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ABSTRACT Electroencephalogram (EEG) contains important physiological information that can reflect
the activity of human brain, making it useful for epileptic seizure detection and epilepsy diagnosis. However
visual inspection of large amounts of EEG by human expert is time-consuming, and meanwhile there are
often inconsistences in judgement between physicians. In this paper, we develop a unified framework for
early epileptic seizure detection and epilepsy diagnosis, which includes two phases. In the first phase,
the signal intensity is first calculated for each data point of the given EEG, enabling the well-known
autoregressive moving average (ARMA)model to characterize the dynamic behavior of the EEG time series.
The residual error between the predicted value of learned ARMA model and the actually observed value
is used as the anomaly score to support a null hypothesis testing for making epileptic seizure decision.
The epileptic seizure detection phase can provide a quick detection for anomaly EEG patterns, but the
resulting suspicious segment may include epilepsy or other disordering EEG activities thus required to be
identified. Therefore, in the second phase, we use pattern recognition technique to classify the suspicious
EEG segments. In particular, we propose a new and practical classifier based on a pairwise of one-class
SVMs for epilepsy diagnosis. The proposed classifier requires normal and epilepsy data for training, but can
recognize normal, epilepsy and even other disorders that would not be trained in the training samples. This
point is practical andmeaningful in real clinic scenarios as the input EEGmay include other brain disordering
diseases besides of epilepsy. We conducted experiments on the publicly-available Bern-Barcelona and
CHB-MIT EEG database, respectively, to validate the effectiveness of the proposed framework, and our
method achieved classification accuracy of 93% and 94% on them. Comprehensive experimental results,
outperforming the state-of-the-arts, suggest its great potentials in real applications.

INDEX TERMS Seizure detection, epilepsy diagnosis, change detection, one-class SVM, EEG diagnosis.

I. INTRODUCTION
Epilepsy is one of the most common neurological disorders.
Approximately 1% of the world’s population has epilepsy,
and up to 5% of people may have at least one seizure during
their lifetime [1]. This serious disorder is associated with
recurrent, unprovoked epileptic seizures resulting from a sud-
den disturbance of brain function which is characterized by
abnormal firing of cortical neurons recruiting neighboring
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cells into a critical mass [2]. The seizure occurs at random to
impair the normal function of the brain, most of the patients
also suffer from numerous other unforeseeable side effects,
such as memory loss, depression and other psychological
disorders [3], [4]. Therefore it is important to detect and
identify the epilepsy at an early stage, so as to help user take
appropriate actions/health-care in advance to avoid accidental
consequences and ensure the patient’s health. As a result,
automated seizure detection and epilepsy diagnosis from
electroencephalogram (EEG) signals has become an active
research topic in past decades [5]–[8].
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Epileptic seizure can be considered as disordered brain
activities that differ from those that are usual under nor-
mal EEG status [9]. In this sense, seizure detection can be
accomplished as a novelty detection. Lots of methods have
been proposed based on statistical analysis. A well estab-
lished mechanism is described as follows: a regressive model
(e.g., linear model [10], [11], logistic model [12], gaussian
model [13], [14]), is first used to characterize the dynamic
behavior of EEG signals; temporal anomalies are then cal-
culated to quantify the possibilities that indicates a change
happening; hypothesis testing is finally adopted for decision
making.

Meanwhile, epilepsy diagnosis has been also attracted
much attention in the area of pattern recognition [15]–[17].
It normally relies on feature extraction and pattern classifi-
cation techniques. Typical features include amplitude, ampli-
tude average, duration, half-wave duration, sharpness ratios,
slope attributes of half-waves and so on. However, due to the
fact of that EEG may perform in an arbitrary way, the infor-
mation we obtained from these features is very limited.
To overcome this shortcoming, high-level features have been
proposed based on time-frequency analysis, non-linear anal-
ysis and chaos theory [18]–[20], typically including power
spectrum density, entropy and sample entropy, etc. By using
these features, kinds of pattern recognition methods can be
used as a classifier e.g., support vector machine (SVM),
artificial neural network (ANN), or other alternatives such as
extreme learning machine (ELM) [21], and so on.

However, as a preliminary assumption, to apply the
seizure detection and epilepsy diagnosis separately on the
continuously monitored EEG signal may lead to several
limitations,

a) Seizure detection relying on auto-regression anal-
ysis, although implemented very fast, lacks of
post-processing mechanism to identify the epilepsy
because other disorders (and even a normal physiologi-
cal movement) would be also detected as a seizure [22].
Therefore there exist many false alarms in those detected
results for real EEG signals.

b) Epilepsy diagnosis heavily relies on feature extraction
and pattern classification that has been discussed in the
above. Accurate and effective feature extraction guaran-
tees reliable diagnosis but needs large time to compute,
making the common use of sliding-window strategy
limited for continuous EEG diagnosis in practice [23].

A unified and more practical framework that combines
seizure detection and epilepsy diagnosis together, is thus
more accepted in recent studies [24], [25]. This paradigm
overcomes important limitations of existing methods regard-
ing the epileptic seizure detection and epilepsy diagnosis as
two separate problems. It detects suspicious epilepsy seg-
ments in the seizure detection phase, and then performs the
diagnosis on detected segments to identify the epilepsy. It can
provide more accurate and reliable diagnosis results with a
high computational efficiency. This paper is therefore focused

on the epileptic seizure detection and epilepsy diagnosis with
a unified framework.

In the rest of this paper, Section II provides an overview of
the proposed framework; Section III describes the proposed
method; Experimental validations are given in Section IV;
Section V shows some discussions; Conclusion is finally
made in Section VI.

II. OVERVIEW OF THE PROPOSED FRAMEWORK
As shown in Fig. 1, the proposed framework mainly includes
three steps, described as below.
1) EEG signal preprocessing: the mean filter, as a com-

monly method for signal smoothing, is first used here
to reduce the noise in raw EEG data.

2) Epileptic seizure detection: the autoregressive moving
average model (ARMA) [26] is used to learn the reg-
ularity of past EEG data, and the residual errors are
calculated as temporal anomalies that can characterize
the dynamics of EEG signals. As such, the deviation of a
newEEG input from the observed data can be quantified.
Finally, a common null hypothesis testing is performed
to produce the seizure detection result.

3) Epilepsy diagnosis: the detected suspicious EEG
segments may include epilepsy, normal status and even
other unknown disordering brain activities. To consider
this issue, we propose a new and practical classifier
based on a pairwise of one-class SVMs for epilepsy
diagnosis. The proposed classifier requires normal
and epilepsy data for training, but recognizes normal,
epilepsy and even other disorders that were not included
in training. This point is practical and verymeaningful in
real clinic scenarios as the input EEG signal may include
other brain disordering diseases besides of epilepsy.
The proposed classifier can recognize these disordering
patterns without a prior training for them, offering users
a more accurate monitoring for the given EEG inputs.

III. METHODOLOGY
This section describes the detail of main technologies used in
the framework.

A. SIGNAL PREPROCESSING
As a pre-processing, we accomplish this task by applying a
smoothing filter on the raw collected EEG signal, i.e., xt ←
x(t) ∗ G where x(t) is the observed value of EEG signal at
time t and G is a filter (a mean filter with a length of 1× 30
in experiments), ∗ is the convolution operation.

B. EPILEPTIC SEIZURE DETECTION
In order to detect the EEG status change that are from normal
to abnormal due to the presence of epileptic seizure, two steps
are performed as follows: (1) employ a mathematical model
to characterize the dynamic behavior of EEG signal, and (2)
perform a null hypothesis testing for decision making.

1) DATA MODELING OF EEG SIGNALS
It is a common practice to employ an appropriate model
that can extract dynamic characteristics of a given EEG
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FIGURE 1. Overview of the proposed framework.

signal [27]. It is however not a trivial task due to the high
non-stationarity of EEG signals. Signal intensity, as a basic
EEG waveform that can reflect the cortical electrical activity,
has been demonstrated promising performance on EEG sig-
nal processing [28]. Given a data stream of EEG signal up to
time N , i.e., X = {x1, . . . , xt , . . . , xN }, the signal intensity is
calculated for each data point by,

vt =

√√√√ 1
L

t∑
t−L+1

x2i (1)

where vt is the computed signal intensity at time t, and L is
the length of local window for calculation (in this paper we
set L= 5 empirically). As such, the original EEG data stream
is now represented by a sequence of corresponding intensities
i.e., X : V = {v1, . . . , vt , . . . , vN }. This representation
enables to extract linearity characteristics of EEG signals and
the ARMA model is employed to achieve this end, described
as,

ṽt = m1vt−1 + m2vt−2 + . . .+ mpvt−p + εt , (2)

where ṽt represents the predicted value at time t, and mi(i =
1, 2, 3, . . . , p) is the i-th ARMA coefficient, εt is an indepen-
dent and identically distributed (i.i.d) white noise.

There are two issues in the use of this model for EEG signal
analysis: (1) determination of the order p of model, and (2)
estimation of coefficients i.e., {m1,m2, . . . ,mp}.

(1) The order of the ARMA term is usually chosen by
using the Akaike Information Criteria (AIC) [29]. In this
paper, a prior order range {p∗1, . . . , p

∗
k} from 1 to 10 is

firstly confirmed empirically in order to reduce the com-
putation burden in the search of optimal p.

(2) Based on {p∗1, . . . , p
∗
k}, the least square method is used

(given in Eq. 3) to estimate the corresponding model
coefficients at each order,i.e.,

{m1,m2, . . . ,mp} ← min
N∑

t=p+1

[vt − ṽt ]2. (3)

(3) The optimal order p, together with corresponding
model coefficients i.e., {m1, . . . .mp} can be confirmed

Algorithm 1 Algorithm for Model Identification
Require: Collected data sequence V
Ensure: V is a linear data stream
while

do Set a prior range {p∗1, . . . , p
∗
k};

for pi = p∗1 : p
∗
k do

Compute {m1,m2, . . . ,mpi} by least squaremethod
by Eq. 3;

Compute AIC value by akaike information criteria
by Eq. 4;

end for
Output the optimal p and {m1,m2, . . . ,mp} corre-

sponding to the minimum value of AIC ;
Break;

end while

with Akaike Information Criteria (AIC) by finding the
minimum AIC value given as below,

AIC(p) = Nln

∑
σi

2

N
+ 2p (4)

where N is observation number and σ is the deviation
between predicted data and real data.

The procedure of the above algorithm is provided in
Algorithm I. Based on a prior estimation, the model
construction process of an example EEG Ind0005 from
Bern-Barcelona database [30] is shown in Fig. 2. The opti-
mal p is confirmed as 6 and its corresponding coefficients
i.e., {m1, . . . .mp}, can be also confirmed. We accomplish
this estimation by an off-line calculation process and use
the estimated p directly in the execution of the proposed
framework.

Based on the optimal value of p together with
corresponding coefficients {m1, . . . .mp}, the ARMA model
can be constructed to describe the dynamic characteristics of
the given EEG signal X .

2) DECISION MAKING
Once the ARMA model is constructed, we can use it to
quantify the deviation between the predicted value and the
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FIGURE 2. The prior estimation of the optimal p.

real value, and then a null hypothesis can be tested for
decision making.

1) Anomaly score calculation: we first compute the tem-
poral series st which can reflect the possibility that
a change occurs. The temporal series st is calculated
as the deviation between the predicted data and the
real data, for the computed signal intensity i.e. V =
{v1, . . . , vt , . . . , vN } where vt is the real value of the
sequence at time t . We denote the predicted value
according to ARMA model at time t using ṽt . The st
can be thus calculated as the mean value of the residual
error between the actual value and the predicted value in
a local extent (set as five neighboring data points),

st =

∑t+2
i=t−2 |vi − ṽi|

5
. (5)

2) Null hypothesis testing: on the basic of s(t), we can
employ a certain test to produce the detection result.
Those methods can divided into real-time detection
methods and retrospective detection methods. The retro-
spective methods, e.g., cumulative sum (CUSUM) test,
Fc metric, generalized likelihood ratio test (GLRT), and
Friedman test, can produce accurate change detection
results but it needs a larger observation delay. As the
seizure detection we consider in this paper is expected to
detect the seizure at an early stage, we used the real-time
detection method. With an assumption of Gaussian dis-
tribution [31], [32], the common 3σ criterion is used
here to test a null hypothesis in order to realize the

real-time detection.

H0 :| st − µt−1 | ≤ 3σt−1; No change detected

H1 :| st − µt−1 | > 3σt−1; Change detected (6)

where µt−1 is the mean value and σt−1 is the standard
deviation of the set of {s1, s2, . . . , st−1}. H0 means no
change occurs at time t, and H1 indicates that a change
occurs.

A EEG status change implies an occurring of seizure or
other disorder activities that are different with the normal
state. The seizure detection phase can provide a quick detec-
tion for anomaly EEG patterns, but the resulting suspicious
segment may include epilepsy or other disordering EEG
activities thus required to be identified. To achieve this end,
as shown in Fig. 3, a suspicious segment Xc which begins
at the detected time c and lasts for a fixed length of l ′,
i.e., Xc = {xc, xc+1, . . . , xc+l′}, is formed for further analysis
to identify the epilepsy.1

C. EPILEPSY DIAGNOSIS
Once an EEG status change has been detected, an automatic
analysis of the detected EEG suspicious segment is performed
to identify the epilepsy based on pattern recognition tech-
niques, which includes two steps: (1) feature extraction, and
(2) EEG classification.

1) FEATURE EXTRACTION
The raw data of suspicious EEG segment is data redundant,
it is therefore necessary to extract explanatory parameters
from the raw EEG data. As a promising tool to analyze
the non-stationary signal, EMD, which is proposed in [33],
has been reported good results in EEG signal processing
[34]. As an adaptive signal decomposition method, EMD
can achieve a high temporal resolution and high frequency
resolution simultaneously, which is a great improvement than
the classic Short Time Fourier Transform (STFT) [35]. And
the decomposed results depend only on the signal itself.
In comparison with wavelet transform (WT), EMD is also
advantageous because it does not require the selection of
basis functions [36]. Conventionally, EMD decomposes a
given signal Xc into intrinsic oscillatory components, called
intrinsic mode functions which is represented by imfi(t) using
a sifting process, and a residual left after the sifting process,
i.e. rn(t). The formulation of EMD is given in Eq.(7),

Xc = 6n
i=1imfi(t)+ rn(t) (7)

However, the imfi(t)s obtained from EMD are always too
large and complex as the feature vectors. To deal with this
shortcoming, SVD is thus used so as to obtain the stable and
simple features as used in [37]. Further more, we give an
analysis of the energy from each imf , and Fig. 4 shows that
the first five imf s contain most of the energy of the given
signal and were used to extract singular values in our method.

1The size of window was set as 10240 empirically in the experiment.
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FIGURE 3. The suspicious segment confirmation.

FIGURE 4. Selection of informative imf s.

The generated singular value vector i.e. [σ1, σ2, σ3, σ4, σ5]
indicates magnitudes of component signals, and each compo-
nent signal represents a different spectrum component of the
original signal, which supports an informative and sufficient
representation for different EEG patterns [38].

Based on EMD and SVD, for a suspicious EEG segment
Xc, we can use the corresponding singular value vectors, i.e.
[σ1, σ2, σ3, σ4, σ5] as features that will be fed to diagnosis.

2) EPILEPSY RECOGNITION
The one-class SVM can be used to diagnose the suspicious
EEG segment for epilepsy identification. The one-class SVM
is a method to deal with these highly nonlinear classification
problems [39]. As a binary classifier, its training can be
implemented only using the data of one class. Based on this,

most methods which using one-class SVM are trained by nor-
mal data [40], and the classification is normal or abnormal,
where the output of ‘1’ indicates normal and ‘−1’ indicates
abnormal.

Recall that, there would exist many other brain disordering
diseases in real clinic scenarios [41], [42]. It is however
impossible to collect all kinds of data to train a classifier
considering the specificity and diversity of different disorder-
ing diseases in EEG signals. To overcome this shortcoming,
in this paper we propose a new classifier for epilepsy recog-
nition. The proposed classifier is composed of a pairwise
one-class SVMs, as depicted in Fig. 5, the training and testing
procedure of the proposed classifier is given as follows:
• In the training phase, the first one-class SVM in the pro-
posed pairwise classifier is trained with epilepsy EEG
samples, and the second SVM is trained with normal
EEG samples.

• In the testing phase, we feed the suspicious EEG seg-
ments to the proposed pairwise classifier, the outputs of
the first trained one-class SVM is given as: 1 indicates
an epilepsy status and −1 indicates non-epilepsy; the
outputs of the second trained one-class SVM is given
as: 1 indicates normal and −1 indicates abnormal.

• The decision is made by a combination of the outputs
of the pairwise one-class SVMs that is given in Tab. 1.
The diagnosis result for the suspicious EEG segment
is finally confirmed as: {1,−1} indicates epilepsy EEG
status, {−1, 1} indicates normal, {−1,−1} indicates
other unknown brain disordering activities that are not
included in the training samples and {1, 1} indicates
a false recognition, where the first value indicates the
output of the first SVM classifier and the second value
is the second SVM classifier output.

Based on the new and practical classifier, the detected EEG
suspicious segment can be identified whether an epilepsy
occurs or not. If an epilepsy is identified, the system will
reports an alarm to the user; otherwise it continues the seizure
detection for the new EEG comes.
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FIGURE 5. The procedures of using the pairwise SVMs classifier for
epilepsy identification.

TABLE 1. Combination of two SVMs outputs for diagnosis.

IV. EXPERIMENT
A. VALIDATION ON BERN-BARCELONA EEG DATABASE
1) MATERIAL AND EXPERIMENT IMPLEMENTATION
The framework is validated on two experiment setups.
Both the EEG data are taken from the publicly avail-
able Bern-Barcelona EEG database [30]. These data were
obtained from 5 patients with epilepsy including focal and
non-focal channels, which were recorded at 1024Hz. Total
3750 pairs of simultaneously recorded signals x and y are
randomly selected from the pool of all signals measured at
focal and non-focal EEG channels respectively, and divide
the recordings into time windows of 10 seconds result-
ing in 10240 samples totally. We only use x-signals of
this database, where we downsampled these signals with a
down-sampling rate of 1:40 to reduce the computation burden
in the experiment.

We carried out the experiments in Matlab R2018a without
using any acceleration programing. The computation envi-
ronment is: CPU2.30 GHz and RAM 8.00 GB.

2) RESULT ON SEIZURE DETECTION
In this experiment, we firstly randomly select 50 focal and
50 non-focal signal from the described database, and con-
catenated each pair of a non-focal signal record and a focal
signal record to generate new EEG data streams such that
each generated data stream contains at least one EEG status
change. Three indicators i.e., precision, recall, F_score are
employed to evaluate the performance of seizure detection,
which are calculated respectively as follows:

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F_score =
2× precision× recall
precision+ recall

where TP is classified as true positive patterns, FP and FN
are classified as false positive patterns and negative patterns.

We perform the seizure detection (described in
Section III-B) on the testing data. In order to provide a quan-
titative evaluation of the proposed method, in the experiment
we perform the method until a true EEG status change is
detected. Fig. 6 shows two examples of the seizure detection.
Fig. 6 (a) shows a successful detection where we can see
that the computed anomaly scores keep a stable trend under
EEG non-focal status while changes greatly that exceeds
the control limit once the EEG goes into the focal status.
The employed null hypothesis testing can detect this change
successfully. While, as for the second example shown in
Fig. 6 (b), a change that has been detected before the true
change was served as a false alarm. The main possible
reason is the second testing data has a relatively large data
fluctuations compared with the first testing data.

A comprehensive detection result is given: the precision
of 0.72, recall of 1.00 andF_score of 0.84 have been obtained
by our method. Here, it is worth to note that, the indicator
of recall achieves satisfactory performance i.e., 1.00 which
implies that all true changes have been successfully detected.
While, the indicator of precision only achieves 0.72, which
means that there are some false alarms. The result is reason-
able considering the complexity and high noise of the raw
EEG signal. The detected change point will be served as the
starting time of suspicious segment which will be fed to the
epilepsy diagnosis phase for identification.

3) RESULT ON EPILEPSY DIAGNOSIS
In this experiment, 100 focal and 100 non-focal signals
are randomly selected as testing data. And 50 focal data
are used for the first one-class SVM classifier training and
50 non-focal data for the second one-class SVM classifier
training, the residual 50 focal data and 50 non-focal data are
used for testing.

We have used the RBF kernel function of SVM.
Additionally it is common to confirm the γ and µ in the
use of one-class SVM for classification. Specifically, the γ
plays an important role in the nonlinear mapping of the input
vector from the input space to the high-dimensional space,
and the µ controls the proportion of the kernel empirical risk
of the confidence interval in the classifier. In other words,
the first parameter controls the width of the distribution, and
the second one represents the estimation of spurious data
in the normal state registry. Accurate epilepsy diagnosis has
been achieved using the following parameters: γ = 0.1768,
µ = 0.0034 for the first one-class SVM classifier, and γ =
0.0078, µ = 0.0034 for the second one.

The result of the epilepsy diagnosis is given in Fig. 7. There
are 47 normal segments and 46 epilepsy segments have been
correctly classified as shown in the shaded part in the con-
fusion matrix, and one epilepsy segment has been wrongly
classified as normal, because there are only two labels in this
EEG database. The whole number of this confusion matrix
are not 100. Except the data shown in the matrix, one segment
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FIGURE 6. Detection results of two EEG examples.

has been classified by our method as ‘×’ and five segments
have been classified as ‘Other disorder’. Several common
indicators are used to evaluate the proposed framework. They
are,

Accuracy =
TP+ TN

Total samples
(%)

Sensitivity =
TP

TP+ FN
(%)

Specificity =
TN

TN + FP
(%)

MCC =
TP× TN − FP× FN

√
(TP+ FP)(TP+ FN )(TN+FP)(TN+FN )

K =
po − pe
1− pe

where, TP, FP and FN have been defined in the above. And
TN is classified as true negative patterns. Calculations of po
and pe can be referred in [43].

FIGURE 7. Confusion matrix of epilepsy diagnosis based on
Bern-Barcelona database.

Thus the classification Accuracy of our method is 93%,
Sensitivity is 97.8%, Specificity is 100%, MCC is 0.979 and
K is 0.869 on the average. All these results indicate that
the classified results have a good consistence with the true
labels. In Fig. 8, we show the testing EEG data that have
been recognized as ‘normal’, ‘epilepsy’ and ‘Other disorder’,
where spectrograms of each of them is also provided based
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FIGURE 8. The epilepsy diagnosis results of 3 EEG examples. In each of them, from top to bottom are the original EEG and the spectrum respectively.

on short time frequency transform (STFT). It is obvious
to distinguish the normal EEG from the epilepsy EEG and
other disorder EEG, because the normal EEG is more smooth
and more regularly visually. The difference between epilepsy
and other disorder in EEG is the characteristic waveform,
i.e. there appears many spinous slow composite waves in
epilepsy segment which is a typical symbol of epilepsy;
while, there appears many spike waves in other disorder
segment which is rarely appears in normal and epilepsy
segments. From the spectrograms of each segment, we can
see that most powers of normal EEG mainly exist in a low
frequency band (5Hz-20Hz), the epilepsy and other disorder
have less power in low frequency band and according to
the occurrence of the spike waves in other disorder EEG;
meanwhile there appears fluctuations of high frequency band
power in other disorder EEG data, which is a difference from
the epilepsy EEG.

The diagnosis results have been evaluated by neurological
experts. The possible reasons why the testing data have been
recognized as ‘Other disorder’ include,

• Outside interference: patients may have a passive fright-
ened or the hardware of device damaged;

• Other unknown diseases: patients may have some other
unknown diseases, such as the flu, even a sneezing can
lead to abnormal EEG status, or the intravenous injec-
tion causing pathological involuntary convulsions.

The above analysis also demonstrated the proposed frame-
work can provide a more precise evaluation of EEG status.

B. VALIDATION ON CHB-MIT EEG DATABASE
1) MATERIAL AND EXPERIMENT IMPLEMENTATION
The framework is validated on two experiment setups. Both
the EEG data are taken from the publicly available CHB-MIT
EEG database [44]. These data were collected from
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FIGURE 9. Detection results of two EEG examples.

22 subjects (5 males, ages 3 to 22; and 17 females, ages
1.5 to 19) at the Children’s Hospital Boston, consisting
of EEG recordings from pediatric subjects with intractable
seizures. Total 129 files that include seizures are included in
this collection, with a sampling rate at 256Hz and a resolution
at 16-bit. Most files contain 23 channel signals, we only
use the signal from channel FP1-F7. And the computing
environment is the same as described before.

2) RESULT ON SEIZURE DETECTION
In this experiment, we randomly select 50 labeled seizures
from this database, the signals that 10 seconds before and
after the onset time of each seizure were constructed as a
new EEG data stream, such that each constructed data stream
contains at least one EEG status change. In Fig. 9, we also
give two examples. Fig. 9 (a) shows a successful detection

FIGURE 10. Confusion matrix of epilepsy diagnosis based on CHB-MIT
database.

that the calculated anomaly score fluctuate a lot once the EEG
appears the seizure waveform. And the null hypothesis testing
can detect it successfully. In Fig. 9 (b) we show another
example that a change has been detected as a false alarm.
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FIGURE 11. The epilepsy diagnosis results of 3 EEG examples. In each of them, from top to bottom are the original EEG and the spectrum respectively.

It can be clearly seen that the false alarm is caused by a local
fluctuation. The detection result of this database is given: the
precision of 0.84, recall of 1.00, and F_score of 0.91 have
been obtained by our method.

3) RESULT ON EPILEPSY DIAGNOSIS
In this experiment, 100 seizure and 100 non-seizure sig-
nals are randomly selected as testing data, each signal last-
ing 10 seconds. And 50 seizure data are used for the first
one-class SVM classifier training and 50 non-seizure data
for the second one-class SVM classifier training, the residual
50 seizure data and 50 non-seizure data are used for testing.

We also used the RBF kernel function of SVM, and accu-
rate epilepsy diagnosis has been achieved using the following
parameters: γ = 0.0884, µ = 0.0034 for the first one-class
SVM classifier, and γ = 0.0625, µ = 0.0034 for the second
one.

The result of the epilepsy diagnosis is given in Fig. 10.
There are 48 normal segments and 46 epilepsy segments

that have been classified correctly, and one normal segment
has been wrongly classified. Additionally, two segments have
been classified by our method as ‘×’ and three segments have
been classified as ‘Other disorder’. We also give the spectro-
gram of three failed recognition examples in Fig. 11. We can
also see that from time-domain, it is obvious to distinguish
the normal EEG from the epilepsy EEG and other disorder
EEG, the difference between epilepsy EEG and other disorder
EEG is the occurrence of the spinous slow composite wave.
And in time-frequency-domain, the energy distributions of
three EEG status are the same as discussed above. On the
overall, the classification is achieved as: accuracy is 94%,
sensitivity is 100%, specificity is 97.9%, MCC is 0.979 and
K is 0.887 on the average.

C. COMPARISON SUMMARIZATION
The proposed approach is compared with state-of-the-art
works. Table 2 and Table 3 summarizes the compari-
son results based on the Bern-Barcelona and CHB-MIT
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TABLE 2. The classification results in Bern-Barcelona database.

TABLE 3. The classification results in CHB-MIT database.

database respectively. Specifically, in [45], 50 normal and
50 focal EEG signals were used to validate the algorithm,
they transform the input EEG signal to a TF plane using the
Stockwell Transform (S-Transform) and compute the entropy
measure in the time-frequency domain, finally LSSVM
with different kernel functions (Linear, Polynomial, RBF)
together with the entropy measure are used to make decision.
In [46], they propose a framework using discrete wavelet
transform (DWT) and SVM (RBF) for epilepsy diagnosis.
In [47], entropies such as approximate entropy (ApEn), sam-
ple entropy (SampEn), fuzzy entropy (FuzzyEn) are extracted
from EEG data and fed into several classifiers, finally the
NNge gave the best performance with the classification accu-
racy of 99%. In [48], a new multi-channel EEG seizure
detection method is presented based on the dynamics of the
trajectories in phase space, then the features were extracted
based on the Poincarĺę section together with PCA method,
finally a two-layer schem that comprising LDA and NBC
was employed as the classifier to make the decision. In [49],
they first calculated the fuzzy entropy of EEG signals from
different states, then a feature selection method has been
used, and finally based on the optimal features, the support
vectormachine (SVM)was employed tomake classifications.
In [50], they presented a framework that employs principle
component analysis and common spatial patterns to enhance
the EEG signals and uses the extracted discriminative feature
as an input for adaptive distance-based change point detector
to make the final decision. And in [51], a novel framework
was proposed, the morphological features were extracted
based on the local binary pattern operator, and K-nearest
neighbor classifier was used for classification. Through the
comparison, we can see that our method doesn’t achieve the
best classification accuracy. However it is more robust while

TABLE 4. Computational complexity of the framework in different phases
where n1 and n2 denote the number of data points in one segment for
epileptic seizure detection and epilepsy diagnosis respectively, p is the
length of the preliminarily set order range, l is the number of segments
for epileptic seizure detection.

the diagnosis made by it relies on the pairwise SVMs, and
the diagnosis result include normal, epilepsy and even other
disorders that would not be trained in the training samples.
This point can help the user diagnose epilepsy and also other
physical assessment of the patient, which is practical and very
meaningful in realistic clinical scenarios.

V. DISCUSSION ON COMPUTATIONAL COMPLEXITY
It is noted that the computational efficiency is also an impor-
tant issue in the design of a framework for epilepsy diagnosis.
In Tab. 4, we show the computational complexity of pro-
posed framework in different phases. It can be seen that the
complexity of the phase epileptic seizure detection is much
lower, which indicates it can give us a very quick response
when the EEG signal is arriving continuously. The phase of
epilepsy diagnosis has a higher computational complexity.
It is tolerant because accurate diagnosis is more required than
the computation speed. Another reason is that, this phase can
also be executed with an off-line manner.

Feature extraction is of great importance in the context of
EEG signal processing. We compared the employed feature
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TABLE 5. Computation time of feature extraction.

extraction method with some others reported in references.
The computation time of our method was calculated on a data
segment with 2560 samples. As shown in Tab. 5, our method
takes the least time i.e., 0.317s, implying it is fast enough to
realize the real-time epilepsy diagnosis.

VI. CONCLUSION
In this paper, we concentrate on the problem of automatic
seizure detection and epilepsy diagnosis from EEG signals.
We have proposed a new and practical unified framework
to achieve this end. A null hypothesis testing is used to
detect the seizure in continuous monitoring of EEG signals.
As such, suspicious segments can be identified, which is
fed to intelligent diagnosis using a novel classifier based
on a pairwise one-class SVMs. Experiments were conducted
on the public Bern-Barcelona EEG database and CHB-MIT
EEG database to investigate the performance of seizure
detection and epilepsy diagnosis respectively. Comparison
with recently-released results demonstrated that the proposed
method can achieve a high performance in terms of classifica-
tion accuracy, sensitivity and specificity. It is more robust and
can give the classification including normal, epilepsy, other
disorders that are not included in the training samples. In the
future work, we will extract and use more features for EEG
signal representation to further improve the performance on
the proposed framework.
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