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ABSTRACT Clinical researchers use prognostic modeling techniques to identify a-prior patient health status
and characterize progression patterns. It is highly desirable to predict future health condition especially to
implement preventive and intervention strategies in pre-diabetic individuals. Hidden MarkovModel (HMM)
and its variants are a class of models that provide predictions concerning future condition by exploiting
sequences of clinical measurements obtained from a longitudinal sample of patients. Despite the advantages
of using these models for prognostic modeling, it still face barriers and significant challenges, to effectively
learn dynamic interactions, when using irregularly sampled longitudinal ElectronicMedical Records (EMRs)
data. Newton’s divide difference method (NDDM) is a classical approach for handling irregular data in
terms of divided difference. However, as it is polynomial approximation technique, it suffers with Runge
Phenomenon. The problem can be even more severe when the interval is a bit extended. Therefore, to tackle
this problem, we proposed a novel approximation method based on NDDM as a component with HMM
in order to estimate the 8 years risk of developing Type 2 Diabetes Mellitus (T2DM) in a particular
individual. The proposed method is evaluated on real world clinical data obtained from CPCSSN. The results
demonstrated that our proposed technique has the ability to exploit the available irregularly sampled EMRs
data for effective approximation and improved prediction accuracy.

INDEX TERMS Type 2 diabetes mellitus (T2DM), risk prediction, Newton‘s divided difference method
(NDDM), irregular and sparsely sampled data handling, approximation technique, HMM, prognostic mod-
eling, machine learning, risk scoring.

I. INTRODUCTION
Type 2 Diabetes Mellitus (T2DM) is a significant public
health problem that is approaching epidemic proportions
globally [1]. It is a metabolic syndrome characterized by
hyperglycemia [2]. T2DM can leads to lifelong dysfunction,
failure and damage of different vital organs, particularly eyes,
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kidney, nerves, heart, and blood vessels [3], [4]. Diabetic
patients are at increased risk for developing peripheral vas-
cular, cardiovascular and cerebrovascular malady [4], and in
its most severe forms, diabetes may lead to death.

Diabetes is one of the leading endocrine drivers to the
global burden of disease [5]. The predominance of diabetes
is consistently escalating at an alarming pace especially in
developing countries [6]. According to World Health Organi-
zation (WHO) diabetes is at present the fifth most common
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reason for death in the world [7]. According to the Interna-
tional Diabetes Foundation (IDF) after every six seconds one
person dies of diabetes [8]. Beside these, in 2017, approx-
imately 425 million adults were living with diabetes; the
number is projected to ascend to 629 million by 2045 [9].
Furthermore, the subsequent economic and societal burdens
due to healthcare expenditures of diabetes are of signifi-
cant immensity [6], [45]. Globally, it was estimated that,
in 2017, approximately $727 billion were spent on healthcare
expenditure related to diabetes and its complications which
accounts for 12% of global spending on healthcare [10].
Moreover, a huge loss in global economy is also witnessed
due to reduced productivity caused by patients’ health con-
dition. Furthermore, diabetic individuals remain oblivious of
their disease status, even the disease is persisting for years,
as they often have no overt symptom at first, which makes the
situation much worst [2], [6]. Therefore, early diagnosis of
T2DM is a challenging problem.When considering the above
narrated facts diabetes seems to have more than its fair share
of challenges, when compared to other diseases.

These alarming figures, undoubtedly, require incredible
considerations and implementation to optimally treat diabetic
patients and to prevent or halt its development in vulnera-
ble individuals. Early and intensive prevention strategies in
high risk individuals not only improve the disease outcome
but also reduce other complications associated with therein.
To this end, application of Machine Learning techniques
(ML) is presently more than ever before, indispensable and
vital in efforts to transform intelligently large pool of data
into valuable information [11], [46], [47], [48]. In particular,
Electronic Medical records (EMRs), an inter-organizational,
comprehensive, patient-centric longitudinal collection of
health records, resulted from remarkable advances in biotech-
nology and health sciences play an integral part for prognos-
tic prediction of T2DM risk [12]. Therefore, EMRs data is
becoming the key driving force for the adaptation of data ana-
lytics techniques in healthcare domain, bringing the opportu-
nities to foster the quality of healthcare services and support
healthcare providers by providing comprehensive healthcare
information of a particular patient [11], [13], [14].

Machine learning based techniques have the ability to
provide preliminary judgment about disease progression that
could serve as a reference for healthcare providers. Hidden
Markov Model (HMM) has been widely used for model-
ing dynamic systems [15]–[17]. Although, it is a potentially
powerful and conceptually simple technique to model disease
surveillance data [18], [19], [44], it appears to has been rarely
used in public health practice [43].

Furthermore, the nature of the clinical setting, together
with the format of the EMRs data particularly presents ver-
satile substantial challenges that confound classical HMM
and grossly violate the model assumption. For example,
consider the problem of learning from irregular and sparely
sample data which is a common but complicated problem in
almost every healthcare data, presents significant challenges
in inference and learning process, and/or may significantly

FIGURE 1. Example dataset derived from CPCSSN that is affected with
Runge Phenomena.

harm the performance of downstream applications [20], [21].
Hence, it is impractical to directly feed irregular and sparsely
sampled data into HMM for prognostic prediction of T2DM
risk in an individual. In addition, there can also be substantial
uncertainty about the underlying temporal processes due to
the sparsity of observations.

Therefore, we proposed a novel technique based on
NDDM to accommodate irregular and sparsely sampled
EMRs data with the objective to overcome the analyti-
cal challenges that arise primarily due to such data types.
Basically, NDDM is a classical technique employed for
interpolating polynomial in terms of divided differences.
Divided differences are also independent of the order of
arguments. Furthermore, NDDM works well as compared
to other approximation techniques [22]–[25]. However, as it
is polynomial approximation so it suffers with Runge Phe-
nomenon (RP) as depicted in Figure 1. In general, RP is the
divergence of the interpolant at edges of an interval. The
problem can be even more severe when the interval is a bit
extended. Hence, to cope up with the above mentioned prob-
lems, we devise a novel method that not only has the ability to
deal with the RP but also effectively transform heterogeneous
time series clinical data measured at irregular intervals into
irregular data in order to develop a robust method to investi-
gate the ongoing risk T2DM in an individual.

II. METHODOLOGY
A. HEALTHCARE DATA
The dataset being employed to evaluate our proposed method
is acquired from CPCSSN. It is especially focusing on
five chronic diseases including diabetes and three neuro-
logical diseases. It makes it realizable to collect health
data from all participating networks across Canada into a
centralized database (http://cpcssn.ca/). The data is further
utilized for research purposes that may lead to improve
healthcare management worldwide. CPCSSN contains the
information of 172,168 unique patients and consist of a
total of 812,007 records, spanning 13 years timeframe
(from 2003 to 2015) and every record encompasses of
distinct traits concerning vital signs, diagnosis and demo-
graphics. Each patient is described by the clinical measure-
ments that have been collected within 13 years including
information related to diastolic Blood Pressure (dBP),
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systolic Blood Pressure (sBP), Fasting BloodGlucose (FBG),
Triglycerides(TG), Body Mass Index (BMI), High Density
Lipoprotein (HDL), Glycated Hemoglobin (HbA(1c) and
Gender. The general time period defined for each patient to be
included in the study sample is the same, i.e. 8 years regard-
less the disease status. To capture a representative cohort in
the derived study sample, we included information related to
only those individuals who have at least five clinical visits
by June 2015 and have data for all the risk factors consider
relevant in this study. Hence, a total of 170,250 patients do
not satisfied minimum inclusion criteria and excluded from
the data. Hence, a total of 1981 individuals were included in
this prospective research study sample. The final dataset com-
prised of 775 (61.03%) female and 1143 (38.96%) male and
among them 584 (23.49%) are diabetic patients, described
by clinical measurements as mentioned above. An abstract
overview of the CPCSSN can be found in [2]. CPCSSN
acquired written consent form all the participating networks.

Our primary objective of this research is to evaluate the
potential of EMRs in prognosticating ongoing risk of T2DM
in a particular individual. In this research we specifically
ask three major questions. (1) Can a machine learning based
prognostic model be developed or derived to estimate 8 years
risk of T2DM? (2) Can we effectively identify potentially
relevant risk factors to estimate the T2DM risk? (3) Is it possi-
ble to propose a novel approximation technique that leverage
irregularly and sparsely sample EMRs data represent it to
regular space data to prognosticate 8 years risk of T2DM in a
particular individual? This type of prognostic prediction pro-
vides evidence to make better decisions around patients’ risk,
individualized treatments and timely interventions [26], [27].

B. PROPOSED METHOD
Keeping in view the aim of this research and significant chal-
lenges inherent with the EMRs data the proposed methodol-
ogy can be divided into two major components. (1) Handling
sparse and irregularly sampled EMRs data and (2) prognostic
modeling using approximated data prepared in the first phase
in order to investigate the ongoing risk of T2DM.

1) HANDLING SPARSE AND IRREGULARLY SAMPLED EMRs
DATA
Suppose a regularly sampled EMRs data that consists of n
independent instances D = {S1,S2, . . . . . . ,Sn} recorded
at uniformly distributed time interval. Each Si associated
with a list of time points ti = {ti1, ti2, . . . . . . , tin|Si|}T , and
the related values, yi = {yi1, yi2, . . . , yim|Si|}T . Whereas,
irregularly sampled data is considered as a sparse matrix
with features and a time dimension. NDDM, a classical
technique, is used for interpolating polynomial in terms of
divided differences. It can be defined as follows: given a set
of pairs of numbers (x0, f0) , (x1, f1) , . . . . . . . . . , (xn, fn),
where x1, x2, . . . . . . , xn are distinct and not necessarily dis-
tributed equally over time. While on the contrary, fi can be
obtained empirically from an observation or experiment or
it can be the value of some mathematical function f(x). The

interpolation problem is to find a polynomial Pn (x) such that
Pn(x) = f0, Pn(x1) = f1, . . . . . . . . . ,Pn(xn) = fn.
The polynomial Pn (x) is used to estimate value for all

x such that Pn (x) is approximately f(x) or to get values
for xs at which no measurement was taken. Furthermore,
following the approximation method, all D-dimensions of xs
are represented in term of output defined on the regularly
spaced set of reference time points.

It can be written in the Newton form as follows [28]:

Pn (x) = f[x0]+ f[x0, x1 ](x− x0)+ f[x0, x1, x2] (x− x0)

× (x− x1)+ f[x0, x1, x2, x3] (x− x0)

× (x− x1) (x− x2)+ . . . . . .

+ f[x0, x1, x2, . . . xn] (x− x0)

× (x− x1) (x− x2) . . . . . . . (x− xn)

where f[x0 ], f[x0, x1] and f[x0, x1, x2] are the first, second,
and third order finite divided differences respectively that can
be defined as below:

f[x0] = f (x0)

f[x0, x1] =
f (x1)− f (x0)

x1 − x0

f[x0, x1, x2] =
f(x2)−f(x1)

x1−x0
−

f(x1)−f(x0)
x1−x0

x2 − x0

Correspondingly, nth Divided Difference can be calculated as
below:

f[xi, xi+1, xi+2, . . . , xi+n]

=
f[xi, xi+1,xi+2, . . . . , xi+n]−f[xi, xi+1, xi+2, . . . , xi+n−1]

xi+n − xi

a: NEWTON DIVIDED DIFFERENCE METHOD (NDDM) AND
RUNGE PHENOMENON
NDDM is a polynomial interpolation technique that is uti-
lized to approximate the unknown values by exploiting the
previously known information from the related observa-
tions. Perveen et al. [49] also utilized NDDM for lever-
aging EMRs data to develop prognostic model for T2DM
and this work is primarily based on this research. Let D
is a EMRs data containing information related to n distinct
individuals {S1, S2, . . . . . . , Sn} recorded over time T . Each
Si is represented as an order set of measurements taken over
a particular time interval ti = {ti1, ti2, . . . . . . , tin|Si|}T with
tiεR, ∀iε [1, k] as well, typically correspond to a series of
risk factor i.e. high density lipoprotein or/and body mass
index of a patient over a particular time interval. Given fixed
risk factors di, we can represent D-dimensional time series
for data case k as a real valued tuple Sdk= (xdk , ydk) where
ydk = xdk = {ti1, ti2, . . . . . . , tik |Si|}T , is a series of
time interval at which observations are defined and ydk =
{yi1, yi2, . . . . . . , yik |Si|}T is corresponding observed values,
typically a series of risk factor. Each Si is already assigned
label based on relevant patient’s most recent laboratory test
results. Underlying D-dimensional, irregular and sparsely
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FIGURE 2. Windowing and the subintervals.

sampled time series data can have observations at dif-
ferent time interval as well as different total number of
observations. Hence, for each irregular and sparsely sam-
pled Si we classify the given set of pairs of numbers
(x1, y1) , (x2, y2) , . . . . . . . . . , (xk , yk) into upper and lower
edges represented by x1 and xk respectively. Then we divided
y1,y2,y3, . . . . . . yk into two subparts with respect to time inter-
val i.e. x1 to (xk+x1)/2 in one interval and ((xk+x1)/2)+1
to xk in second interval as depicted in Figure 2. If value at
point is required to approximate, values at point x1, x2 and
x4 are utilized. The same process continues to approximate a
particular value till the value of point x(xk + x1)/2.
However, to find any missing value i.e xn or f (xn) in

interval two, the available values, xn +1 to xk and xn −1 are
utilized. For example, if missing value is at point Xk-1, only
the value of point xk and xk−2 will be utilized to find value
f (xk−1) for poin xk−1, while all the previous values will be
ignored. If value at point xk−2 is required, values at point
xk , xk−1 and xk-3 are utilized. The process continues until the
value of point x(xk + x1)/2.
In specific scenario, if missing value is at point x(xk +x1)/2

then value at point x((xk + x1)/2) + 1 is utilized to find its
value based on scheme being applied in interval one. On the
other hand if missing value is at point, x((xk +x1)/2)+1 then
value at point x(xk +x1)/2 is utilized to find its value based on
scheme being applied in interval two. Kingpin is selection of
points to calculate the values for missing spots. Subsequently,
on the bases of selected value points, divided differences
will be calculated and further procedure of NDDM will be
followed. According to the above mentioned description the
pseudocode of the proposed INNDM is depicted in Figure 3.
Under this setting, complete data set is not considered, only
the main points or divided intervals are employed. As the
interval for calculation is not lengthy, Runge Phenomenon
will not exist anymore giving rise to improved performance
for further processing.

2) PROGNOSTIC MODELLING
a: HIDDEN MARKOV MODEL
Following the application of our proposed approxima-
tion method based on NDDM as described above all
D-dimensions of the input multivariate time series EMRs
have been represented in term of regularly spaced set of refer-
ence time points r1n, r2n . . . . . . .rin|Si. Thus we refer the com-
plete set of approximation method output as Syn= (xdn, ydn),
which can be represented as a matrix of nd × T .

FIGURE 3. Pseudocode for Improved Newton divided difference Method
(INDDM).

Subsequently, we also identified potentially relevant risk
factors from the CPCSSN dataset, using logistic regression
analysis. The identified potentially relevant risk factors of
T2DM were also validated by an expert endocrinologist with
more than 20 years’ experience in medical practice. As the
study sample data hold continuous type of data thus, to eval-
uate the proposed method, a systematic approach, named
GaussianHMM, a variant of classical hidden makrov model
has been applied, as the underlying inference model, for
modeling prognostic prediction of T2DM. It has been shown
to be a robust finite probability density distribution model,
especially for dynamic systems [29], [30]. It allows us to pre-
dict temporal latent (hidden) states based on a set of observed
variables by incorporating markov chain assumption, such
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as p (St |St−1) = p (St |St−1, St−2, St−3, . . . . . . . . . .S0).
The basic concept of HMM is that the observed variables in
the underlying system have no one-to-one association with
hidden states but are linked to states by the joint probability
distribution. It is a doubly stochastic process that incorporates
a Markov chain principal as the basic stochastic process [31].
Therefore, a HMM is a stochastic process of connected prob-
abilistic states, where each state generates an observation i.e.
p (Ot |St) = p (Ot |St , St−1, St−2, St−3, . . . . . . . . . .S0).

The primary idea related to HMMwas published by Baum
and Petrie [32].

b: EXPERIMENTAL SETTING
In this study, a series of experiments are designed to analyze
and compare INDDM with standard NDDM for handling
irregular and sparsely sampled EMRs data as input for prog-
nostic prediction task. All experiments are conducted using
the previously described data obtained from CPCSSN. The
objective here is to identify ongoing risk of T2DM in a
particular individual based on his/her clinical measurements.

In the first experiment, we evaluated the predictive per-
formance of GaussianHMM using multivariate time series
EMRs data related to only those patients who are enrolled in
CPCSSN and have complete information related to each risk
factor considered potentially significant in this study and do
not have any differential loss to follow up. Hence, this derived
study sample contained information related to 911 individuals
of aged ≥18 years.

In the second experiment, we incorporated multivariate
irregular data obtained from CPCSSN directly as input,
denoted by original features matrix, inclusion criteria for
this dataset can be seen under healthcare data section.
Whereas, in the third experiment the same dataset was pre-
processed using NDDM in order to handle with sparsity
and irregularity in data before developing and evaluating the
model.

On the other hand, in the fourth experiment the same irreg-
ular and sparsely sampled dataset, used in second experiment,
was again refurbished or approximated using our proposed
novel technique(INDDM) primarily based on NDDM to get
values for xs at each reference time point ri|Si for which no
measurement was taken. The descriptive information related
to the above mentioned subsets of CPCSSN data is depicted
in Table 1.

HMM based applications primarily belong to the cate-
gory of classification and it can be categorized into two sub
phases: namely training and a decoding phase. In the training
phase, a set of parameters, generally parameterized by a set
of probabilities, is calculated based on training dataset of
observed sequences. On the other hand, in the decoding phase
we compute the most probable state path that could have
generated the observed sequence. The objective of this phase
is to classify input sequence from validation data.

In this study hold-out method was used in each exper-
iment for the development and validation of our model.

TABLE 1. An abstract overview of the derived study samples.

Thus, in each experiment the derived EMRs dataset is further
divided into two subsets namely raining and testing datasets
(divided in the ratio of 80% and 20% respectively).

In all the above mentioned experiments training and test
datasets contained information related to only potentially sig-
nificant risk factors, those demonstrated positive association
with T2DM when logistic regression analysis was performed
as shown in Table 2.

HMM also has structural assumptions and assumed to
be composed of the set of hidden states (corresponding to
S = {s1, s2, s3 . . . . . . sm} diabetic and non-diabetic in our
scenario) along with a set of observation variables, Vk where
K = 1, 2, . . . . . . .8.
As our data retained continuous type of variables thus,

the observation probability assumes the Gaussian distribution
hence, the standard GaussianHMM is specified by λ =
{A, µ, σ, π} where A, µ, σ and π represent the transition
probability matrix, mean and variance of the distribution
corresponding to the state si and Baum-Welch algorithm [33]
was used to draw these parameters from the training data as
follows:

θ=

(
π=πi =

{
q1 = si

}
A = ai,j = p(qt+1 = sj|qt = si)

Priorprobability, Transition propabilities matrix,

B = bi (K) = bi (Ot=Vk)=N (Vk, µi, σi)

Emission probabilities matrix

)
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FIGURE 4. Framework for the prediction of T2DM using irregular and
sparsely sampled data.

whereN is Gaussian probability density function that can be
defined as below:

p (x|µ, σ) = N (x|µ, σ ) =
1

√
2πσ 0

exp

(
− (x − µ)2

2σ

)

FIGURE 5. Approximation results using improved Newton’s divided
difference method.

The training phase of GaussianHMM, undoubtedly, is more
complicated and tricky to settle down than the decoding
phase. Nevertheless, the decoding procedure is the key to
solve the classification problem. To solve the decoding prob-
lem Viterbi algorithm [34] is widely used [35]. In general,
it is considered as the masximum a posteriori estimation of
the most likely sequence of hidden states given the model the
observed sequence O = {O(l)t , t = 1, 2, , . . . . . . . . . . .T , l =
1, 2, 3, . . . . . . . . . .L} where OtεRD and l is the number of
observation variables.

Subsequently, Viterbi decoding technique from HMM
API (Hmmlearrn) was employed to carry out diagnostic and
prognostic inferences in order to investigate the 8 year risk
T2DM.

Subsequently, to analyze the relative differences among
methods across different subset of data and to evaluate the
generalizability of each model Area under the Receiver Oper-
ating Characteristic Curve (AROC) was incorporated as the
evaluation measure. It demonstrates the performance of the
model, without regard to class distribution or error costs.

The statistical analysis was performed using IBM SPSS
Statistics (version 19) and Python (Version 2.7) was used
as the development tool. An abstract overview of the pro-
cess involved in the methodological design of this study is
depicted in Figure 2.

III. RESULTS
As depicted above, in this research we proposed a novel
approximation method based on NDDM to leverage irregu-
larly and sparsely sample EMRs data to prognosticate 8 years
risk of ongoing T2DM in a particular individual.

The experimental results demonstrated that the proposed
INDDM performs better as compare to the NDDM as
depicted in Figure 5 and 2 respectively. The proposed method
effectively deals with the Runge phenomenon when approxi-
mated the value on edges. Furthermore, the produced results
are also close to the real value.

As a secondary analysis, a logistic regression analysis is
also conducted to assess the significant p-value of each risk
factor with the incident of T2DM. To obtain the promising
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TABLE 2. Analysis of the association between individual risk factor and
incident of T2DM.

results, it is very crucial to effectively select the relevant fea-
tures before the development of classificationmodel. Accord-
ing to logistic regression analysis all the risk factors were
positively associated with the incident of diabetes except total
cholesterol as demonstrated in Table 2.

A comparative analysis of the logistic analysis result
demonstrated that HbA(1c) is the most significant factor of
T2DM as compare to other risk factors included in this analy-
sis. It has the best predictive power to investigate the ongoing
risk of T2DM with an odds ratios of (p < 0.0005, OR =
12.565 [95%CI, 10.902 -14.482]). It can also be deduced that
HbA(1c) solely was the prime factor capable of prognosticate
T2DM risk. While on the contrary, FBG is standing at second
(p < 0.0005, OR = 5.907 [95% CI, 1.281- 5.967]); so these
findings confirm the common sense and the clinical diagnosis
basis.

According to results it can also be observed that elevated
BMI, triglycerides and age are associated with progressively
higher risk of developing T2DM (p < 0.0005, OR = 1.036
[95% CI, 1.030 −1 .052; p < 0.0005, OR = 1.183 [95%
CI, 1.093 −1.281; p < 0.0005, OR = 1.002 [95% CI, 0.999
−1.006 respectively). It can be observed that not all over-
weight or obese patients have T2DM, and vice versa. But
it is a well accepted and readily accessible concept in the
existing literature that themore fatty tissue you have, themore
resistant your cells become to insulin [42]. However, total
cholesterol does not added into the model and does not show
any significant relation with T2DM risk, thus, excluded from
the risk factors list.

Subsequently, four prognostic models were built from four
different subsets of CPCSS datasets, as mentioned above.
These four subsets of dataset comprise of only positively
correlated risk factors. Among these four subsets of dataset
two were original datasets, however comprise of regular and

FIGURE 6. Comparative analysis of predictive performance of prognostic
model in term of area under receiver operating characteristic curve over
approximated and derived datesets from CPCSSN.

irregularly sampled datasets and directly feed into Gaus-
sianHMM without any modification. While, the remaining
two were approximated datasets using NDDM and improved
NDDM proposed in this study. The derived dataset resulted
in a total of 1918 unique individuals with 15,344 clinical
visits, spanning 8 years timeframe. An abstract and descrip-
tive information related to eligible cohorts is already depicted
in Table 1.

The superiority of our proposed technique is to improve
the prognostic prediction results’ precision. To evaluate the
efficacy of our proposed technique in handling irregular and
sparsely sample EMRs data and to investigate the ongoing
risk of T2DM, we developed a comparative analysis from the
experimental results. Figure 6 demonstrated a comparative
analysis among the AROCs of the four prognostic mod-
els that were built from four different subsets of CPCSS
datasets as mentioned above. As expected, the predictive
performance of the GaussianHMM over approximated data
generated using our proposed method was considerably bet-
ter in general (AROC 80.4%, p-value < 0.0005, SE =
0.064 [95% CI, (0.679-0.930)]) than the performance over
approximated dataset using NDDM (AROC 0.740 p-value
< 0.0005, SE = 0.071 [95% CI, (0.602-0.879)]), as shown
in Table 3.

It has a good balance of specificity and sensitivity with an
AROC value of 80.4% which is statistically significant with
p-value <0.0005 with the Confidence Interval (CI) of 95%.
However, the AROC value of GaussianHMM over irregu-
larly sampled EMRs data is 59.7% which is comparatively
low. The results drawn from the regularly sampled dataset
were also compared with our proposed method, as shown
in Figure 6. It can be observed that our Improved NDDM
technique for handling irregular and sparsely sampled data
performed reasonably well and demonstrating a high relia-
bility of discrimination for the GaussianHMMmodel over the
approximated dataset when compared with the performance
over regularly sampled data.
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IV. DISCUSSION
Physiological information contained in EMRs is the cru-
cial source for disease prognostic modeling. Nevertheless,
the structure of the longitudinal clinical data along with the
nature of the clinical settings present substantial hurdles that
confoundmachine learning algorithms in inference and learn-
ing process, and/or may significantly influence the perfor-
mance of downstream applications [20], [21].

This is particularly true about HMM based prognostic
model [36]. Specifically, the dynamic scope of the time scale
in EMRs is one of the possibly contributing elements for
irregular and sparsely sampled clinical information which is a
common but complicated problem in almost every healthcare
data. As mentioned above in this study we also utilized
HMM based method as a prognostic model to investigate
the ongoing risk of T2DM. However, HMM presumes that
the measurement data is gathered regularly or in such a way
that the time interval between two consecutive observations
is constant but this is not the case commonly.

Although, NDDM, a recursive division process, workswell
as compared to other interpolation techniques [22]–[25], [37]
when handling irregular and sparse data, but as it is polyno-
mial interpolation, its interpolants are vulnerable to the Runge
Phenomenon [38], [39], as depicted in Figure 1.

In this work, we proposed a technique to handle irregular
and sparsely sampled data along with overcoming the RP,
particularly on a finite interval and showed experimentally
that our proposed method can achieve much lower errors
and have the ability to produce the approximated value near
the real value as shown in Figure 4. Nevertheless, the error
has not been converge to zero as shown in Figure but it
can be observed that the Runge Phenomenon has reduced
to a satisfactory level when we compared it to the results
shown in Figure 1. The results depicted in Figure 4 are also
sub-geometric rate of convergence is achieved. Furthermore,
computational results revealed that the proposed method enu-
merated more near actual values as compared to NDDM.
The average runtime complexity of the proposed method is
O(n^2), same as NDDM where n is the number of points
in polynomial involved in interpolation. However, the major
difference between the two is the value of n involved in
calculations. In NDDM, all values involved in polynomial are
used for interpolation while in improvedNDDM,whole poly-
nomial is divided into 2 intervals and only half of the values
of the polynomial are used for the procedure. This division
not only decreases complexity of algorithm by reducing the
value of n, but this division removes the major drawback of
NDDM i.e. Runge Phenomenon. The decrease in complexity
results in less computation time for a particular set of points
as compared to NDDM.

Once the dataset is prepared, we also performed logis-
tic regression analysis on the derived dataset. The objec-
tive of this statistical analysis was to explore the relation
between the contributing risk factors and prevalence of dia-
betes mellitus. Thus this statistical analysis resulted in a set

of potentially significant risk factors for developing T2DM as
shown in Table 2. All the risk factors incorporated in this anal-
ysis were positively associated with T2DM incidents except
total cholesterol. Therefore, total cholesterol was excluded
from the further analysis. HbA(1c) and FBG were ranked as
the most positively associated risk factors (p < 0.0005, OR
= 12.565 [95% CI, 10.902 −14.482] and p < 0.0005, OR =
5.907 [95% CI, 1.281- 5.967] respectively) with the ability to
solely predict the diabetes incidence. Hence, these findings
corroborate with the common sense and the clinical diagnosis
basis. Furthermore, the result of the logistic regression anal-
ysis is also conforming to the existing studies [2]. In view
of the objective of the proposed research four prognostic
models based on GaussianHMM, a variant of classical HMM,
were built from regular, irregular and approximated datasets
derived from CPCSSN data. These subsets of CPCSS data
comprise of only significant risk factors resulted from logistic
regression analysis.

The first major contribution of this study is to propose
a novel method based on NDDM for handling the irreg-
ular EMRs data for disease modeling. In this study we
also utilized GaussianHMM, a variant of classical hidden
makrov model, as the underlying inference model, for mod-
eling prognostic prediction of T2DM to manage the irre-
versible and adverse outcomes. Therefore, four prognostic
models were built from four different derived study sam-
ple, as mentioned above. According to the results predic-
tive performance of the GaussianHMM over approximated
data using our proposed method was considerably better
(AROC 80.4%, p-value < 0.0005, SE = 0.064 [95% CI,
(0.679-0.930)]) than the performance over approximated
dataset using NDDM (AROC 0.740 p-value < 0.0005, SE =
0.071 [95% CI, (0.602-0.879)]), as shown in Table 3 with
their respective odd ratios. The graphical representation of the
results of predictive models, related to four above mentioned
experimental settings, are depicted in Figure 6.

The AROC value of GaussianHMM over irregularly sam-
pled EMRs data is 59.7% which is comparatively low or it
could be just considered as better than the random guess and
do not provide significant information to take decisive steps.
The proposed method along with the GaussianHMM yielded
AROC 80.4% which is 20.7% higher than the baseline
method. Thus, from experimental results it can be inferred
that our proposed method for handling irregular and sparse
data contributed to improve the predictive performance com-
paratively.

On the other hand, results drawn using the regularly
sampled dataset demonstrated high performance (AROC
85.9%) among all other remaining derived datasets, as shown
in Figure 6. Furthermore, calibrated results obtained from
the HMM on our baseline data set can be seen in
Perveen et al. [45]. Thus, it can be concluded from the drawn
results that our proposed method performed reasonably well
and demonstrating a higher reliability of discrimination for
the GaussianHMM model over the approximated dataset
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TABLE 3. Results of the GaussianHMM over derived data samples.

when compared with the performance over regularly sampled
data.

Diabetes is a costly ailment. According to ADA in 2017,
approximate cost of diagnosed diabetes was $327 that
includes $237 spent for medical costs and $90 in terms
of reduced productivity [40]. In November, 2018 National
Health Service (NHS) bill for blood glucose-lowering
medicines for the first time excelled £1 billion. An ongoing
survey in sub-Saharan Africa estimated that the expense of
diabetes in that area is equal to 1.2% of combined total
national output [41]. In the absence of proper and early
interventions, this burden will continue to increase and will
leave our healthcare system in unsustainable future.

Therefore, the proposed technique is an effective tool to
increase awareness in pre-diabetics, prevent and/or mange the
risk of developing diabetes. Utilization of such risk scoring
methods as the first step for screening high risk individuals is
more pragmatic than conducting FBG tests because the latter
one is invasive as well as time consuming and costly. It is also
crucial to provide guidance and awareness to vulnerable indi-
viduals, providers and communities to manage the adverse
health outcomes. Furthermore, the proposed method is also
aligned with the goals of world health Organization.

In spite of the promising results, our proposed technique
has various limitations. First one is, the requirement for
further processing, the proposed method required further pro-
cessing entailed for the selection of values vital for interpo-
lation. This additional processing may increase computation
time for a single value. Another hitch in suggested procedure

is that, due to decrease in past and future values for inter-
polation, may be the system lead to averaged result rather
than taking into account the sense of future and past values.
Moreover, for points other than in the mid of polynomial,
improved NDDM proved to work satisfactory, and exhibit
better performance as compared to NDDM. Nonetheless,
when required point is in the mid of polynomial, sometimes
NDDM manifest slightly preferable staging.

V. CONCLUSION
The results indicate the proposed method bears a significant
potential to sift through and meaningfully put together the
sparsely and irregularly sampled data, thereby extracting use-
ful information with enhanced efficiency as well as effective-
ness. The very ability of this method enables to make a better
use of EMRs in carrying out the predictive measures for a
particular disease. The proposed technique also uncovers the
underlying state with likely future projection of the disease.
Moreover, it also uncovers the inbuilt temporal dependencies
present in the longitudinal EMRs data which are impera-
tive for arriving at decisive steps for disease management,
together with the effective utilization of healthcare resources.
Therefore, it may prove as a promising tool for the identifi-
cation of the individuals prone to high risk; and a mean to
prompt the healthcare entities to adopt innovative preventive
measures in respect of diabetes. o judge the cost effectiveness
of the proposed model, further study remains warranted.
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