
large-scale difference co-array with attractive merits, such as enhanced degrees of freedom (DOFs) and
enlarged array aperture, whereas the interleaved subarrays are susceptible to mutual coupling. In this paper,
we propose an unfolded augmented coprime array (UACA) obtained by careful crafting of small sparse
subarrays to fill the holes in the difference co-array generated by unfolding operation. Specifically, UACA
can significantly reduce the number of sensor pairs with small spacing and hence inherently weaken the
mutual coupling effect. Meanwhile, an increase of the DOFs and improved direction of arrival (DOA)
estimation accuracy can be achieved in the presence of mutual coupling. As an application of UACA,
we propose a decoupled interference-plus-noise covariance matrix (INCM) reconstruction method for robust
adaptive beamforming (RAB) with UACA. Therein, mutual coupling coefficients are estimated based on the
remodeled contaminated steering vector and the noise subspace. The estimated mutual coupling matrix is
utilized to reconstruct the decoupled covariancematrix which in turn is used to obtain refinedDOA estimates,
interferer power estimates, and the desired INCM. Extensive simulation results are provided to verify the
effectiveness of UACA and the decoupled INCM reconstruction method for RAB.

INDEX TERMS Coprime array, mutual coupling, DOA estimation, robust adaptive beamforming.

I. INTRODUCTION
The small spacing between the adjacent antenna elements
in traditional dense arrays is typically limited to half wave-
length or less to avoid spatial aliasing, which leads to signifi-
cant mutual coupling and restricted array aperture. In general,
mutual coupling is intrinsically caused by complex electro-
magnetic interactions and is particularly severe for antenna
pairs with small separation. In practice, mutual coupling can
result in catastrophic performance degradation in the estima-
tion of essential system parameters, such as complex channel
gains [1] and directions of arrival (DOA) [2], [3]. To tackle
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this problem, the minimum redundancy array (MRA) [4]
was proposed to simultaneously obtain a sparse array struc-
ture which is less susceptible to mutual coupling, and to
yield a large difference co-array with more antennas than the
physical array for increased achievable degrees of freedom
(DOFs). But a closed form expression for the sensor positions
in MRA is not available, and it must be obtained through
numerical search.

In recent years, two new non-uniform sparse arrays, namely
the coprime array [5]–[14] and nested array [15]–[18], both
with closed form position expressions for the physical array
and difference co-array, have attracted much attention in the
field of DOA estimation and beamforming, as they can lead
to enhanced DOFs, enlarged array aperture and weakened
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mutual coupling. In particular, as indicated in [5], [6], [15],
O(T 2) DOFs can be obtained with only T antenna elements.
The typical two-level nested array can generate a hole-free
difference co-array, but incorporates one dense subarray with
inter-element spacing of half wavelength, which results in
undesired mutual coupling effect, as compared with coprime
array and MRA. In [6], an augmented coprime array (ACA)
was proposed which is composed of two sparse uniform
linear subarrays with inter-element spacing of Nλ/2 and
Mλ/2, where 2M and N are the number of sensors in
the two subarrays (N > M ), respectively, M and N are
coprime integers, and λ denotes the operating wavelength.
However, the two subarrays are interleaved and the resulting
physical coprime array still suffers from mutual coupling.
In contrast, in [12], [13], an unfolded coprime array (UCA)
was proposed where the minimum adjacent distance between
sensors is limited to multiple folds of half wavelength. In fact,
the UCA can be regarded as a special case of a generalized
coprime array, called CADiS [14], which introduces a dis-
placement between the subarrays. Nevertheless, dispersed
holes exist in the difference co-array generated by CADiS
while optimization methods, e.g. sparse representation (SR)
and compressed sensing (CS), are required to perform DOA
estimation with the non-uniform co-array [19]–[23]. Alterna-
tively, spatial smoothing technique and the Toeplitz method
can be employed to obtain an effective semi-definite covari-
ance matrix by selecting the consecutive parts in the dif-
ference co-array, where the two split consecutive co-arrays
of CADiS will damage the achievable aperture and hence
degrade the estimation performance. Subsequently, state-of-
the-art approaches, such as MUSIC, ESPRIT, PM, and their
variants can be applied to extract DOA estimates with the
consecutive co-array. It is noteworthy that the methods based
on SR and CS are also applicable to the consecutive co-array.

As one of the fundamental signal processing techniques,
adaptive beamforming has been extensively used in various
fields, such as radar, wireless communications and sonar,
to acquire a desired signal and simultaneously reject inter-
ferers with a different spatial signature [24]–[28]. Specifi-
cally, the well-known Capon beamformer can offer distin-
guished resolution and the capability of interference sup-
pression [29]. Nevertheless, it suffers from the model mis-
match and performance degradation caused by look direc-
tion errors, limited number of samples and mutual coupling.
In the past decades, various approaches have been intro-
duced to enhance the beamformer robustness, e.g., diagonal
loading (DL) [30], eigenspace processing [31], [32], worst-
case design [33] and interference covariance matrix recon-
struction [34]. It is indicated in [34] that beamformers based
on covariance matrix reconstruction can achieve remarkable
output signal-to-interference-plus-noise ratio (SINR) perfor-
mance, but are susceptible to mutual coupling effects. In [35],
to address this issue, a novel adaptive beamforming method
was proposed by utilizing the antenna elements to inherently
suppress the mutual coupling. In [36], the mutual coupling
coefficients were estimated by a subspace-based method,

allowing the calculation of a refined (compensated) beam-
forming weight vector. However, the aforementioned two
methods are developed for the uniform linear array (ULA),
which is characterized by limited DOFs and array aperture.
Alternatively, in [37], a coprime array-based robust adap-
tive beamforming (RAB) technique was proposed wherein
the covariance matrix is constructed by considering the dif-
ference co-array. Meanwhile, in [38], a related beamform-
ing algorithm was proposed to achieve a trade-off between
robustness and efficiency, whereby the coprime array is
decomposed into two subarrays and hence the achievable
DOFs are significantly reduced. Although the coprime array
inherently leads to a reduction of the mutual coupling effect,
these two approaches do not apply any compensation scheme,
so thatmutual coupling can still potentially degrade the beam-
former performance.

In this paper, we firstly propose an unfolded augmented
coprime array (UACA) obtained by careful crafting of small
sparse subarrays to fill the holes in the difference co-array
generated by the unfolding operation. As a result, UACA
can significantly decrease the number of sensor pairs with
small spacing, i.e. d, 2d, · · · , and hence inherently weaken
the mutual coupling effect in the case d = λ/2. Meanwhile,
an increase of the DOFs and improved DOA estimation
performance can be achieved. Furthermore, as a potential
application of UACA, we propose a decoupled interference-
plus-noise covariance matrix (INCM) reconstruction method
for RAB. By exploiting the improved DOA estimates and the
associated total noise subspace, the mutual coupling coeffi-
cients are calculated based on the remodeled contaminated
steering vectors. Subsequently, the estimatedmutual coupling
matrix is utilized to reconstruct the decoupled covariance
matrix, which in turned is used to obtain refined DOA esti-
mates, interferer power estimates, and the desired INCM.
Extensive simulation results are provided to demonstrate the
effectiveness of UACA and the decoupled INCM reconstruc-
tion method for RAB.

Specifically, the contributions of our work can be summa-
rized as follows.

(a) We propose an extended coprime array, namely the
UACA, where reduced mutual coupling, increased DOFs and
enhanced spatial resolution are highly desirable. Specifically,
we first unfold the interleaved subarrays in ACA to enlarge
the array aperture and decrease the number of sensor pairs
with small spacing, which are the main cause of the mutual
coupling. We carefully design a small sparse subarray to fill
the holes in the difference co-array of UCA, which leads to
increased DOFs as compared with ACA and UCA.

(b) We derive closed form expressions for the physical
locations of the UACA antennas and consecutive co-array and
the DOFs. In addition, we prove that only one sensor pair
in the UACA can produce a small separation of md for any
integer m ∈ {1, 2, · · · ,M − 1}, except in the case of evenM
where one additional sensor pair exists with Md/2.

(c) We apply the proposed UACA to adaptive beamform-
ing in the presence of mutual coupling. In addition to the
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inherent capability of the UACA to suppress mutual coupling,
we remodel the contaminated steering vector and estimate
the mutual coupling matrix by exploiting the orthogonality
between the signal and total noise subspaces.

(d) We use the estimated mutual coupling matrix to com-
pensate for the contamination in the received signal and
formulate a decoupled covariance matrix optimization to esti-
mate the powers of the interferers. Finally, the refined INCM
is utilized to construct the adaptive beamformer weight
vector.

The rest of the paper is outlined as follows. In Section II,
we provide some fundamental reviews of sparse array signal
processing and RAB. In Section III, we introduce the pro-
posed UACA and derive the closed-form expressions of the
sensor locations in the UACA and associated subarrays and
for the achievable DOFs. In Section IV, we present the decou-
pled INCM reconstruction method for RAB with UACA.
In Section V, we provide numerical simulations to prove
the effectiveness of UACA and the proposed INCM method
for adaptive beamforming. Section VI finally concludes this
paper.
Notations:We use upper-case (lower-case) bold characters

to represent matrices (vectors). (·)T , (·)∗ and (·)H , respec-
tively, stand for the transpose, conjugation and conjugate
transpose of a matrix or vector. diag{v} generates a diagonal
matrix which utilizes the vector v as its diagonal elements
while diag{V } takes the principal diagonal elements of matrix
V to construct a diagonal matrix. 〈a1, a2〉 denotes an integer
set {a ∈ Z |a1 ≤ a ≤ a2} and Z = {0,±1, · · · } is the
set of integers. length{v} represents the number of elements
in vector v and bac rounds a to the nearest integer, where
bac ≤ a. E{·} denotes the expectation operator and min{·}
is the minimization operator. vec(A) is the vectorization
operator to stack the columns of a matrix A and ◦ denotes
Khatri-Rao product. ‖·‖F denotes the Frobenius norm. IT ∈
RT×T denotes the identity matrix with ones at the principal
diagonal.

II. PRELIMINARIES
In this section, we briefly review sparse array signal process-
ing and adaptive beamforming, as needed in the sequel.

A. DATA MODEL
Assume that K far-field incoherent and uncorrelated signals
impinge on an array with T sensors and distribution set Sd =
dS, where d = λ/2 is the unit spacing and S = {dj|dj ∈
Z, j = 1, 2, · · · ,T }. The output of physical array can be
expressed by

x(t) = As(t)+ n(t), t ∈ 〈1,L〉 (1)

where s(t) = [s1(t), s2(t), · · · , sK (t)] ∈ CK×1 is the sig-
nal vector, n(t) ∈ CT×1 is the white Gaussian noise with
mean zero and variance σ 2

n which is independent of the
signals and L represents the number of snapshots. A =
[a(θ1), a(θ2), · · · , a(θK )] ∈ CT×K denotes the directional

matrix with columns, i.e. steering vectors, is defined by

a(θk ) = [e−jπd1 sin θk , e−jπd2 sin θk , · · · , e−jπdT sin θk ]T (2)

where θk is the azimuth angle of the k-th signal (k =
1, 2, · · · ,K ).

The covariance matrix of the received signal is defined by

Rx = E
{
x(t)xH (t)

}
= ARsAH + σ 2

n IT (3)

where the signal covariance matrix is defined by Rs =
E
{
s(t)sH (t)

}
= diag

{
σ 2
1 , σ

2
2 , · · · , σ

2
K

}
and σ 2

k stands for
the power of the k-th signal. IT ∈ RT×T denotes the iden-
tity matrix with ones at the principal diagonal. In practice,
the covariance matrix Rx is calculated with finite number of
snapshots by

R̂x =
1
L

L∑
t=1

x(t)xH (t) (4)

Definition 1: (co-arrays). For a given physical array with
distribution set Sd = dS, the difference co-array Dd and
consecutive co-array Ud are defined by

Dd = dD = {(di − dj)d
∣∣di, dj ∈ S }

Ud = dU = d 〈D1,D2〉 ⊆ Dd (5)

where U contains the largest number of continuous integers
in D and is specified by D1,D2. Then the consecutive DOF
(cDOF) is given by cDOF = D2 − D1 + 1. Note that the
difference co-array can possess more than one consecutive
co-array, whereas the cDOF remains constant.
Definition 2: (weight function). For a physical array with

distribution set Sd = dS, the weight function w(l) denotes
the number of sensor pairs producing the l-th virtual sensor
in the difference co-array

M(l) = {(n1, n2) |n1 − n2 = l ∈ D; n1, n2 ∈ S }
w(l) = length{M(l)} (6)

where M(l) incorporates all the sensor pairs producing the
l-th virtual sensor.

According to [15], the difference and consecutive co-array
can be obtained by vectorizing the covariance matrix as

v = vec(Rx) = (A∗ ◦ A)η + σ 2
n vec(IT ) (7)

where η = [σ 2
1 , σ

2
2 , · · · , σ

2
K ]

T . By reshaping v, we can obtain
the equivalent received signal of the difference co-array [15].

B. ROBUST ADAPTIVE BEAMFORMING
In this part, we define s1(t) as the desired signal and the other
K − 1 signals as interferers. Then the array output can be
represented by

x(t) = d(t)+ i(t)+ n(t)

= a(θ1)s1(t)+ Aisi(t)+ n(t) (8)
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TABLE 1. ULA, ACA and UCA.

where d(t) = a(θ1)s1(t) is the desired signal vector,
i(t) = Aisi(t) represents the interference vector and Ai =
[a(θ2), · · · , a(θK )] ∈ CT×(K−1).

The output of a beamformer is given by

y(t) = wHx(t) (9)

where w ∈ CT×1 is the corresponding weight vector. The
SINR of the array output is employed to evaluate the beam-
former performance and is defined by

SINR =
σ 2
1

∣∣wHa(θ1)∣∣2
wHRi+nw

(10)

where the INCM Ri+n is given by

Ri+n = E
{
[i(t)+ n(t)][i(t)+ n(t)]H

}
=

K∑
k=2

σ 2
k a(θk )a

H (θk )+ σ 2
n IT (11)

The MVDR beamformer can be constructed by solving the
following minimization problem

min
w

wHRi+nw subject to wHa(θ1) = 1 (12)

where the solution is given by [29]

w =
R−1i+na(θ1)

aH (θ1)R
−1
i+na(θ1)

(13)

In practice, Ri+n is usually unavailable and is substituted by
the estimated covariance matrix R̂x

wSMI =
R̂−1x a(θ1)

aH (θ1)R̂
−1
x a(θ1)

(14)

where wSMI is the sample matrix inversion (SMI)
beamformer [39] .

C. MUTUAL COUPLING
According to [35], [36], [40]–[42], the mutual coupling coef-
ficient between the adjacent sensors is inversely proportional
to the inter-element spacing and it can be neglected in the
case of the sensor pair with a few folds of half wavelength.
Specifically, a B-banded model of mutual coupling for ULA
is defined as

[C]p,q =

 0

c|dp−dq|

∣∣dp − dq∣∣ ≥ B∣∣dp − dq∣∣ < B
(15)

where [C]p,q denotes the element in C for the p-th row and
q-th column and dp, dq ∈ S. B represents the threshold of
mutual coupling, i.e., the mutual coupling can be ignored
when the inter-element spacing is larger than Bd . In the
presence of mutual coupling, the array output in (1) needs
modifying as

x̃(t) = CAs(t)+ n(t) (16)

where C ∈ CT×T . Additionally, the coupling leakage is
employed to measure the intensity of mutual coupling and
is defined by [16]

LC =
‖C − diag{C}‖F

‖C‖F
(17)

where ‖·‖F denotes the Frobenius norm.

III. UNFOLDED AUGMENTED COPRIME ARRAY
In this section, we first review the ACA and UCA to give
the motivation of this paper. Subsequently, we introduce the
proposed UACA and offer the closed form expressions of the
physical UACA, consecutive co-array and achievable cDOFs.

A. REVIEW
As illustrated in [6], ACA is composed of two interleaved
subarrays with 2M and N sensors (N > M ), where the
distances of adjacent sensors are Nd and Md , respectively.
One example of ACA is exhibited in the second column of
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Table 1 along with the difference co-array, weight function
and coupling leakage, whereM = 3, N = 4 and B = 3, c0 =
1, c1 = 0.9e−jπ/3, c2 = 0.75ejπ/4 [36]. It is shown clearly
that multiple sensor pairs are involved in the physical ACA
with high coupling leakage of 0.5953. In [12], [13], the two
interleaved subarrays are unfolded and UCA is proposed to
suppress the mutual coupling. In the third column of Table 1,
an example of UCA is provided, whereM = 3,N = 4. In par-
ticular, wemake a replication of subarray withM = 3 sensors
in UCA to better illustrate the relation between UCA and
ACA, where the concept of unfolding is still straightforward.
Specifically, according to Table 1, UCA possesses no sensor
pair with separation of md (m ∈ 〈1, 2〉), which effectively
eliminate the sensitivity against mutual coupling. However,
according to the second row, the difference co-array of UCA
has scattered holes, which crucially harms the consecutive
co-array and hence the achievable cDOFs.

B. UNFOLDED AUGMENTED COPRIME ARRAY
Definition 3 (Unfolded Augmented Coprime Array):

UACA consists of three subarrays with 2M , N and bM/2c
sensors, respectively, where M , N are coprime integers and
M < N . The total number of sensors in UACA is T =
N+2M−1+bM/2c. The distance between adjacent sensors
in the subarray with N sensors is ds1 = Md and the other
two subarrays have ds2 = Nd , where d = λ/2 and λ is
the wavelength. Specifically, the distribution set Sd = dS
of UACA is provided

S1 = 〈0, (N − 1)〉M
S2 = 〈−(2M − 1), 0〉N
S3 = 〈1, bM/2c〉N
S = S1 ∪ S2 ∪ S3

(18)

Property of UACA:
(a) The consecutive co-array of UACA is specified by
〈−Da,Da〉, whereDa = 2MN+M−1 and cDOF = 2Da+1.
(b) Weight function.
For odd M , w(l) = 1 when l ∈ 〈1,M − 1〉.

For even M , w(l) =

 1,

2,

l ∈ 〈1,M − 1〉 & l 6= M/2

l = M/2
.

Illustratively, we give a prototype ofUACA in Table 2 along
with the difference co-array and weight function, whereM =
3,N = 4 and the mutual coupling coefficients are the same as
Table 1 with B = 3. As shown in the first row of TABLE 2,
UACA can be configured by assembling UCA and a small
subarray with bM/2c = 1 sensor, where resultantly, only
one sensor is interleaved with the subarray with N = 4
sensors. According to the weight function of UACA in the
third row of Table 2, only one sensor pair with separation
of md (m ∈ 〈1, 2〉) is involved in the physical array, which
means the resulting UACA can inherently reduce the mutual
coupling and in this case, the coupling leakage of UACA
is 0.4641 < 0.5953. In addition, finite number of mutual
coupling coefficients are inserted in the B-banded mutual

TABLE 2. UACA.

TABLE 3. Decoupled INCM Reconstruction Method for RAB with UACA.

coupling model. Furthermore, in the second row of Table 3,
the holes in the central part of difference co-array generated
by UCA are filled by the small subarray with bM/2c = 1
sensor, which contributes to the increase of achievable cDOFs
of UACA, as compared with ACA and UCA.

C. DISCUSSION
The proposed UACA utilizes an additional sparse subarray
with bM/2c sensors to fill the central holes in the differ-
ence co-array of UCA and hence can obtain a significant
increase of DOFs. In Fig. 2, we provide the cDOF comparison
of coprime arrays, i.e. UACA, ACA and UCA, where we
set N = M + 1. As UACA incorporates an extra subar-
ray with bM/2c sensors, we concatenate the small subarray
with the 2M -sensor subarray in the ACA and UCA for fair
comparison, where we give an exapmle of ACA and UCA,
repsectively, in Fig. 1 with M = 3, N = 4. It is clearly
shown from Fig. 2 that UACA has an advantage over ACA
and UCA in cDOF especially with large number of total
sensors. In addition, we provide the coupling leakage results
in Fig. 3, where the mutual coupling coefficients are the
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FIGURE 1. Considered ACA and UCA, where M = 3, N = 4. (a) ACA.
(b) UCA.

FIGURE 2. CDOF comparison of coprime arrays, where N = M + 1.

FIGURE 3. Coupling leakage comparison of different array, where
N = M + 1.

same as Table 1 with B = 3, which verifies that UACA
takes weaker mutual coupling effect than ACA and the nested
arrays which are constructed according to [43], [44]. In the
simulation part, the merits of UACA, i.e. the enhanced array
aperture andmitigatedmutual coupling, both contribute to the
improved DOA estimation performance.

IV. ROBUST ADAPTIVE BEAMFORMING WITH UACA
In this section, we first calculate the initial DOA estimates
by utilizing the contaminated output in (16) and construct-
ing a semi-definite covariance matrix by Toeplitz technique.
Then the mutual coupling coefficients are estimated based
on the initial DOA estimates and the orthogonal relation
between the remodeled steering vector and the total noise
subspace. Finally, a decoupled covariance matrix is con-
structed based on the estimated mutual coupling matrix to
obtain refined DOA estimates and power estimates of the
interferers.

A. INITIAL DOA ESTIMATION
As shown in Table 2, UACA offers a large array aperture due
to the sparse arrangement and is inherently less susceptible to
mutual coupling. Consequently, we can directly employ the
output in (16) to obtain the well performed DOA estimates.

Assume that UACA is constructed as Definition 3, where
three subarrays have 2M , N and bM/2c sensors, respectively.
The total number of sensors in UACA is T = N + 2M − 1+
bM/2c. According to (4), the contaminated covariancematrix
can be calculated by

R̃x =
1
L

L∑
t=1

x̃(t)x̃H (t) (19)

Then we reshape R̃x via vectorization as [6], [15]

ṽ = vec(R̃x) (20)

The equivalent observation vector ṽc ∈ C(2Da+1)×1 of the
consecutive co-array by UACA can be obtained by selecting
the rows from ṽ corresponding to the distribution set Ud .
Instead of performing spatial smoothing technique with addi-
tional complex multiplications, we directly construct a semi-
definite covariancematrix based on Toeplitz technique as [45]

R̃v =


ṽc(Da + 1) ṽc(2) · · · ṽc(1)

ṽc(Da + 2) ṽc(Da + 1) · · · ṽc(2)
...

...
. . .

...

ṽc(2Da + 1) ṽc(2Da) · · · ṽc(Da + 1)


(21)

where Da = 2MN + M − 1 is provided in Definition 3.
As proved in [45], R̃v is equivalent to the spatial smooth-
ing covariance matrix and MUSIC spectra are identical by
exploiting R̃v and the spatial smoothing covariance matrix if
the noise and signal subspaces are specified by eigenvalues.
The initial well-performed DOA estimates, denoted by θ̂ inik
(k ∈ 〈1,K 〉), can be directly obtained by searching the
peaks of MUSIC spectra which are experimentally verified
by numerical simulations in Section V.

B. MUTUAL COUPLING COEFFICIENTS ESTIMATION
In this subsection, we use the initial DOA estimates to calcu-
late the mutual coupling coefficients.

To begin with, in the following derivation, we assume that
B = M for simplification, which is unnecessary in practi-
cal circumstances. The contaminated steering vector can be
rewritten by

ãp(θ ) = Pã(θ )

= Ap(θ )u(c, θ) (22)

where P is the permutation matrix which is dependent on
the inter-element spacing relation within the array structure,
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c contains the mutual coupling coefficients and

Ap(θ ) =


af (θ )

ab1 (θ )
. . .

abJ+1+1(θ )

 (23)

u(c, θ) =



1

1+ cb1β
db1+1−db1

cb2−1β
db2−1−db2 + 1+ cb2β

db2+1−db2

...

cbJβ
dbJ−dbJ+1 + 1


(24)

where af (θ ) ∈ CF×1 is a sub-vector of ã(θ ) corresponding to
the F uncontaminated elements and dbj ∈ S, β = e−jπ sin θ .
According to the orthogonal relation between the signal

and noise subspace, we can get

ãH (θ )EnEHn ã(θ ) = 0 (25)

where En is the noise subspace of R̃x . By multiplying the
permutation matrix P, (25) can be transformed into

ãHp (θ )(P
−1)HEnEHn P

−1ãp(θ )

= uH (c, θ)AHp (θ )(P
−1)HEnEHn P

−1Ap(θ )u(c, θ)

= uH (c, θ)Z (θ )u(c, θ) = 0 (26)

where

Z (θ ) = AHp (θ )(P
−1)HEnEHn P

−1Ap(θ ) (27)

According to [36], based on the DOA estimates θ̂ inik
(k ∈ 〈1,K 〉) in Section IV.A, the estimate of u(c, θ̂ inik ) is
related to the eigenvector of the smallest eigenvalue of
Z (θ̂ inik ), represented by ζ . With the constraint

[
u(c, θ̂ inik )

]
1
=

1, we can obtain û(c, θ̂ inik ) by

û(c, θ̂ inik ) = ζ subject to [ζ ]1 = 1 (28)

where [ζ ]1 stands for the first element of ζ .
Furthermore, we can directly calculate ĉ based on (a.9) in

Appendix B and then construct the estimatedmutual coupling
matrix Ĉ . As the available number of mutual coupling coef-
ficients is limited in the mutual coupling matrix of UACA, ĉ
relys on accurate DOA estimates. Resultantly, in this paper,
we employ the estimated DOA with maximumMUSIC spec-
trum peak to calculate the mutual coupling coefficients.

As we have obtained Ĉ , we can mitigate the mutual cou-
pling effect by

x̃d(t) = Ĉ−1x̃(t)

≈ d(t)+ i(t)+ Ĉ−1n(t)

= a(θ1)s1(t)+ Aisi(t)+ Ĉ−1n(t) (29)

In practice, we can directly calculate the decoupled covari-
ance matrix by

R̃d = Ĉ−1R̃x(ĈH )−1 (30)

where refined DOA estimates can be obtained based on R̃d,
denoted by 2̂r

=

[
θ̂ r1 , θ̂

r
2 , · · · , θ̂

r
K

]
.

C. POWER ESTIMATION OF INTERFERERS
Up to now, the decoupled covariance matrix and refined
DOA estimates are obtained which are utilized to estimate
the powers of desired signal and interferers.

Different from the joint covariance matrix optimization
in [38] which dismisses the cross correlation of subarrays
and neglects the mutual coupling effect, we formulate the
decoupled covariance matrix optimization with R̃d as [46]

min
Rs

∥∥∥R̃d − A(2̂r )RsAH (2̂r )− σ̂ 2
n IT

∥∥∥2
F

subject to Rs≥0

(31)

where σ̂ 2
n is the power estimate of noise which can be

approximately computed by averaging the minimum T − K
eigenvalues of R̃x . Moreover, the solution to the inequality-
constrained optimization problem in (31) is given by

R̂s = diag
{[
AHv Av

]−1
AHv r

}
= diag

{
[σ̂ 2

1 , σ̂
2
2 , · · · , σ̂

2
K ]

T
}

(32)

where

Av =
[
vec

(
a(θ̂ r1 )a

H (θ̂ r1 )
)
, · · · , vec

(
a(θ̂ rK )a

H (θ̂ rK )
)]

(33)

r = vec
(
R̃d − σ̂ 2

n IT
)

(34)

Subsequently, the INCM can be computed by

R̂i+n =
K∑
k=2

σ̂ 2
k a(θ̂

r
k )a

H (θ̂ rk )+ σ̂
2
n IT (35)

According to theMVDR principal, the beamformer weight
for UACA can be constructed by

wUACA =
R̂−1i+na(θ̂

r
1 )

aH (θ̂ r1 )R̂
−1
i+na(θ̂

r
1 )

(36)

In addition, we summarize the detailed steps of the pro-
posed decoupled INCM reconstruction method for RABwith
UACA in Table 3.

V. NUMERICAL SIMULATIONS
In this section, we assume that a 17-sensor UACA is
employed with M = 5 and N = 6. In Table 4, we calcu-
late the coupling leakage and cDOFs for the corresponding
configurations. Firstly, we give the root mean square error
(RMSE) results to evaluate the DOA estimation performance
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TABLE 4. Coupling leakage and cDOF of different configurations.

FIGURE 4. RMSE results of considered arrays versus SNR, where T = 17,
K = 17 and L = 500.

with UACA via Toeplitz-MUSIC algorithm [45]. RMSE is
defined by

RMSE =

√√√√√ 1
200K

 200∑
q=1

K∑
k=1

(
δk − δ̂k,q

)2 (37)

where δk = (sin θk )/2 is the theoretical normalized DOA of
the k-th signal and the estimate for the q-th trial is represented
as δ̂k,q = (sin θ̂k,q)/2. Subsequently, we assess the proposed
method for RAB with UACA, where the array output SINR
results, defined by (10), are exhibited.

A. RMSE PERFORMANCE
In this simulation, we exhibit the RMSE results of Toeplitz-
MUSIC algorithm with UACA, ACA and nested arrays,
where δk = −0.2 + 0.4 × (k − 1)/16, k ∈ 〈1, 17〉, K =
17 and the search step is 0.001. In particular, we adopt the
mutual coupling coefficients defined in [16]–[18] to provide
the RMSE results for fair comparison, where c0 = 1, c1 =
0.4ejπ/3, cn = c1e−j(n−1)π/8/n (n ∈ 〈2,B− 1〉) and B =
100. In Fig. 4, the proposed UACA can obtain the supe-
rior DOA estimation performance to other configurations via
Toeplitz-MUSIC algorithm, where L = 500. It is revealed
that UACA can remarkably mitigate the mutual coupling
even with less cDOFs than nested arrays which suffer from
redundant sensor pairs with small inter-element spacing. It is
noteworthy that super nested arrays (SNAs), i.e. SNA 2 and
SNA 3, outperform the augmented nested arrays (ANAs),
namely ANA I2 and ANA II2, with reduced cDOFs, which
shows that ANAs are sensitive to strong mutual coupling in
the case of each sensor contaminated by the mutual coupling

FIGURE 5. RMSE results of considered arrays versus snapshot, where
T = 17, K = 17 and SNR = 20dB.

FIGURE 6. SINR output of three beamformer versus input SNR, where
L = 100.

effect. Furthermore, in Fig. 5, the RMSE results versus num-
ber of snapshots are given, where SNR = 20dB. It depicts
that the RMSE performance of Toeplitz-MUSIC algorithm
with UACA improves and takes advantages over that with the
other configurations.

B. SINR OUTPUT
In this simulation, we assume that one desired signal with
θ1 = 10◦ and two interferers with θ2 = −20◦ and θ3 = 40◦

impinge on UACA with M = 5 and N = 6, where the
interference-to-noise ratio (INR) is set to INR = 30dB,
B = 5 and c0 = 1, c1 = 0.9e−jπ/3, c2 = 0.75ejπ/4,
c3 = 0.45e−jπ/10, c4 = 0.15e−jπ/6 [36]. The SMI beam-
former [39] and DL beamformer [30] are employed to mea-
sure the proposed method, where the DL factor is set to
10σ̂ 2

n . In Fig. 6, the SINR outputs versus input SNR of three
beamformers with UACA are exhibited in the scenario of
exactly known desired signal, where the prefix of MC in the
figure means that the beamformer is directly constructed by
the contaminated received signal while MC-free is to utilize
the decoupled received signal with the estimated mutual cou-
plingmatrix. It is shown obviously that the three beamformers
all achieve SINR output enhancement because the mutual
coupling effect is alleviated by the utilization of the esti-
mated mutual coupling matrix. SMI beamformer encounters
performance degradation when SNR is larger than −5dB as
in this case, the output covariance matrix is contaminated
by the desired signal component. The proposed beamformer
outperforms the other two beamformers because the INCM
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FIGURE 7. SINR output of three beamformer versus input snapshot,
where SNR = 0dB.

FIGURE 8. Beampatterns of three beamformers and the zoom-in figures,
where SNR = 5dB, INR = 30dB and L = 100.

is reconstructed with well performed estimates of DOAs and
powers of the interferers, where the desired signal component
is considerably rejected in INCM. Moreover, as UACA can
inherently alleviate the mutual coupling effect, the proposed
beamformer obtained by the contaminated received signal
is superior to the other two beamformers even with the aid
of the estimated mutual coupling. Furthermore, the SINR
output of the proposed beamformer is very close to the
theoretical SINR output when the decoupled received sig-
nal is employed. In addition, the SINR outputs of the three
beamformers versus snapshots are captured in Fig. 7, where
SNR = 0dB, and we can also conclude that the proposed
beamformer gains superior performance with the estimated
mutual coupling matrix.

C. BEAMPATTERNS
In this part, we depict the beampatterns of the three beam-
formers with decoupled received signal in Fig. 8 and zoom-in

figures for better illustration, where input SNR = 5dB,
INR = 30dB and L = 100. It is shown clearly that the
proposed beamformer outperforms the other two beamform-
ers, where the nulls and mainlobe can accurately target to the
interferer and the desired signal. SMI beamformer gets the
worst performance due to the contamination of output covari-
ance matrix by the desired signal. Futhermore, although the
DL beamformer can have the similar mainlobe to the pro-
posed beamformer, it fails to null the interferer with θ2 =
−20◦. In addition, the proposed beamformer can suppress the
interferers with the deepest nulls at θ2 = −20◦ and θ3 = 40◦.

VI. CONCLUSION
In this paper, we propose the UACA by unfolding the inter-
leaved subarrays of ACA and elaborately designing a small
sparse subarray to fill the holes in difference co-array gen-
erated by unfolding operation. As a result, UACA can sig-
nificantly decrease the number of sensor pairs with small
spacing and hence inherently alleviate the mutual coupling
effect. Simultaneously, an increase of DOFs and improved
DOA estimation performance can be achieved which are both
attractive in massive MIMO systems. In addition, we apply
UACA to RAB and propose a decoupled INCM reconstruc-
tionmethod. By exploiting the initial DOA estimates obtained
from the contaminated output, the mutual coupling matrix
is estimated to construct the decoupled covariance matrix,
where the refined DOA estimates can be obtained. Further-
more, a decoupled covariance matrix optimization is pro-
posed to estimate the powers of interferers and then obtain
the decoupled INCM. Extensive simulation results corrob-
orate the effectiveness of UACA and the decoupled INCM
reconstruction method.
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