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ABSTRACT Feature weighting is used to alleviate the conditional independence assumption of Naïive
Bayes text classifiers and consequently improve their generalization performance. Most traditional feature
weighting algorithms use general feature weighting, which assigns the same weight to each feature for all
classes. We focus on class-specific feature weighting approaches, which discriminatively assign each feature
a specific weight for each class. This paper uses a statistical feature weighting technique and proposes a
new class-specific deep feature weighting method for Multinomial Naïve Bayes text classifiers. In this deep
feature weighting method, feature weights are not only incorporated into the classification formulas but they
are also incorporated into the conditional probability estimates of Multinomial Naïve Bayes text classifiers.
Experimental results for a large number of text classification datasets validate the effectiveness and efficiency
of our method.

INDEX TERMS Multinomial Naïve Bayes text classifiers, class-specific feature weighting, statistic, deep
feature weighting.

I. INTRODUCTION
With the explosive growth of text information on the Internet,
automated processing of massive text data has become a chal-
lenge. Automatic text classification is used to automatically
assign a textual document to a pre-specified set of classes,
which can help people retrieve, query, and utilize information.
Current common text classification algorithms include [8]:
Naïve Bayes [2], K-nearest neighbors [3], decision trees [4],
support vector machine (SVM) [5], and recent deep learning
methods such as convolutional neural networks (CNNs) [6],
recurrent neural networks (RNNs), and so on [7], [28].

Among these algorithms, the Naïve Bayes model is widely
used in classification because it is simple, efficient, and easy
to understand. The multinomial Naïve Bayes (MNB) model
is a widely used text classification model. The MNB model
assumes that each document is drawn from a multinomial
distribution of words and that all features are conditionally
independent with given values of the class variable [9]. This
feature-independence assumption is rarely true in reality.
To weaken this assumption, scholars have improved the
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Naïive Bayes model from five main aspects: feature weight-
ing [10]–[13], [20], feature selection [14]–[17], instance
weighting [19], [23], instance selection [21], [22], and struc-
ture extension [18]. This study focuses on feature weighting
approaches for MNB text classifiers.

Generally, feature weighting algorithms are mainly
divided into two categories: general feature weighting and
class-specific feature weighting. General feature weighting
approaches assign the same weight to each feature for all
classes. Class-specific feature weighting approaches dis-
criminatively assign each feature a specific weight for each
class [25]. Most traditional feature weighting algorithms use
general feature weighting. However, the importance of fea-
tures for different classes should be different; therefore, class-
specific feature weighting is more reasonable than general
feature weighting.

With regard to general feature weighting, there exist
some approaches dramatically improved the Naïve Bayes
text classifiers. Jiang et al. [11] and Wang et al. [13] pro-
posed a CFS-based general feature weighting approachwhich
firstly conducts a correlation-based feature selection(CFS)
process to select a best feature subset and then assigns larger
weights to the features in the best feature subset and smaller
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weights to others. Zhang et al. [1] proposed a decision tree-
based feature weighting approach for Naïve bayes text clas-
sifiers, in which the weight of a feature is set to 5

√
d
if the

minimum depth at which the feature is tested in the built tree
is d , and 1 if the feature does not appear in the built tree.
Kim et al. [8] proposed an approach to improve the Naïve
Bayes text classifier with semantic tensor space model for
document representation.

With regard to class-specific feature weighting, a few
approaches have been investigated. Jiang et al. proposed
a new class-specific feature weighting approach for Naïve
Bayes classifiers; they showed that class-specific feature
weighting is more fine-grained than general feature weight-
ing for Naïve Bayes [25]. Tang et al. used a probabilistic
density-function projection theorem to build a class-specific
MNB classifier [24], [31]. Youn introduced a class-dependent
feature weighting approach as a new feature-ranking method
for Naïve Bayes [26]. Li proposed an enhanced Naïve Bayes
classifier for text classification by weighting terms based on
a variant χ2 statistic, denoted by Rwc [12], [30].

Most of these existing approaches, however, do not incor-
porate the learned feature weights into the conditional prob-
ability estimates of Bayesian classifiers; this incorporation is
included in deep feature weighting [11]. Wang et al. [22] and
Zhang et al. [1] combined general feature weighting and deep
feature weighting and showed that deep feature weighting
can further improve the performance of Naïve Bayes text
classifiers, but their approaches suffer from relative high
execution time. To the best of our knowledge, there are
no studies incorporating deep feature weighting into class-
specific feature weighting for MNB classifiers.

Motivated by previous research achievements, in this
study, we attempt to propose a new class-specific deep
feature weighting method based on statistic metrics for
MNB text classifiers. Our method not only assigns each
feature a specific weight for each class but also esti-
mates the conditional probabilities of text classifiers by
deeply computing feature weighted frequencies from training
data. Extensive experimental results show that our class-
specific deep feature weighting approach outperforms other
competitors.

The rest of this paper is organized as follows. In Section II,
we describe the basic concepts of Naïve Bayes text classifiers
and related feature weighting techniques for text categoriza-
tion. In Section III, we propose our class-specific deep fea-
ture weighting approach. Section IV reports the experimental
setup and results in detail. Conclusions and future works are
presented in Section V.

II. RELATED WORK
A. MULTINOMIAL NAÏVE BAYES TEXT CLASSIFIER
Given a test document represented by a vector 〈a1, a2, . . . ,
am〉, according to the definition of multinomial distribution

and Bayes’ rule, MNB classifies using (1).

c(d) = argmax
c∈L

[
logP(c)+

m∑
i=1

fi log p(ai|c)

]
(1)

where m is the number of features, ai is the value of the ith

feature, L is the set of all class labels, c represents the value
that the class variable can take, and fi is the frequency count
of the word ai in a document d . The prior probability p(c) and
the conditional probability p(ai|c) are generally estimated by
(2) and (3), respectively.

P(c) =

n∑
j=1
δ(cj, c)+ 1

n+ nc
(2)

P(ai|c) =

n∑
j=1

fjiδ(cj, c)+ 1

m∑
i=1

n∑
j=1

fjiδ(cj, c)+ m
(3)

where n is the number of training documents, nc is the number
of classes, m is the number of different words in all of the
documents, cj is the class label of the jth training document, fji
is the ith word’s frequency count in the jth training document,
and δ(cj, c) is a binary function, which is defined as (5).

δ(cj, c) =

{
1, ifcj = c
0, otherwise

(4)

The MNB text classifier is based on the assumption that
all features are conditionally independent, which is rarely
true in reality. To relax the independence assumption, feature
weighting approaches have been proposed considering two
aspects: general feature weighting and class-specific feature
weighting.

General feature weighting assigns the same weight value
to each feature for all classes as follows (5).

c(d) = argmax
c∈L

[
logP(c)+

m∑
i=1

Wifi log p(ai|c)

]
(5)

whereWi ∈ R+ represents the weight of the ith feature (word)
ai for all classes.
Class-specific feature weighting assigns each feature a

specific weight for each class as follows (6).

c(d) = argmax
c∈L

[
logP(c)+

m∑
i=1

Wicfip(ai|c)

]
(6)

where Wic ∈ R+ represents the weight of the ith feature
(word) ai for a specific class c. In (5), we need to learn a
m-dimensional feature weight vector, which is composed of
Wi. In (6), a m × nc feature weight matrix is required to be
learned, which is composed of Wic. As we can see, (5) is the
special case of (6) where for different classes,Wic = Wi [25].

Thus, learning a feature weight matrix (Wic)m×nc is crucial
to improving Naïve Bayes text classifiers by class-specific
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TABLE 1. Contingency table for class and term ai .

feature weighting. To learn the weight matrix (Wic)m×nc , sta-
tistical feature weighting approaches have been widely used.
Kim et al. proposed a χ2 statistics weighted approach based
on a multivariate Poisson Naïve Bayesian model [20], [27].
Ng et al. proposed a variant of the χ2 statistic metric. Li et al.
proposed another modified χ2 statistic feature weighting
approach based on a MNB model [12]. In the next section,
we provide a brief introduction of these statistical feature
weighting approaches.

B. STATISTICAL FEATURE WEIGHTING APPROACHES
The χ2 statistic feature weighting approach measures the
degree of dependency between a term and a specific
class by measuring the difference between the observed
co-occurrence frequencies and the expected frequencies
according to an initial hypothesis (the hypothesis is that the
term and class are independent of each other) [12], [29].
Then, it assigns the feature weight values based on the term-
class dependency captured by the χ2 statistic. To analyze
the relationship between a term ai and a class c, a two-way
contingency table is created as shown in Table 1. The row
variable (class variable) has two possible values {c, c}. The
column variable (term, i.e., feature variable) has two possible
values {ai, ai}. A is the number of documents that contain
the term ai and belong to the class c, B is the number of
documents that do not contain the term ai and belong to the
class c, C is the number of documents that contain the term
ai and do not belong to the class c, and D is the number of
documents that neither contain the term ai nor belong to the
class c. Let N be the total number of documents, Eai,c be
the expected frequency, and Nai,c be the actual observation
frequency.

When the term and class are independent of each other,
the expected frequency Eai,c can be calculated as (7).

Eai,c =
(A+ C)(A+ B)

N
(7)

The χ2 statistic is defined as (8).

χ2
ai,c =

∑
ai

∑
c

(Nai,c − Eai,c)
2

Eai,c
(8)

Equation (8) shows that the greater the difference between
Nai,c and Eai,c is, the greater the χ

2 statistic is, and the more
informative the term ai is for the class c. Therefore, χ2

ai,c can
be used as the weight value of the feature ai for the class c,
i.e., Wi,c = χ

2
ai,c.

Equation (8) can be interpreted with the probabilities as
follows (9).

χ2
ai,c =

N (p(ai, c)p(ai, c)− p(ai, c)p(ai, c))2

p(ai)p(ai)p(c)p(c)
(9)

where p(ai, c) represents the probability that the documents
are in class c and contain the term ai, p(ai) represents the prob-
ability that the documents contain the term ai, and p(c) rep-
resents the probability that the documents are in the class c.

Ng et al. observed that the power of 2 at the numerator
has the effect of equating the roles of the probabilities that
indicate a positive correlation between ai and c and those
that indicate a negative correlation [32]. A variant of the χ2

statistic called the correlation coefficient was proposed as
follows [29].

CCai,c =

√
N (p(ai, c)p(ai, c)− p(ai, c)p(ai, c))

√
p(ai)p(ai)p(c)p(c)

(10)

where (CCai,c)
2
= χ2

ai,c, and CCai,c can be viewed as a ‘one-
sided’ χ2 metric.
Li et al. thought that the χ2 statistic and correlation coef-

ficient have bias against the classes with small sizes when a
term is uniformly distributed across multiple classes. He pro-
posed another statistical metric named Raic, which can mea-
sure whether the dependency between a term and a class is
positive or negative, then weights the terms based on the
positive term-class dependency captured by Raic [12]. The
Raic for a term ai and a class c is defined as (11).

Rai,c =
Nai,c
Eai,c

=
p(ai, c)p(ai, c)− p(ai, c)p(ai, c)

p(ai)p(c)
(11)

If Rai,c > 1, then there is a positive dependency between
the term ai and the class c, andWic is set to beRaic. Otherwise,
if Rai,c ≤ 1, there is a negative dependency between the term
ai and the class c, and Wic is set to be 1. (Note that when
Rai,c ≤ 1, Wic is set to be 1 instead of Raic.)

Our experimental results show that among these
approaches, the feature weighting approach based on Raic
performs best. However, there still exist certain limitations
in the Raic metric. In the next section, we use an example
to indicate the related problem and introduce a new feature
weighted measure denoted by CRaic.

III. CLASS-SPECIFIC DEEP FEATURE WEIGHTED
MULTINOMIAL NAïVE BAYES TEXT CLASSIFIERS
Example: Let us consider a corpus with 63 labeled documents
{d1, d2, . . . , d63}, falling into three classes c1, c2, c3. In total,
there are three distinct features a1, a2, a3 in the corpus. The
details are shown in Table 2.

According to (11), the values of the statistical metric Raic
are listed in Table 3.

Equation (11) can be rewritten as (12).

Rai,c =
p(ai|c)
p(ai)

(12)
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TABLE 2. 63 documents in 3 classes with 3 terms.

According to the corpus shown in Table 2,

Ra1,c1 =
p(a1|c1)
p(a1)

=
100/100
41/63

= 1.5366 (13)

Ra1,c2 =
p(a1|c2)
p(a1)

=
20/21
41/63

= 1.4634 (14)

Because Ra1,c1 > Ra1,c2 , we may obtain the conclusion
that a1 is more relevant to the class c1 than to the class c2.
In fact, the distribution in Table 2 shows that although all of
the documents in the class c1 contain a1, only 1/41 of the doc-
uments containing a1 belong to c1. 20/21 of the documents in
the class c2 contain a1 and 20/41 of the documents containing
a1 belong to c2. Thus, we argue that a1 is less relevant to the
class c1 than to the class c2. The problem of Rai,c is that it
overvalues the distribution of the term ai in a specific class,
but it does not consider the class distribution of documents
containing the term ai.
When we use statistical feature weighting approaches

to measure the degree of dependency between a term ai
and a specific class c, we should consider the following
information:

(1) The distribution of the term ai in the training
documents.

(2) The distribution of the term ai in a specific class c.
(3) The class distribution of the documents containing a

term ai.
(4) The class frequency of the documents containing a term

ai, i.e., the number of classes of the documents containing a
term ai.

The statistical metric Rai,c only considers the first two
aspects but ignores the last two. On the basis of the Rai,c
statistic method, we propose a novel measure CRai,c by
introducing two new factors: the class distribution of the
documents containing a term ai and the class frequency factor.
By introducing these two new factors, the new statistical
metric CRai,c can alleviate the problem of Rai,c and avoid the
information loss caused by the negative correlation.

The new statistical metric CRai,c for a term ai and a class
c is defined as (15)

CRaic = Raic
p(ai, c)
p(ai)

ln(2+
nc
kai

) (15)

where p(ai, c) represents the probability of the documents that
are in the class c and contain the term ai, and p(ai) represents
the probability of the documents that contain the term ai.

TABLE 3. Statistical values Rai c for the terms in classes.

TABLE 4. CRai ,c statistical values for the terms in classes.

p(ai, c)/p(ai) is used to denote the class distribution of the
documents containing a term ai. The greater p(ai, c)/p(ai) is,
the greater is the dependency between the term ai and the
class c. nc is the number of classes, and kai is the number of
classes of documents that contain the term ai. The greater kai
is, the smaller is the dependency between the term ai and the
class c.

According to (15), for the example in Table 2, the values of
the statistic metric CRai,c are calculated and listed in Table 4.

From Table 4, it is reasonable that the value of the statis-
tic metric CRa1,c2 (0.7842) is larger than the value of the
statistic data CRa1,c1 (0.0412). In addition, Table 3 shows
that both Ra1,c3 (0.7496) and Ra2,c2 (0.1429) are less than 1.
This means that the dependencies between a1 and c3 and
between a2 and c2 are considered negative; thus, both the
weight value of a1 for the class c3 and the weight value of
a2 for the class c2 are assigned as 1. Although Ra1,c3 (0.7496)
and Ra2,c2 (0.1429) exhibit a large difference, their weight
values are the same. This may be lead to unreliable results
and some useful information may also be lost. When our
statistic metric CRaic is used to calculate CRa1c3 (0.4018) and
CRa2c2 (0.0085), the CRaic values are different. From the dis-
tribution given in Table 2, we know that the term a3 is a "rare
word"; thus, CRa3c3 (2.4730) is larger than CRa2c3 (1.7459)
andCRa1c3 (0.4018). This example shows thatCRaic describes
the term-class dependency more accurately than the Raic
statistic metric.

Then, we set the weight value Waic to be CRaic. After
obtaining the weight value of each feature ai for the class c by
employing (15), we apply the weight valueWaic to (6) and (3)
to improve the classification performance of MNB. That is,
(6) and (3) are now modified as the following (16) and (17),
respectively.

c(d) = argmax
c∈L

[
logP(c)+

m∑
i=1

CRaicfi log p(ai|c)

]
(16)
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Algorithm 1 CDFW-MNB (D, d)
Require: a training document set D, a test document d
Ensure: the class value c(d) of the test document d
1: Estimate the prior probability p(c) of each class c by (2)
2: Estimate the class-specific feature weights Wai,c of each

feature ai for the specific class c by (15)
3: Estimate the conditional probability p(ai|c) of each fea-

ture ai given the class by (17)
4: For the test document d , predict its class value c(d) using

(16)
5: Return the class value c(d) of d .

P(ai|c) =

n∑
j=1

CRaicfjiδ(cj, c)+ 1

m∑
i=1

n∑
j=1

CRaicfjiδ(cj, c)+ m
(17)

where ai(i = 1, 2, . . . ,m) is the ith feature in the document d .
When we apply the feature weighting approach to MNB

text classifiers, we call the resulting model a class-specific
deep feature weighted MNB text classifier (CDFW-MNB).
The detailed algorithm procedure is shown in Algorithm 1.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP AND BENCHMARK DATA
The purpose of these experiments is to validate the clas-
sification performance of MNB text classifiers by employ-
ing our proposed class-specific deep feature weighting
approach. We implemented our proposed CDFWMNB and
other competitors MNB, χ2MNB, CCMNB, RwcMNB,
CFSMNB and DTWMNB on the WEKA platform [34].
We conducted our experiments on 19 widely used text clas-
sification benchmark datasets published on the main web-
site of the WEKA platform. A detailed description of these
19 datasets is provided in Table 5. The algorithms compared
and their abbreviations are as follows:

• MNB: Multinomial Naïve Bayes model [9].
• χ2MNB:MNBmodel employing χ2 statistic-based fea-
ture weighting [12].

• CCMNB: MNB model employing correlation coeffi-
cient statistic-based feature weighting [29].

• RwcMNB: MNB model employing the Rwc statistic-
based feature weighting approach [12].

• CFSMNB: MNB model employing the CFS-based fea-
ture weighting approach [11], [13].

• DTWMNB: MNB model employing the decision tree
weighting approach [1].

• CDFWMNB: MNB model employing the CRaic class-
specific deep feature weighting.

In our experiments, the classification accuracy of each
algorithm on each dataset is obtained via 10 runs of 10-fold
cross-validation. Runs with the various algorithms are carried
out on the same training sets and evaluated on the same test

TABLE 5. Datasets used in our experiments.

sets. In particular, the cross-validation folds are the same for
all the experiments on each dataset [13].

B. EXPERIMENTAL RESULTS AND ANALYSIS
The detailed experimental results are presented in Tables 6-9.
Table 6 shows the classification accuracy of each algorithm
on each dataset. The averages of the classification accuracy
are listed at the bottom of the tables. These averages across all
datasets provide a gross indication of the relative performance
in addition to other statistics [1].

We then employed a Friedman test to compare multiple
algorithms over multiple datasets [1], [28]. The Friedman
test is a nonparametric equivalent of the repeated-measures
ANOVA [33]. The average rankings of the algorithms
obtained by applying the Friedman test are also summarized
at the bottom of Table 6. With 7 algorithms and 19 datasets,
FF is distributed according to the F distribution with 6 and
114 degrees of freedom. FF calculated from the average
rankings is 14.837934, which is greater than the critical value
of F(6, 114) for α = 0.05 (The table of critical values can be
found in any statistical book). Therefore, we reject the null
hypotheses.
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TABLE 6. Classification accuracy (%) comparisons of MNB versus
χ2MNB, CCMNB, Rwc MNB, CFSMNB, DTWMNB and CDFWMNB.

Then, we proceeded with a post-hoc Holm’s test to further
analyze the pairs of algorithms that are significantly differ-
ent. Table 7 reports the obtained z-values and p-values and
also indicates the pairs of algorithms that are significantly
different.

Simultaneously, we take advantage of KEEL data min-
ing software tool to complete Wilcoxon signed-ranks test
for thoroughly comparing each pair of algorithms [28]. The
Wilcoxon signed-ranks test is a non-parametric statistical test,
which ranks the differences in performance of two algorithms
for each dataset ignoring the signs, and compares the ranks for
positive and negative differences. Table 8 reports the obtained
results.

These experimental results show that our proposed class-
specific deep feature weighting approach significantly out-
performs its competitors. Our results can be summarized as
follows:

(1) Table 6 shows that, in terms of the average classification
accuracy, our class-specific deep feature weighting approach
is clearly better than its competitors. The accuracy of our
algorithm is 86.05%, that of MNB is 82.44%, that of χ2MNB
is 81.42%, that of CCMNB is 82.92%, that of RwcMNB is

TABLE 7. Classification accuracy post-hoc comparisons.

82.99%, that of CFSMNB is 81.60%, and that of DTWMNB
is 83.54%.

20156 VOLUME 8, 2020



S. Ruan et al.: Class-Specific Deep Feature Weighting for Naïve Bayes Text Classifiers

TABLE 8. The classification accuracy comparisons computed by the
Wilcoxon test.

TABLE 9. Elapsed training time(s) comparisons for MNB versus χ2MNB,
CCMNB, Rwc MNB, CFSMNB, DTWMNB and CDFWMNB.

(2) According to the Friedman test with the post-hoc
Holm test based on the classification accuracy, the average

rankings of all approaches are respectively: CDFWMNB
(2.02),MNB (4.5),RwcMNB (6), CCMNB (4.4), and χ2MNB
(4.25),CFSMNB (4.42) andDTWMNB (2.4).We can see that
our feature weighting approach CDFWMNB is notably better
than all of the other existing competitors.

(3) Both the classification accuracy post-hoc Holm com-
parisons in Table 7 and theWilcoxon signed-ranks test results
in Table 8 show that our class-specific deep feature weight-
ing approach performs significantly better than its competi-
tors: MNB, RwcMNB, CCMNB, and χ2MNB and CFSMNB.
This fully verifies the universal applicability of our feature
weighting approach CDFWMNB for awide range of domains
and data characteristics.

In our another group of experiments below, we com-
pare our approach to MNB, RwcMNB, CCMNB, χ2MNB,
CFSMNB and DTWMNB in terms of elapsed training time
in seconds. Our experiments are performed on a desktop PC
Quad core CPU @4.20 GHz and 16GB RAM. The detailed
comparison results are shown in Table 9. From these compar-
ison results, we can see that:

(4) In terms of the average elapsed training time, our fea-
ture weighting approach CDFWMNB runs as fast as its com-
petitors: MNB, RwcMNB, CCMNB, χ2MNB. But in terms of
average classification accuracy, our approach CDFWMNB is
notably better than MNB, RwcMNB, CCMNB, χ2MNB.

(5) our feature weighting approach CDFWMNB runs
significantly faster than the approaches CFSMNB and
DTWMNB, especially for large datasets. The CFSMNB
approach runs most slowly, because it uses a best first heuris-
tic search to find a best feature subset from the whole feature
space, which incurs an approximately quadratic time com-
plexity.

In a word, in terms of average classification accuracy our
CDFWMNB approach is obviously better than their competi-
tors, and in terms of the average elapsed training time, our
CDFWMNB approach runs much faster than the approaches
CFSMNB and DTWMNB. Our class-specific deep feature
weighting approach CDFWMNB keeps the best balance
between classification accuracy and execution time.

V. CONCLUSION AND FUTURE WORK
Most traditional feature weighting algorithms use general
feature weighting in Naïve Bayes text classifiers. This study
focuses on class-specific feature weighting approaches for
Naïve Bayes text classifiers. In this study, we used the results
of χ2 statistic feature weighting algorithms to improve MNB
text classifiers. We propose a new class-specific deep feature
weighting method for MNB text classifiers, which not only
assigns each feature a specific weight for each class but also
estimates the conditional probabilities of the text classifier by
deeply computing feature weighted frequencies from training
data. Experimental results for a large number of text classi-
fication datasets validate the effectiveness and efficiency of
our method.

In recent years, class-specific feature weighting has
attracted increased attention from scholars. For the future
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work, we will test whether our approach is effective for
structured data. In recent years, deep learning has shown
surprised performance in many fields, and we also will focus
on more advanced text classifiers methods, such as CNN and
RNN.
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