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ABSTRACT In this paper, we propose a transfer learning-based dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI)method for classifying fibroadenoma and invasive ductal carcinoma (IDC) in
breast tumors. A total of 207 breast tumors from patients were collected and identified by pathologic diagno-
sis within 15 days after enhanced DCE-MRI examination; 119 patients (average age 50.52±10.33 years) had
fibroadenomas, and 88 patients (average age 42.20±10.10 years) had IDCs. Two lesion-level models were
built based on the InceptionV3 and VGG19 models, which were pretrained with the ImageNet dataset. The
effects of different depths of transfer learning were examined. The network’s performance was evaluated
through five-fold cross validation. In the lesion-level models, the model based on Inception V3 obtained
better results (area under the receiver operating characteristic curve (AUC) = 0.89) when the weights were
frozen before layer-276. The other model based on VGG19 obtained better results (AUC = 0.87) when
the weights were frozen before layer-13. Compared with the image-level models, both lesion-level models
displayed better discrimination (accuracy increased by 13% and 14%) based on the VGG19 and Inception V3
models, respectively. Our research confirms that transfer learning can be utilized to classify fibroadenomas
and IDCs in DCE-MRI images. Different depths of transfer learning result in different performances, and
our proposed lesion-level model notably improves the classification accuracy.

INDEX TERMS Magnetic resonance imaging, invasive ductal carcinoma, fibroadenoma, transfer learning,
lesion classification.

I. INTRODUCTION
Since female breast cancer can be screened early and treated,
the death rates decreased by 40% from 1989 to 2016 [1].
Breast cancer is one of the most common diseases in women
worldwide and is the second leading cause of cancer-related
death [2]. According to the American Cancer Society (ACS),
a breast cancer patient who receives treatment for early-stage
disease (i.e., stage 0 and stage 1) has a 99% chance of
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surviving for at least 5 years after being diagnosed [3], [4].
The key factor for improving breast neoplasm prognosis
is early detection. Accurate detection and treatment usu-
ally lead to a positive outcome. Currently, various imaging
examinations, such as mammograms, ultrasounds, and mag-
netic resonance imaging (MRI), have increased the incidental
detection of breast tumors [5], [6]. In particular, dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI),
which can compactly capture both anatomical and metabolic
features, has been demonstrated as a great screening exami-
nation for those with a high risk of breast cancer [7].
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Although the characteristics of benign and malignant
breast lesions have been established by conventional imag-
ing techniques [8]–[11], differentiating between benign and
malignant breast masses is sometimes difficult for radiol-
ogists. Imaging-guided biopsies have been considered the
first choice for most breast cancers that cannot be diagnosed
accurately with conventional imaging; however, the overlap-
ping appearances of benign andmalignant breast tumors have
led to a large number of unnecessary breast biopsies, and
the majority of lesions yield benign results [12]. Therefore,
some imaging approaches are required to assist in accurately
differentiating benign from malignant breast tumors and to
reduce the number of unnecessary biopsies. Fibroadenoma
is the most common benign breast mass, and invasive duc-
tal carcinoma (IDC) is the most common malignancy [13].
It remains difficult to accurately identify fibroadenoma and
IDC. Liu et al. [14] implemented the addition of histogram
analysis to apparent diffusion coefficient maps in DCE-MRI
for predicting breast malignancy, in which most lesions were
found to be fibroadenoma or IDC. Moreover, a typical breast
MRI study consists of several acquired and postprocessed
image series, each composed of several dozen slices. Due
to this large number of images, reading breast MRI studies
and reporting the diagnostic findings are tedious and prone to
human errors. Computer-aided interpretation of breast MRI
studies can assist radiologists by automatically characterizing
the detected lesions and may potentially reduce the radiolo-
gist’s workload.

A variety of hand-crafted features have been continuously
proposed by domain experts: textural [15] (as variance and
skewness), morphological [16] (as compactness and perime-
ter), and dynamic [17] (extracted from the time intensity
curve). However, these low-throughput features were selected
based on radiologists’ expert knowledge, which might limit
the potential of the radiomics model. Recently, some stud-
ies have used deep learning approaches to perform breast
MRI lesion classification. Antropova et al. [18] adopted
AlexNet [19] pretrained on the ImageNet [20] dataset as a
feature extractor by using a support vector machine (SVM)
for the malignant/benignant classification task and yielded
an area under the ROC curve (AUC) value of 0.85, demon-
strating the predictive value of the convolutional neural net-
work (CNN) and transfer learning in the classification of
DCE-MRI breast images. However, the ROIs in their training
dataset were only extracted from the DCE-MRI slices at
the second post-contrast time point, which ignored kinetic
and 3D context features. Amit et al. [21] proposed a multi-
channel representation for DCE-MRI images that could cap-
ture both the anatomical and metabolic characteristics of
lesions in a single multi-channel image and enabled a high
accuracy. However, their dataset was relatively small, and
they could not assess the classification in a single patient.

In this paper, we propose a transfer learning-based auto-
matic detection and differentiation method for distinguishing
between fibroadenoma and IDC in DCE-MRI. The CNNs
used in our model were Inception V3 [22] and VGG19 [23],

which were pretrained on the ImageNet dataset and were
adopted to obtain slice image features; then, the multi-
slice image features of lesions were merged using two
fully connected (FC) layers. Our lesion detection framework
provides high detection accuracy and a low false-positive
rate by making use of 4-dimensional DCE-MRI data.
We hypothesize that models trained with multi-slice images
of lesions can obtain better accuracy by combining intra-slice
with inter-slice features for differentiating IDC from
fibroadenoma.

II. MATERIALS AND METHODS
A. GENERAL INFORMATION
From December 2015 to July 2018, data from a total of
184 female patients with mastopathy were collected from
Nanjing Maternity and Child Care Hospital. The collection
of this dataset was approved by the Institutional Review
Board, and we obtained waived written informed consent.
All the patients had undergone surgery within 15 days after
MRI examination. The final pathological diagnosis distin-
guished that 108 patients (average age 50.52±10.33 years)
had fibroadenoma, and the other 76 patients (average age
42.20±10.10 years) had IDC. Each case of patient data
included the DCE T1 sequence with one precontrast series
and five postcontrast series. Three experienced radiologists
interpreted the studies and manually delineated the bound-
aries of the region of interest (ROI) on each relevant slice.
The lesion images were then cropped using a rectangular
bounding box around the annotated boundaries.

B. ACQUISITION OF MRI IMAGES
All patients underwent imaging with a 1.5 T scanner
(Achieva, Philips Medical Systems, Netherlands) equipped
with a dedicated four-channel phased-array surface breast
coil. Axial DCE images using 3D-T1 gradient echo with
fat saturation sequences were acquired (TR/TE: 6.9/3.4 ms;
flip angle: 10◦; field of view 340 mm×340 mm; matrix:
340×340; thickness: 2 mm; gap: 0; acquisition time:
6 minutes and 25 s; 150 slices spanning entire breast volume).
One series (t0) was acquired before and 5 series (t1-t5) were
acquired after intravenous injection of 0.1 mmol/kg of a
positive paramagnetic contrast agent. An automatic injection
system was used (Spectris Solaris EP MR, MEDRAD, Inc.,
Indianola, PA), and the injection flow rate was set to 2 ml/s,
followed by a flush of 10ml of saline solution at the same rate.

C. IMAGE REPRESENTATION
1) KINETIC GRAPH MEASURE
The kinetic graph shows the pattern of contrast uptake and
the temporal location of the DCE sequence, which usually
requires manual measurement by radiologists. We used the
raw image sequence and encoded program to automatically
obtain a kinetic graph (Fig. 1). Then, three-channel image
representation was based on this graph.

17528 VOLUME 8, 2020



L. Zhou et al.: Transfer Learning-Based DCE-MRI Method for Identifying Differentiation

FIGURE 1. Auto-getting kinetic graph. (A) A fibroadenoma lesion with
washout kinetics. (B) An IDC lesion with persistent kinetics.

2) THREE-CHANNEL REPRESENTATION
We used our multichannel image representation described in
a previous study [24] that could capture both the anatom-
ical and metabolic characteristics of the lesion in a single
three-channel image. The three-channel image representation
naturally fit the input architecture of the CNNs. The following
notations were used for the DCE temporal series: Ipre is the
precontrast image, Ipeak is the peak-enhancement image, Iearly

is the initial uptake image, and Idelay is the delayed response
image. Each slice image is represented by the following three
channels:

(1) peak enhancement intensity channel: Ipeak;
(2) contrast uptake channel: Ipeak – Ipre;
(3) contrast washout image: Iearly - Idelay.
The images were normalized to have a mean of zero and

one unit of standard deviation. The training dataset was aug-
mented by adding rotated (rotation range = [−90◦, 90◦]),
two shifts (width shift range = [0, 0.2]; height shift range =
[0, 0.2]) and zoom (zoom ratio = 0.2) variants for each
image. With sufficient data augmentation, the network could
be trained very quickly.

D. LESION DETECTION FRAMEWORK
A flowchart of the study is shown in Fig. 2. We removed
the Softmax layers of Inception V3 and VGG19. The other
structures of the model remained the same and were initial-
ized by the weights trained on ImageNet. Then, the feature

vectors (1024 × 1 × N) extracted from all the tumor images
(N means the number of images of one lesion) of a given
lesion were merged into a one-dimensional vector (1024× 1)
to form the input tensor of the lesion-level model with a
Max pooling layer. This layer was used to make the different
image sequence lengths uniform. At the end of the model,
we added two FC layers (the first layer had 1024 nodes, and
the second layer had two nodes for fibroadenoma and IDC)
and the Softmax activation to achieve diagnosis at the lesion
level.

The two deep learning models were compared in terms of
their ability to distinguish fibroadenoma and IDC lesions.
Each model was evaluated in a baseline configuration,
which included three-channel image representation and
data augmentation. In the Keras deep learning framework,
VGG19 consists of 25 layers, including 16 convolution layers
and 3 fully connected layers. Inception V3 consists of 313
layers, including 13 mixed layers. The shallow layers corre-
spond to general and low-level image features. To explore
the effect of freezing different deep layers during transfer
learning, we evenly selected the nodal layers in VGG19 and
Inception V3. We chose the nodal layers evenly: layer-100,
layer-196, layer-276 and layer-310 as the dividing points
in Inception V3, as well as layer-9, layer-13, layer-17 and
layer-21 as the dividing points in VGG19. The layers prior to
the dividing point were frozen, which meant that the weights
of these layers were not updated but that others could be
trained during the iteration.

E. EXPERIMENTS
The server used in this study was equipped with Intel(R)
Xeon(R) E5-2650 v4 CPUs @ 2.20 GHz (2 CPUs, 24 cores,
2 threads/core, 128 GB of memory) and an NVIDIA-SMI
384.81. The KERAS deep learning framework was used.
In addition, the learning rate used was 0.01, the momentum
was 0.9, and the decay rate was 1.0 × 10−6. The total num-
ber of parameters was approximately 243 M and 96 M in
our model, which was based on VGG19 and Inception V3,
respectively.

F. PERFORMANCE EVALUATION
The data were randomly split into training (75%) (invasive
ductal carcinoma: 74 patients, 79 lesions; fibroadenoma:
54 patients, 63 lesions) and testing (25%) (invasive ductal car-
cinoma: 34 patients, 36 lesions; fibroadenoma: 22 patients,
22 lesions) subsets of patients. During the training process,
the training dataset was randomly split into five groups in
order to perform a five-fold cross validation. Model parame-
ter explorationwas performed by five-fold cross validation on
the training dataset. This approach was chosen on account of
the small size of the dataset. We used our subset by partition-
ing as previously described in [24] to prevent contamination
of the training, validation and testing sets with images of the
same patient. The results were reported in terms of accuracy
(ACC), sensitivity (SEN), specificity (SPE), Matthews cor-
relation coefficient (MCC) and AUC. During the validation
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FIGURE 2. Flowchart of the study. First, the DCE-MRI images were preprocessed and represented. Second, five-fold cross-validation
was used to select the fine turning model with high predictive performance. In the end, comprehensive model was built to
distinguish the fibroadenoma and I.

TABLE 1. Five-fold cross-validation result on these models with different depth weight of CNN.

phase, all the metrics were calculated based on the average
five-fold cross validation results. Then, a better model struc-
ture was chosen, the model was retrained with all the training
data, and the model parameters were saved.

III. RESULTS
A. PERFORMANCES WITH DIFFERENT DEPTHS OF
TRANSFER LEARNING
The models were trained with the iteration stopping criteria,
which were determined by monitoring the convergence of
the ACC and the loss of the validation and training datasets.
The convergence ranges of validation loss were 0.5-0.7 and
0.5-0.7, and the averaged validation accuracies were
89-94% and 81-91%, in Inception V3 and VGG19 respec-
tively. Combined with the ACC and loss curves in Fig. 3 and
a series of metrics in Table 1, it was found that the trend of
fine-turning results on both lesion-level models (based on
Inception V3 and VGG19) was consistent. For the specific

target domain in this study, the classification results were
barely satisfactory when the number of freezing layers was
too large or too small.

For the lesion-level model based on Inception V3 and
VGG19, the validation results of AUCs from freezing layer-
276 (AUC = 0.83) and layer-13 (AUC = 0.87) were larger
in Fig. 4(A) and Fig. 4(B), respectively. Other metrics such
as the SEN, SPEC, MCC and ACC in Table 1 presented the
same trends as the AUCs in Fig. 4. As shown in Table 1, for
the lesion-levelmodel based on InceptionV3, the fine-turning
result of freezing the 100 layers was the worst. The model had
many parameters, but with less data, possible reasons. For the
lesion-levelmodel based onVGG19, the fine-turning result of
freezing the 21 layers was the worst. Thus, the natural image
training model is not fully suitable for medical images. Both
of them are difficult to converge and fluctuate greatly.

The appropriate fine-turning depth and the related train-
ing parameters were selected, yielding a better performance
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FIGURE 3. Traces of training loss and validation loss (blue and yellow lines) and training ACC
and validation accuracy (orange and purple lines). A column was trained on the Inception V3,
and −1, −2, −3 and −4 denoted freezing the weights of CNN before 100, 197, 276 and 310
layers. B column was trained on the VGG19, and −1, −2, −3 and −4 denoted freezing the
weights of CNN before 9, 13, 17 and 21 layer.

TABLE 2. Test result on these models with different depth weight of CNN.

in five-fold cross validation; then, the selected model was
retrained with all the training datasets. We employed the
corresponding model parameters on our testing dataset. The
results are listed in Table 2.

B. COMPARISONS OF LESION-LEVEL MODELS
To classify fibroadenoma and IDC from slice images,
we removed the comprehensive part and set two nodes
(fibroadenoma/invasive ductal carcinoma) in the Softmax
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FIGURE 4. ROC averaged on five-fold cross validation of the transfer
learning with freezing different layers. The plot of AUC calculated from
ROC with freezing different layers.

layer of Inception V3 and VGG19. The other structures of
the models and the depths of transfer learning remained the
same.

Compared with the image-level model, our two lesion-
level models obviously improved and were similar (the ACC,
SEN, MCC, and AUC increased by 13%, 22%, 26% and 4%
in the lesion-level model based on VGG19; the ACC, SEN,
MCC, and AUC increased by 14%, 20%, 29% and 12% in
the lesion-level model based on Inception V3), as shown in
in Table 2

IV. DISCUSSION
Our study demonstrates that transfer learning can be used
to classify fibroadenoma and IDC in DCE-MRI images.
Different depths of transfer learning resulted in different per-
formances, and our lesion-level model notably improved the
classification accuracy. Computerized algorithms can assist
radiologists by automatically characterizing the detected
lesions. Pang et al. [25] used texture and morphology
features with an SVM classifier to achieve an accuracy
of 0.9 for discriminating benign and malignant breast lesions.
Chen et al. [26] extracted the statistical and Haralick texture
features in DCE-MRI based on which predictive models were

built to predict histological grade in breast cancer. Their
classifier achieved good performance with an AUC of 0.859.
Those methods based on feature engineering need defined
features artificially, which might limit the accuracy and scal-
ability of the radiomics model. In this study, we proposed a
deep learning model to mine MRI image information related
to breast lesion status. While our results are comparable with
these reports, our classification approach is more general,
as it requires only the manually selected tumor region in
MRI images without human-defined features, which is dif-
ferent from conventional radiomic methods based on feature
engineering and can be naturally extended to other imaging
modalities or other MR sequences.

The applicability of a CNN classifier is often coupled with
the availability of large training datasets. Some researchers
have demonstrated that the classification of small sample
size image data can be achieved by transfer learning [27].
Anderson et al. [28] fine-tuned the final FC layers of the
pretrained VGG19 to classify the DCE-MRI breast images
as malignant or benign (AUC = 0.86). However, they only
trained the last FC layers. Zhe et al. [29] used the deep fea-
tures approach with the GoogleNet model pretrained on Ima-
geNet as the feature extractor and a polynomial kernel SVM
used as the classifier (AUC= 0.70) to identify occult invasive
disease in patients diagnosed with ductal carcinoma in situ.
However, they only trained the classifier while not training
the feature extractor. Thus, regulating the trainable layers
in transfer learning is worthwhile to investigate. In addi-
tion, they only took care of the central slice image of each
lesion. Previous studies have shown that feature extraction
by nonmedical models is feasible for the classification task
at hand [21], [28]. To improve the transfer learning perfor-
mance, we experimentedwith varying the number of trainable
layers. As Table 1 shows, the classification ability for breast
tumors remained at a similarly low level when the weights of
layers that were too large or too small were frozen. Because
the features extracted directly from the pretrainedmodel were
unsuitable and insufficient for breast tumor classification,
the fewer layers that were fine turned, the less classification
accuracy could be obtained. When training a complex model
with one small dataset, the more layers that were fine turned,
the poorer classification accuracy could be obtained.

Our proposed multichannel image representation naturally
fits the three-channel input architecture of the pretrained
convolutional networkwhile effectively encoding both spatial
and temporal characteristics of the imaging contrast. In addi-
tion to its contribution to improving classification accuracy,
it may also be used effectively for the simultaneous visual-
ization of the morphology and kinetics of a lesion to a human
interpreter. For clinical diagnoses, an experienced radiologist
usually observes and detects tumors based on many slices
along the Z-axis. We merged all slice features of each lesion
together to achieve diagnosis at the lesion level. By fusing
the learning of intra-slice and inter-slice features, the detec-
tion performance for breast tumors was obviously improved,
as shown in Table 2.
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Despite the encouraging performance of the deep learning
model, this study has several limitations. First, we only exam-
ined patients in one hospital. In future work, populations from
multiple sources are necessary to test whether our model can
be generalized. Second, although our model showed better
performance than clinical and radiomics models, the effects
of a combination of these models are unclear. The predictive
performance may be improved if we combine these models
together. Third, our study only focused on two special cate-
gories of lesions. Collecting more different subtype data and
further investigating fine-grained recognition can be explored
in future work.

V. CONCLUSION
In this paper, we have proposed a transfer learning-based
automatic detection and differentiation method in DCE-MRI
images. In our trained dataset, training layers from approx-
imately half the initially trained models performed better
than previous transfer-learning studies in which only the last
layer was trained. In addition, our lesion-level model notably
improved the classification accuracy. Such recognition ability
could eliminate the need for patients identified with benign
tumors to undergo invasive procedures. Deep learning tech-
nology bears the potential to revolutionize the capabilities
of computer-aided diagnosis tools. We believe that as the
available datasets expand and models are further optimized,
this method will be able to facilitate the incorporation of
cognitive technologies into the radiology workflow.

REFERENCES
[1] R. L. Siegel, K. D. Miller, and A. Jemal, ‘‘Cancer statistics, 2019,’’ CA,

Cancer J. Clin., vol. 69, no. 1, pp. 7–34, Jan/Feb. 2019.
[2] J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D. Parkin,

M. Piñeros, A. Znaor, and F. Bray, ‘‘Estimating the global cancer incidence
and mortality in 2018: GLOBOCAN sources and methods,’’ Int. J. Cancer,
vol. 144, no. 8, pp. 1941–1953, Apr. 2019.

[3] A. Noone, N. Howlader, M. Krapcho, D. Miller, A. Brest, and M. Yu,
‘‘SEER cancer statistics review, 1975–2015,’’ Nat. Cancer Inst., Bethesda,
MD, USA, Tech. Rep., 2018. [Online]. Available: https://seer.cancer.
gov/archive/csr/1975_2015/

[4] A. E. Giuliano, J. L. Connolly, S. B. Edge, E. A. Mittendorf, H. S. Rugo,
L. J. Solin, D. L. Weaver, D. J. Winchester, and G. N. Hortobagyi, ‘‘Breast
cancer-major changes in the American joint committee on cancer eighth
edition cancer staging manual,’’ CA, Cancer J. Clin., vol. 67, no. 4,
pp. 290–303, Jul. 2017.

[5] T. Stephens, ‘‘Breast cancer screening with imaging: Recommendations
from the society of breast imaging and the ACR on the use of mammogra-
phy, breastMRI, breast ultrasound, and other technologies for the detection
of clinically occult breast cancer,’’ Yearbook Diagnostic Radiol., vol. 2011,
pp. 46–47, Jan. 2011.

[6] N. Qu, Y. Luo, T. Yu, and H. Yu, ‘‘Differentiation between pure mucinous
breast carcinomas and fibroadenomas with strong high-signal intensity on
T2-weighted images from dynamic contrast-enhanced magnetic resonance
imaging,’’ Breast Care, vol. 13, no. 1, pp. 32–37, Mar. 2018.

[7] C. D. Lehman, C. Gatsonis, C. K. Kuhl, R. E. Hendrick, E. D. Pisano,
and L. Hanna, ‘‘MRI evaluation of the contralateral breast in women with
recently diagnosed breast cancer,’’ New England J. Med., vol. 356, no. 13,
pp. 1295–1303, Mar. 2007.

[8] L. Neal, C. L. Tortorelli, and A. Nassar, ‘‘Clinician’s guide to imaging and
pathologic findings in benign breast disease,’’ Mayo Clin. Proc., vol. 85,
no. 3, pp. 274–279, Mar. 2010.

[9] Q. Zhu, A. Ricci, P. Hegde, M. Kane, E. Cronin, A. Merkulov, Y. Xu,
B. Tavakoli, and S. Tannenbaum, ‘‘Assessment of functional differences in
malignant and benign breast lesions and improvement of diagnostic accu-
racy by using US-guided diffuse optical tomography in conjunction with
conventional US,’’ Radiology, vol. 280, no. 2, pp. 387–397, Aug. 2016.

[10] T. Kinoshita, N. Yashiro, N. Ihara, H. Funatu, E. Fukuma, and M. Narita,
‘‘Diffusion-weighted half-Fourier single-shot turbo spin echo imaging in
breast tumors: Differentiation of invasive ductal carcinoma from fibroade-
noma,’’ J. Comput. Assist. Tomogr., vol. 26, no. 6, pp. 1042–1046,
Nov. 2002.

[11] American College of Radiology. ACR BI-RADS Atlas Fifth Edi-
tion Quick Reference. [Online]. Available: https://www.acr.org/-/media/
ACR/Files/RADS/BI-RADS/BIRADS-Reference-Card.pdf

[12] Office of the Assistant Secretary for Planning and Evaluation. The
Importance of Radiology and Pathology Communication in the Diagnosis
and Staging of Cancer: Mammography as a Case Study. [Online].
Available: https://aspe.hhs.gov/pdf-report/importance-radiology-and-
pathology-communication-diagnosis-and-staging-cancer-mammography-
case-study

[13] K. Kasireddy, K. Manjula, and C. S. B. R. Prasad, ‘‘Clinicopathological
study of rare invasive epithelial tumors of breast: An institutional study,’’
BLDE Univ. J. Health Sci., vol. 1, no. 2, p. 125, 2016.

[14] H.-L. Liu, M. Zong, H. Wei, J.-J. Lou, S.-Q. Wang, Q.-G. Zou, H.-B. Shi,
and Y.-N. Jiang, ‘‘Preoperative predicting malignancy in breast mass-like
lesions: Value of adding histogram analysis of apparent diffusion coeffi-
cient maps to dynamic contrast-enhanced magnetic resonance imaging for
improving confidence level,’’ Brit. J. Radiol., vol. 90, no. 1079, Nov. 2017,
Art. no. 20170394.

[15] R. Fusco, M. Sansone, C. Sansone, and A. Petrillo, ‘‘Segmentation and
classification of breast lesions using dynamic and textural features in
dynamic contrast enhanced-magnetic resonance imaging,’’ in Proc. 25th
IEEE Int. Symp. Comput.-Based Med. Syst. (CBMS), Jun. 2012, pp. 1–4.

[16] R. Fusco, M. Sansone, A. Petrillo, and C. Sansone, ‘‘A multiple classifier
system for classification of breast lesions using dynamic and morphologi-
cal features in DCE-MRI,’’ in Proc. Joint IAPR Int. Workshops Stat. Techn.
Pattern Recognit. Struct. Syntactic Pattern Recognit. (SPR&SSPR), 2012,
pp. 684–692.

[17] S. Glasser, U. Niemann, B. Preim, and M. Spiliopoulou, ‘‘Can we dis-
tinguish between benign and malignant breast tumors in DCE-MRI by
studying a tumor’s most suspect region only?’’ in Proc. 26th IEEE Int.
Symp. Comput.-Based Med. Syst., Jun. 2013, pp. 77–82.

[18] N. Antropova, B. Huynh, andM.Giger, ‘‘SU-D-207B-06: Predicting breast
cancer malignancy on DCE-MRI data using pre-trained convolutional
neural networks,’’Med. Phys., vol. 43, no. 6, pp. 3349–3350, Jun. 2016.

[19] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[21] G. Amit, R. Ben-Ari, O. Hadad, E. Monovich, N. Granot, and S. Hashoul,
‘‘Classification of breast MRI lesions using small-size training sets: Com-
parison of deep learning approaches,’’ in Proc. Med. Imag., Comput.-Aided
Diagnosis, Mar. 2017, Art. no. 101341H.

[22] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[23] H. Ye, Z. Wu, R.-W. Zhao, X. Wang, Y.-G. Jiang, and X. Xue, ‘‘Evaluating
two-stream CNN for video classification,’’ in Proc. 5th ACM Int. Conf.
Multimedia Retr. (ICMR), 2015, pp. 435–442.

[24] L. Zhou, Z. Zhang, Y.-C. Chen, Z.-Y. Zhao, X.-D. Yin, and H.-B. Jiang,
‘‘A deep learning-based radiomics model for differentiating benign and
malignant renal tumors,’’ Transl. Oncol., vol. 12, no. 2, pp. 292–300,
Feb. 2019.

[25] Z. Pang, D. Zhu, D. Chen, L. Li, and Y. Shao, ‘‘A computer-aided diagnosis
system for dynamic contrast-enhanced MR images based on level set seg-
mentation and ReliefF feature selection,’’ Comput. Math. Methods Med.,
vol. 2015, pp. 1–10, Jan. 2015.

[26] Q. Chen, M. Fan, P. Zhang, L. Li, and M. Xu, ‘‘Heterogeneity of tumor
and its surrounding stroma on DCE-MRI and diffusion weighted imaging
in predicting histological grade and lymph node status of breast cancer,’’
in Proc. Med. Imag., Imag. Informat. Healthcare, Res., Appl., Mar. 2019,
Art. no. 109541G.

[27] S. Wang, J. Shi, Z. Ye, D. Dong, D. Yu, M. Zhou, Y. Liu, O. Gevaert,
K.Wang, Y. Zhu, H. Zhou, Z. Liu, and J. Tian, ‘‘Predicting EGFRmutation
status in lung adenocarcinoma on computed tomography image using deep
learning,’’ Eur. Respiratory J., vol. 53, no. 3, Mar. 2019, Art. no. 1800986.

[28] R. Anderson, H. Li, Y. Ji, P. Liu, and M. L. Giger, ‘‘Evaluating deep
learning techniques for dynamic contrast-enhanced MRI in the diagnosis
of breast cancer,’’ Med. Imag., Comput.-Aided Diagnosis, vol. 10950,
Mar. 2019, Art. no. 1095006.

VOLUME 8, 2020 17533



L. Zhou et al.: Transfer Learning-Based DCE-MRI Method for Identifying Differentiation

[29] Z. Zhu, M. Harowicz, J. Zhang, A. Saha, L. J. Grimm, E. S. Hwang, and
M. A. Mazurowski, ‘‘Deep learning analysis of breast MRIs for prediction
of occult invasive disease in ductal carcinoma in situ,’’Comput. Biol. Med.,
vol. 115, Dec. 2019, Art. no. 103498.

LEILEI ZHOU received the master’s degree in
biomedical engineering from Nanjing Medical
University, Nanjing, China, in 2019. Her research
interest includes deep learning and its applications.

ZUOHENG ZHANG is currently pursuing the
doctor degree in molecular dynamics simulation
for nucleation and growth of iron oxide with
the School of Biological Science and Medical
Engineering, Southeast University. His research
interest includes parameter optimization and deep
learning and its applications.

XINDAO YIN is currently the Director of the
Department of Radiology, Nanjing First Hospital,
Nanjing Medical University, Nanjing, China. His
research interests include MRI data processing,
machine learning, and deep learning and its
applications.

HONG-BING JIANG received the master’s
degree from Southeast University, Nanjing, China,
in 2010. Since 2010, he has been a Professor at
Southeast University, Nanjing. Since 2012, he has
been a Professor with Nanjing Medical University,
Nanjing. His current research interests include
mobile robot, computer vision, medical image
processing, and machine learning.

JIE WANG is currently pursuing the master’s
degree in radiology with Nanjing Medical Univer-
sity. She is also workingwith the Affiliated Obstet-
rics and Gynecology Hospital of Nanjing Medical
University, Nanjing, China. Her research interest
includes breast MRI scanning and its applications.

GUAN GUI (Senior Member, IEEE) received the
Dr.Eng. degree in information and communica-
tion engineering from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 2012.

From 2009 to 2014, he was a Research Assistant
as well as a Postdoctoral Research Fellow with
the Wireless Signal Processing and Network Lab-
oratory (Prof. Adachi Laboratory), Department of
Communications Engineering, Graduate School of

Engineering, Tohoku University. From 2014 to 2015, he was an Assistant
Professor with the Department of Electronics and Information System, Akita
Prefectural University. Since 2015, he has been a Professor at the Nanjing
University of Posts and Telecommunications (NJUPT), Nanjing, China. He is
currently engaged in the research of deep learning, compressive sensing,
and advanced wireless techniques. He has published more than 200 inter-
national peer-reviewed journal/conference papers. He received the Member
andGlobal Activities ContributionsAward from the IEEEComSoc and seven
best paper awards, i.e., ICEICT 2019, ADHIP 2018, CSPS 2018, ICNC
2018, ICC 2017, ICC 2014, and VTC 2014-Spring. He was also selected
as a Jiangsu Specially-Appointed Professor, in 2016, the Jiangsu High-level
Innovation and Entrepreneurial Talent, in 2016, the Jiangsu Six Top Talent,
in 2018, the Nanjing Youth Award, in 2018. He was an Editor of Security and
Communication Networks, from 2012 to 2016. He has been an Editor of the
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, since 2017, IEEE ACCESS,
since 2018, KSII Transactions on Internet and Information Systems, since
2017, and Journal of Communications, since 2019, and the Editor-in-Chief
of EAI Transactions on Artificial Intelligence, since 2018.

YU-CHEN CHEN received the Ph.D. degree from
Southeast University, Nanjing, China, in 2016.
He is currently a Radiologist working with the
Radiology Department, Nanjing First Hospital,
NanjingMedical University, Nanjing. His research
interests include functional MRI data processing,
machine learning, and transfer learning and its
applications.

JIN-XIA ZHENG is currently an Associate
Chief Physician with the Radiology Department,
Affiliated Obstetrics and Gynecology Hospital of
Nanjing Medical University, Nanjing, China. Her
research interest includes breast DCE-MRI scan-
ning data processing and its applications.

17534 VOLUME 8, 2020


