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ABSTRACT Lane-changing in undersea tunnels has a negative impact on the normal traffic flow, and even
lays hidden dangers for the occurrence of traffic accidents. Lane-changing behavior in undersea tunnels was
divided into free, compulsory, and collaborative lane-changing types according to the characteristics of traffic
flow to explore lane-changing risk in undersea tunnels. A fuzzy inference analysis on the three lane-changing
behaviors was conducted on the basis of the behavior characteristics of fuzzy uncertainty of drivers. Themost
representative influencing variables, including speed difference, initial space of vehicles, traffic density, and
distance for minimum lane-changing, were selected as fuzzy input variables, and lane-changing risk was
used as an output variable to construct fuzzy rules for different lane-changing behavior. Risks of the three
lane-changing behaviors were simulated by MATLAB/Simulink. Results demonstrated that the compulsory
lane-changing in undersea tunnel was the riskiest, followed by collaborative and free lane-changing. Slope
considerably influenced lane-changing risk. Specifically, the lane-changing risk at the downhill section was
the highest, and the lane-changing risk at the uphill section was the lowest. The lane-changing risk at the flat
section was between them.

INDEX TERMS Fuzzy inference, risk analysis, undersea tunnel, vehicle lane-changing.

I. INTRODUCTION
Undersea tunnel is a large traffic infrastructure for solving
traffic interruption between the two sides of straits and bays.
The traffic flow in undersea tunnel is large due to its traffic
connection function. Any traffic accidents in undersea tunnel
easily cause loss of local traffic functions and even traffic
paralysis of the entire undersea tunnel, thereby inducing
large-scaled local traffic jam. Unlike a relatively flat open
traffic environment, the undersea tunnel is approximately a
closed space. This undersea tunnel is a narrow longitudinal
slope that can amplify the potential threats and occurrence
of traffic accidents due to traffic density, vehicle speed, and
lane-changing behavior of drivers. As a result, the influencing
factors of traffic safety in undersea tunnels are explored, and
this exploration is important in preventing traffic accidents.

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

Lane-changing refers to a driving behavior in which a
vehicle changes from the original lane to the adjacent lane for
certain reasons. Although lane-changing is a common driving
behavior on a flat open highway, lane-changing behavior
against regulations or random lane-changing behavior in an
undersea tunnel influences the stability of tunnel traffic flow
considerably and even may cause serious traffic accidents.
Therefore, relevant traffic laws often forbid lane-changing in
an undersea tunnel. Nevertheless, many drivers ignore rele-
vant traffic laws and change lanes in an undersea tunnel and
even overtake other cars. These driving behaviors cause great
hazard and threats to the traffic environment in an undersea
tunnel [1]–[3].

Lane-changing is one characteristic of traffic flow. Gipps
proposed a lane-changing model that considered the influ-
ences of lane-changing risk, veering demands, and dis-
tance to barriers. Relevant rules were also designed to
distinguish the influencing factors of lane-changing behav-
iors [4]. Tang et al. constructed a lane-changing model that
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considered lane-changing frequency based on the Gipps
model and introduced random error into the model. In this
model, lane-changing behavior was divided into four stages,
namely, considering lane-changing, selecting the target lane,
searching acceptable space, and implementing lane-changing
behavior [5]. Olsen et al. divided lane-changing behavior
into three types according to demands, including free, com-
pulsory, and collaborative lane-changing [6]. Kesting et al.
proposed the MOBIL (minimizing overall braking induced
by lane change) model that considered acceleration con-
trol [7]. Xu et al. constructed a lane-changing model that
considered the characteristics of drivers [8]. Liu and Wang
investigated the application of cellular automata theory in
compulsory lane-changing behavior [9]. Qiu et al. con-
structed a lane-changing model by using the Bayesian
network and attempted to increase the accuracy of the
lane-changing model through machine learning [10].
Talebpour et al. presented a lane-changing model based on a
game theoretical approach that endogenously accounted for
the flow of information in a connected vehicular environ-
ment [11]. Zhang et al. adopted a deep-learning model and
long short-term memory neural network to simultaneously
model car-following and lane-changing behaviors [12].

Existing studies on lane-changing behavior mainly focus
on macroscopic and microscopic studies in highway or
urban roads. Some research achievements on model con-
struction have been acquired. However, only few studies on
the lane-changing behavior in an undersea tunnel have been
reported. For this reason, key attentions were paid to the
risk characteristics of lane-changing behavior in an undersea
tunnel in the present study.

Fuzzy inference is a reasoning process that may draw
conclusions from an inaccurate precondition set. This pro-
cess can effectively describe driving behavior characteristics
because it conforms to the subjective decision-making pro-
gram of drivers in actual traffic environment. Fuzzy infer-
ence is widely applied in car-following and lane-changing
behaviors in traffic flows due to this unique advantage.
Wang et al. used logic method to describe the judgment
process based on drivers’ knowledge and experience and
established amicroscopic lane-changingmodel [13].Mar and
Lin designed a collision prevention system based on cascaded
fuzzy inference system for lane-changing maneuver and car
following to provide a safe, reasonable, and comfortable
drive for car following and lane-changing [14]. Lin et al.
designed compulsive and discretionary lane-changing fuzzy
controllers, which were used to determine whether a vehicle
will change lane with the help of the knowledge and expe-
rience of a driver [15]. Moridpour developed an exclusive
fuzzy lane-changing model for heavy vehicles. The fuzzy
model can increase the accuracy of simulation models in
estimating the macroscopic and microscopic traffic char-
acteristics [16]. Qiu et al. used fuzzy-clustering analysis
method to divide variables into various fuzzy sets and estab-
lished a car-following fuzzy inference system with a higher
simulation accuracy of error indexes in comparison with that

of the Gipps mode [17]. Li et al. extracted fuzzy rules of three
lane-changing ways and constructed lane-changing models
based on fuzzy reasoning [18].

Compared with ordinary mountain tunnels, undersea tun-
nels have unique characteristics. Although mountain tunnels
and undersea tunnels are both closed spaces, their undersea
tunnels have to extend from land to seabed and pass through
below the seabed to the land again. Undersea tunnels present
V-shaped structures. Several sufficiently long undersea tun-
nels are constructed into a U-shaped structure, which has a
flat section at the valley. However, most existing undersea
tunnels are V-shaped structures. In other words, undersea
tunnels must have a longitudinal slope. Although numerous
mountain tunnels have a longitudinal slope, they often extend
toward one direction rather than V -shaped structures. Traffic
flow characteristics in such V-shaped undersea tunnels may
not be completely consistent with those of ordinary highways.

Lane-changing behaviors and characteristics were classi-
fied according to the characteristics of traffic flow to deeply
analyze the lane-changing behaviors in an undersea tunnel.
Different lane-changing behavior models in an undersea tun-
nel were constructed on the basis of fuzzy inference. The
validity and accuracy of models were verified by a system
simulation. A new method for recognizing the risk degree of
lane-changing behaviors in an undersea tunnel under different
slopes was provided by constructing a model based on fuzzy
inference. Research conclusions lay foundations to traffic
safety management in undersea tunnels.

II. TRAFFIC FLOW ANALYSIS IN AN UNDERSEA TUNNEL
A. CAR-FOLLOWING MODE ANALYSIS IN AN UNDERSEA
TUNNEL
As a traffic facility that connects two sides of straits or bays,
an undersea tunnel considerably promotes social economic
developments in two sides. No vehicles are allowed to change
lanes or overtake other cars under normal driving conditions
in undersea tunnels due to their V-shaped physical structure
and large traffic flow. Moreover, nearly no other lane exists
in undersea tunnels, except for ordinary lanes. Therefore,
traffic flow characteristics are evident in an undersea tunnel,
accompanied with prominent car-following modes (Figure 1,
physical images of the Jiaozhou Bay undersea tunnel in
Qingdao City). Several radical drivers may change to another
lane when the front vehicle is slower from the expected speed,
and the adjacent lane has adequate space. Drivers in the
adjacent lane do not expect such lane-changing behavior. The
V-shaped structure of undersea tunnels can significantly
influence vehicle speed, which is easily ignored by most
drivers. In other words, lane-changing behavior in an under-
sea tunnel has great risks. In fact, data statistics also reflects
that lane-changing behavior is the main cause of traffic acci-
dents in an undersea tunnel.

B. LANE-CHANGING BEHAVIORAL CHARACTERISTICS
Relevant traffic laws state that vehicles are prohibited
to change lanes or overtake other cars in an undersea
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FIGURE 1. Traffic flow and lane-changing behavior in an undersea tunnel.

tunnel under normal traffic conditions. Nevertheless, such
dangerous driving behaviors cannot be completely eradi-
cated in reality. When the front car is driving slowly, sev-
eral drivers may opt to change to the adjacent lane to
avoid car-following behavior or to realize the expected vehi-
cle speed. Lane-changing behavior requires the speed-space
comparative disadvantage and psychological conditions for
safe lane-changing. Speed-space comparative disadvantage
means that the expected vehicle speed cannot be realized
in the current lane, but it can be achieved in the adjacent
lane. The psychological conditions for safe lane-changing
mean that the driver estimates that the current traffic environ-
ment supports safe lane-changing. In this process, the lane-
changing behavior of the driver experiences four programs,
namely, perception, impulsion, judgment, and operation [19].
The driver initially perceives surrounding traffic environ-
ments. When he/she is unsatisfied about the current lane,
the driver forms impulsion for lane-changing. Then, the driver
judges the surrounding traffic environment and finally oper-
ates the vehicle to the adjacent lane under the perceived safe
conditions.

The preceding analysis indicates that existing lane-
changing types emphasize the division of lane-changing
behaviors into judgment and compulsory lane-changing from
the perspective of drivers’ demands. In fact, lane-changing
behavior can be implemented under the collaboration of
subjective intention and the driving behavior of surround-
ing vehicles, including avoidance, assistance, or competitive
motility of following cars in the target lane. Therefore, the tra-
ditional division method often cannot accurately simulate
the complicated lane-changing behaviors. On the basis of

previous theoretical studies of lane-changing behaviors, lane-
changing behaviors in an undersea tunnel were divided into
free, collaborative, and compulsory lane-changing according
to the interaction of lane-changing and following cars in the
target lane.

(1) Free lane-changing refers to the state in which a vehicle
changes to the target lane without influencing the front and
back vehicles in the current lane and following cars in the
target lane. This lane-changing state condition is the safest
and most ideal.

(2) Collaborative lane-changing means that a vehicle
makes good interactions with surrounding vehicles in the
process of lane-changing and changes to the target lane under
the good assistance of following cars in the target lane. This
interactive lane-changing behavior is harmonious.

(3) Compulsory lane-changing means that a vehicle coer-
cively turns to the target lane when no sufficient condition is
met for lane-changing, thereby forcing the following car in
the target lane to slow down. Compulsory lane-changing is
an important cause of traffic accidents in an undersea tunnel.

The risk characteristics of lane-changing behaviors in
uphill, flat, and uphill sections of an undersea tunnel could
be analyzed on the basis of the unique linear structure of
undersea tunnels.

III. CONSTRUCTION OF A LANE-CHANGING RISK
PREDICTION MODEL BASED ON FUZZEY INFERENCE
Lane-changing behavior mainly involves the current (the
original lane) and target lanes. Thus, the current and
target lanes were hypothesized as the environment for
lane-changing behavior. The current and target lanes were
also viewed as two discrete lattice diagrams composed of
n cellulars. Stimulus-response theory states that vehicles in
the adjacent vehicles may be stimulated by different extents
and make different responses when vehicle C changes to
the adjacent lane. Figure 2 shows the different stimulatory
effects of lane-changing behavior of vehicleC to surrounding
vehicles.

FIGURE 2. Stimulus-response diagram of lane-changing behavior.

The desired safe space is a firm guarantee for safe lane-
changing. The desired safe space is mainly determined by
the initial longitudinal space and speed difference between
the lane-changing vehicle and the front car in the target lane
and lane-changing time.When the vehicle space is larger than
the desired safe space, vehicles can safely change to adjacent
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lanes. This process has to meet

S (t) = 1D+
∫

[vC (t)− vM (t)] dt − LC ≥ 0 (1)

where S(t) is the real-time space between front and back
vehicles. vC(t) is the real-time speed of the lane-changing
vehicle C . vM(t) is the real-time speed of following car M
in the target lane.1D refers to the initial space between front
and back vehicles. LC is the length of a vehicle.

A. BASIC PRINCIPLE OF FUZZY INFERENCE
Fuzzy system is based on the natural language that conforms
to the thinking habit of a human; thus, convenient and fast pre-
diction and control over uncertain inference can be achieved.
Fuzzy inference is a process of mapping certain inputs to
outputs according to the logic rules of a fuzzy system. This
process is widely applied in the decision-making modeling
of human and can describe the characteristics of driving
behaviors that cannot be accurately expressed in a mathemat-
ical model. In the research field of driving behaviors, traffic
experts often control or solve the complicated nonlinear prob-
lem in car-following and lane-changing behaviors by using
the fuzzy technology. Fuzzy inference generally covers the
following steps [20], [21]:

(1) Fuzzification of input variables: This step transforms
certain inputs into a fuzzy set described by a membership
function.

(2) Applying a fuzzy operator (and-or-not) to the
antecedent part of fuzzy rules

(3) Inferring conclusions from antecedent parts according
to the fuzzy implication rule

(4) Synthesizing the conclusion of each rule and finally
obtaining the overall conclusion

(5) Anti-fuzzification: This step transforms fuzzy variables
into certain outputs

In the fuzzification process, the input value has to be
transformed into a numerical value of domain of discourse at
an appropriate proportion. Physical variables were described
and measured by colloquial variables, and then the relative
degree of membership of the numerical value was calculated
according to an appropriate language value. Common cen-
tralized membership functions include Gaussian, generalized
bell-shaped, S-shaped, trapezoid, and triangular membership
functions. In this study, the triangular membership function
was applied as the main proportional transformation mode
according to the characteristics of lane-changing behavior
supplemented by the trapezoid membership function to pro-
cess two ends of the domain of discourse. In the triangular
membership function, fuzzy samples

{
xj
}n
j=1 and a domain

of discourse of U exist. The first-order partition of U {Pi}ri=1
is performed, and the corresponding language variable is
{Li}ri=1. mi is the intermediate value of the partition set pi,
and xj is between mi and mi+1. The membership of the
language variable Li is

mi+1−xj
mi+1−mi

, and the membership of the

language variable Li+1 is
xj−mi

mi+1−mi
. The transformation based

on the trapezoid membership function was not introduced

in this study, because it is similar to that of the triangular
membership function. The risk prediction models of three
lane-changing behaviors were constructed by using the fuzzy
control method in the following text.

B. FUZZY INFERENCE MODEL OF FREE LANE-CHANGING
BEHAVIOR
1) DETERMINING THE FUZZY SET OF FREE LANE-CHANGING
BEHAVIOR
Under free lane-changing state, vehicle C will not influence
the following car (Cr ) and front car (Cf ) of the current lane
and the vehicle (Mf ) in the target lane due to small traffic den-
sity and large space between vehicles, or such influence can
be neglected. The running state of vehicle C may not disturb
the overall dynamic situation of the traffic flow in lanes, or the
disturbance could be ignored. In this case, speed difference
(1vCM = vC(t) − vM(t)) and initial space of vehicles (1D)
between vehicles C and M in the target lane are primary
factors that influence lane-changing safety. Thus, 1vCM and
1D were selected as the input variable of the fuzzy inference
model of free lane-changing. In this fuzzy inference model,
the fuzzy subset of 1vCM is {large negative, small negative,
zero, small positive, large positive}. The discrete domain of
discourse of 1vCM is selected as 1vCM = {−4,−2, 0, 3, 5}
(units: cellular, hereinafter the same). The fuzzy subset of the
initial space of vehicles (L0) is {very near, near, moderate,
far, very far}, and the discrete domain of discourse of 1D
is selected as 1D = {1, 3, 4, 5, 7}. Figure 3 shows the
membership functions of two input variables.

FIGURE 3. Membership functions of variables in the fuzzy inference
model of free lane-changing.

2) FUZZY EVALUATION OF FREE LANE-CHANGING RISKS
If the output is lane-changing risk degree RD, then the fuzzy
subset is safe, generally safe, risky, very risky, accident, and
the domain of discourse is RD = {S, M, L, XL, XXL}.
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TABLE 1. Fuzzy rule of risks in the fuzzy inference model of free lane-changing behavior.

Here, S stands for safety, M stands for general safety, L stands
for risky, XL stands for very risky and XXL stands for
accident. The fuzzy rule of free lane-changing risk was con-
structed (Table 1).

C. FUZZY INFERENCE MODEL OF COMPULSORY
LANE-CHANGEING BEHAVIOR
1) DETERMINING THE FUZZY SET OF COMPULSORY
LANE-CHANGING BEHAVIOR
The compulsory lane-changing behavior can be divided
into positive and coercive types. The former one is mainly
attributed to the strong radicalism of the driver. The driver
opts for the adjacent lane when the driving speed of the front
car cannot meet his/her expectation. The latter mainly refers
to the lane-changing behaviors due to front barriers or traffic
limitations and the delayed action of lane-changing behavior.
The distance for the minimum lane-changing can influence
the occurrence of the compulsory lane-changing behavior.
According to Reference [22], the lane-changing pressure (ψ)
refers to the degree of passive impacts in lane-changing
behavior, and it is sensitive to the distance for the minimum
lane-changing (l). Radicalism of driver is an abstract sum-
mary of driver types (conservative and radicalism types). The
radicalism coefficient (ζ) can reflect the positive factors of
drivers’ compulsory lane-changing behavior. Given the same
vehicle space, radical drivers are more confident on lane-
changing behavior and acts more frequently than conserva-
tive drivers. As a result, expression of radicalism is mainly
determined by 1D (or traffic density (ρ)). The higher 1D
is, the higher ζ and the possibility of drivers’ compulsory
lane-changing behavior will be.

ψ =
50− l
50

, 0 ≤ l ≤ 50 (2)

where ψ is the lane-changing pressure, and l is the distance
for the minimum lane-changing.

Therefore, the feasibility for compulsory lane-changing
behavior of the driver can be calculated as

γ = λ/(ψζ ) (3)

where γ is the feasibility of lane-changing behavior, and λ is
a coefficient.

On the basis of the preceding analysis, the traffic den-
sity (ρ) and distance for the minimum lane-changing (l) are
selected as the input variable of the fuzzy inference model of

compulsory lane-changing behavior. The fuzzy subset of traf-
fic density is {very small, small, moderate, large, very large},
and its domain of discourse is ρ = {0.2, 0.4, 0.5, 0.7, 0.9}.
The fuzzy subset of distance for the minimum lane-changing
is {very small, small, moderate, large, very large}, and its
domain of discourse is l = {2, 4, 8, 12, 17}. The membership
functions of two input variables are shown in Figure 4.

FIGURE 4. Membership function of variables in fuzzy inference model of
compulsory lane-changing behavior.

TABLE 2. Fuzzy rule of risks in the fuzzy inference model of compulsory
lane-changing behavior.

2) FUZZY EVALUATION OF COMPULSORY LANE-CHANGING
RISK
The fuzzy rule of compulsory lane-changing risk was
constructed (Table 2).
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FIGURE 5. Color gradation of RD of three lane-changing behaviors.

D. FUZZY INFERENCE MODEL OF COLLABORATIVE
LANE-CHANGING BEHAVIOR
1) DETERMINING THE FUZZY SET OF COLLABORATIVE
LANE-CHANGING BEHAVIOR
Collaborative lane-changing is a near-distance lane-changing
behavior based on mutual communication and cooperation.
Whether vehicle C can conduct lane-changing behavior
smoothly is determined through the judgment and deci-
sion of following car M in the target lane. If vehicle M
opts to actively cooperate and slow down when it sees the
lane-changing signal of vehicle C , then the lane-changing
conditions are met. On contrary, if vehicle M rejects the
lane-changing request of vehicle C and keeps driving at a
constant speed or accelerated speed, then vehicle C cannot
conduct lane-changing behavior. However, vehicle C’s deci-
sion on speed changing is mainly reflected by the type of
drivers, that is, the radicalism coefficient ζ . Deceleration of
vehicle M is also determined by traffic density of the target
lane. When ρ is large, the space between vehicle M and the
following car is small. With considerations to safety, vehicle
M will not cooperate with vehicle C in lane-changing behav-
ior. From the preceding analysis, 1D and ρ were selected as
fuzzy set of the compulsory lane-changing behavior. Fuzzy
subsets of 1D and ρ are the same as mentioned previously.

2) FUZZY EVALUATION OF COLLABORATIVE
LAND-CHANGING RISK
The fuzzy rule of collaborative lane-changing risk was con-
structed (Table 3).

TABLE 3. Fuzzy rule of risks in the fuzzy inference model of collaborative
lane-changing behavior.

IV. MODEL SIMULATION AND RESULT ANALYSIS
Three lane-changing behaviors were fitted by the
MATLAB/Simulink simulation environment on the basis

of the constructed fuzzy inference models and fuzzy rules
of RD. In simulation models, fuzzy control applies the fuzzy
controller component provided by the Simulink environ-
ment, and the fuzzy control database is edited by Fuzzy of
MATLAB. Influences of input variables on RD are mani-
fested by a color gradient diagram (Figure 5). RD is reflected
by different colors. The darker color refers to higher risk
for lane-changing behavior under this circumstance, whereas
lighter color implies the higher safety for lane-changing
behavior.

The color gradient diagram of simulation analysis shows
that the compulsory lane-changing behavior in an undersea
tunnel has the highest risk, followed by collaborative and free
lane-changing behaviors. In other words, free lane-changing
is safer than collaborative lane-changing, and collaborative
lane-changing is safer than compulsory lane-changing. The
simulation results conform to actual traffic flow in an under-
sea tunnel.

Risk characteristics of lane-changing behavior at downhill,
flat, and uphill sections of a V-shaped undersea tunnel were
analyzed by introducing a slope influence coefficient. The
Jiaozhou Bay undersea tunnel in Qingdao City was used as
the research object in this study. The length of the undersea
tunnel is 7797 meters, with a maximum downhill of - 3.54%
and a maximum uphill of 3.90%. The basic relationship
between slope and slope length is shown in Table 4.

Taking the basic slope and slope length of Jiaozhou Bay
undersea tunnel as parameters, the simulationwas carried out,
and RD changes of three lane-changing behaviors with slope
were disclosed (Figures 6-8).

A comparison of Figs. 6-8 implies that lane-changing
risk is highly sensitive to slope. Lane-changing risk reaches
the peak at the downhill section and the valley at the
uphill section. The lane-changing risk at flat section is
found between them. When vehicle C sends request of
lane-changing at the downhill section, vehicle M slows down
to some extent under the premise of tailgating of back vehi-
cles. However, such deceleration act is mainly based on
vehicle perception on open horizontal roads, whereas the
acceleration by slope of road is often ignored, thereby causing
accidents. Moreover, the compulsory lane-changing behavior
of the front car will cause the back car to make delayed
response and thereby increase the risk, because lane-changing
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TABLE 4. The basic relationship between slope and slope length about Jiaozhou Bay undersea tunnel.

FIGURE 6. RD analysis of free lane-changing under different slope environments.

FIGURE 7. RD analysis of compulsory lane-changing under different slope environments.

FIGURE 8. RD analysis of collaborative lane-changing under different slope environments.

in tunnels is generally forbidden. The simulation results
conform to the actual situation.

V. DISCUSSIONS
The characteristics of a V-shaped undersea tunnel are
different from those of ordinary mountain tunnels. The
lane-changing behavior in a V-shaped undersea tunnel not
only has complexity of operation but also has evident risks.
Although the lane-changing of vehicles in an undersea tunnel

is forbidden, it cannot be completely eradicated in practice.
In this study, the lane-changing behavior in an undersea
tunnel is divided into free, collaborative, and compulsory
lane-changing. The risks of the three lane-changing behaviors
are evaluated by fuzzy inference. The triangle membership
function is selected from the perspective of qualitative anal-
ysis, assisted by trapezoid membership function. However,
multiple membership functions, such as Gaussian, general-
ized bell-shaped, and S-shaped membership functions, exist.
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In this study, not all membership functions are evaluated
individually. Finally, different membership functions might
cause various analysis outcomes.

VI. CONCLUSION
Free, compulsory, and collaborative lane-changing behaviors
in an undersea tunnel are analyzed. Lane-changing risk of an
undersea tunnel is analyzed on the basis of fuzzy inference.
Several conclusions could be drawn.

(1) Fuzzy inference models of three lane-changing behav-
iors (free, compulsory, and collaborative lane-changing) and
fuzzy rules of relevant risk degree in an undersea tunnel are
concluded.

(2) The simulation results show that compulsory
lane-changing risk in an undersea tunnel is the highest,
whereas the free lane-changing risk is the lowest. Collab-
orative lane-changing risk is between the aforementioned
risks. In other words, the free lane-changing behavior is
safer than the collaborative lane-changing behavior, and the
collaborative lane-changing is safer than the compulsory
lane-changing behavior.

(3) The simulation results also indicate that slope can con-
siderably influence lane-changing risk. Lane-changing risk
reaches the maximum at downhill section and the minimum
at the uphill section. The lane-changing risk at the flat section
is between those of downhill and uphill sections.

Conclusions (2) and (3) indicate that the compulsory lane-
changing risk at the downhill section of an undersea tunnel is
extremely high and might cause traffic accidents. Therefore,
such lane-changing behavior shall be strictly prohibited.

To sum up, fuzzy inference models of lane-changing
behavior and fuzzy rules of risk degree in an undersea tunnel
can provide reference for traffic safety management and risk
control and provide suggestions for drivers to drive safely in
an undersea tunnel.
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