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ABSTRACT In terms of complex diseases like schizophrenia, more and more studies are beginning to treat
genetic variants and brain imaging phenotypes as an important factor. In this paper, a competent optimization
model is exploited to overcome the weakness of deep canonical correlation analysis (DCCA). The model
consists of principal component analysis (PCA) on the multi-modality linear features learning and multi-
layer belief networks on multi-modality nonlinear features learning. In order to complete a better result
of correlation analysis and classification, the output nodes of multi-layer belief network are used for back
propagation (BP) network training. Previous works on solving canonical correlation analysis (CCA) had
proposed several models based on deep neural network or regularization, typically involving either some
form of norm or auto-encoders with a reconstruction objective. Many existing advanced models had been
developed to find themaximal correlation in multi-modality data. However, these multi-modality data tend to
have the number of feature dimensions which more than that of samples. Differ from these advanced models,
our proposed model is applied to analyze the real set of multi-modality data and test several previous models,
then comparing them experimentally on fMRI imaging and SNPs genomics. In experiments, the results show
that our model, deep principal correlated auto-encoders (DPCAE), learns features with effectively higher
correlation and better performance of classification than those previous models. In terms of classification
accuracy, the classification accuracy of the datasets exceeds 90%, but that of the CCA-based model are
about 65%, and that of the DNN-based model are about 80%, the classification accuracy of the DPCAE
is significantly improved obviously. In the experiment of clustering performance evaluation, the DPCAE
further verified its superior classification performance with an average normalized mutual information index
of 93.75% and an average classification error rate index of 3.8%. In terms of maximal correlation analysis,
the model outperforms other advanced models with a maximal correlation of 0.926, showing excellent
performance in high-dimensional data analysis.

INDEX TERMS Classification, data fusion, dimensionality reduction, belief network, optimization algo-
rithm, principal component analysis.

I. INTRODUCTION
For the past few years, many researchers have worked
on exploiting different variants of canonical correlation

The associate editor coordinating the review of this manuscript and
approving it for publication was Farid Boussaid.

analysis (CCA) models and apply them to analyze
genome-wide association problems [1]. For examples, these
problems include identifying correlation between single
nucleotide polymorphisms (SNPs) and genes [2], as well as
correlation between DNA copy number change and func-
tional magnetic resonance imaging (fMRI) [3], [4], and so on.
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In this paper, two-modality data were generated, the datasets
use fMRI data of 116 brain regions, which has a dataset
of 183 examples, and every example includes more than
forty thousand features, and use SNPs dataset of specific
genes [5], [6]. For the purposes of correlation analysis val-
idation between fMRI and SNPs data, various modified CCA
algorithms and different deep networks were simultaneously
applied on the datasets. Previous works [2], [7]–[12] have
developed many variants of CCA model which to address
more particular challenges in some large-scale studies.

Some of the statistical learning models mentioned above
need to be reviewed. For example, canonical correlation
analysis (CCA) [7] was not only used as a standard tech-
nique for searching linear projections of two groups of syn-
thetic variables that are maximally correlated, but also as a
design method of decreasing the dimension of the feature
vector, sparse canonical correlation analysis (sparse CCA)
[2], [8]. Joint sparse canonical correlation analysis [9] are
the extended forms of CCA with a particular regularized
constraint, which makes penalty model easier to interpret.
Deep CCA (DCCA) was introduced by Andrew [10] to find
out complex nonlinear relationships, general CCA has a lim-
itation in that it can only detect simple linear relationships
and does not have the significant advantages as DCCA. Deep
canonically correlated auto-encoders (DCCAE) was intro-
duced byWang et al., which as a non-linearmodel was used to
optimize the combination of nonlinear correlations between
reconstruction error of general auto-encoders and the learned
representations of neural network [11]. Deep collaborative
learning (DCL) is an effective method, which was proposed
by Hu et.al. It first uses a deep network to represent original
data and then seeks their correlations, while also linking the
data representation with phenotypical information [12].

It is greatly known that RBM is a popular tool for repre-
senting dependency structure between stochastic variables,
and the weights of the general RBM are optimized by min-
imizing the logarithmic loss function [13]. Differ from the
multi-layer belief network based on stack RBMs, the DPCAE
model updates weights by minimizing the objective function
on each modality and maximizing the canonical correlation
among the fourth hidden layer on eachmodality. As canonical
correlation analysis (CCA) has been used for describing the
maximal correlation between two stochastic variants, it could
be utilized to characterize the correlation among the hidden
layers. In the DPCAE model, activation functions in visible
or hidden units is a smooth monotonic non-linearity function,
such as non-saturating sigmoid nonlinearity function. Addi-
tionally, as the multi-layer belief network shows the better
representational learning ability and obtains a unified repre-
sentation, then the model based on multi-layer belief network
is updated to learn multi-modality data representations.

In this paper, we propose a novel model, deep principal cor-
related auto-encoders (DPCAE), which uses two back propa-
gation neural networks and two multi-layer belief networks
to integrate the maximal correlation of the model simulta-
neously. It’s necessary to note that two multi-layer belief

networks are applied to extract features of hidden units of two
modal data respectively. These extracted features are used
for correlation analysis, and then the maximal correlation is
selected to extract features with maximal correlation coef-
ficients. Two back propagation neural networks are added
to receive the output eigenvectors of the multi-layer belief
networks as its input eigenvectors, each layer of the belief
networks can only ensure that the weight within its own
layer achieve the optimal eigenvector mapping for the layer,
but not for the entire multi-layer belief networks. The back
propagation neural networks propagate the parameter infor-
mation from the top down to each layer of the multi-layer
belief networks, and fine-tuning the whole multi-layer belief
networks in each modality respectively. Comparing to the
model of CCA-based and that of DNN-based, our model joint
multi-layer belief network is based on several RBMs and
linear dimension reductionmethod, which is not only to speed
upmachine learning, but also to discard dimensions that carry
less information. Moreover, different from nonlinear deep
canonically correlated auto-encoders, the DPCAE model
adjusts the network’s in-layer parameters by usingmulti-layer
belief network and fine-tunes all network parameters from top
to bottom layer by way of BP network, resulting in the better
acquisition of nonlinear correlation in multi-modality data,
while applying PCA and penalty term for better data fitting.
It overcomes the disadvantage of falling into local optimum
and long training time due to random initialization of weight
parameters [13].

The rest of the paper is organized as follows. Section II
introduces the several existing state-of-the-art methods and
explain the reasons and advantages of our model. The col-
lection and application of image gene data can be found in
Section III. Detailed discussions and analysis of the results
were in Section IV. The conclusions of the work and future
direction of the work were in Section V.

II. TECHNICAL METHODS
A. REVIEW OF TRADITIONAL CANONICAL CORRELATION
ANALYSIS
Linear canonical correlation analysis (CCA) was proposed
by Hotelling et al., which was a model generally used for
determining linear correlations between two sets of data [7].
It provided a thought to learn synthetic problems using
multi-modality data by studying covariance. The CCA have
a disadvantage is that it can only seeks the linear projections
that are maximally correlated with two-modality data.

Specifically, the data sets of two modalities were denoted
by X ∈ Rn×p and Y ∈ Rn×q. General linear CCA tried to find
two linear projection vectors u ∈ Rp×1 and v ∈ Rq×1 that in
order to maximize the CCA criterion, as shown in (1). The
corresponding schematic illustration is given in Fig. 1

maxu,v u′X ′Yv

s.t. u′X ′Xu = v′Y ′Yv = I (1)

Traditional CCA algorithm can only determine the maxi-
mal correlation in a series of canonical independent vectors,
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FIGURE 1. Illustration of the canonical correlation analysis model. In this
model, two sets of data include the same number of samples and
different numbers of high-dimensional features. Using loading vectors u,
v to get canonical variable, and perform the correlation analysis to obtain
the maximal correlation.

FIGURE 2. A figure showing the correlation analysis of combining fMRI
data and SNPs data by sparse canonical correlation analysis algorithm. In
this frame, two sets of data include samples size n and different numbers
of features p, q by using the penalty to reduce the dimension. Then,
loading vectors u, v are used to get the canonical variable, and perform
correlation analysis to obtain the maximal correlation.

but a series of canonical vectors are pairwise independent,
(1) is further improved to (2), which can guarantee the max-
imal total relationship. Then given two projection matrices
U ∈ Rp×k andV ∈ Rq×k , where k = min(rank(X ), rank(Y )),
the objective function is shown in (2)

maxU ,VU ′X ′YV

s.t. U ′X ′XU = V ′Y ′YV = I (2)

where data matrix X and Y have been standardized one as the
standard deviation and mean zero, and consider XU (Xu) and
YV (Yv) as the canonical variables in this paper.

B. EXTENSION: SPARSE CCA, AND SPARSE mCCA
Traditional CCA was widely used for linear correlation,
but the number of high-dimensional features are consider-
ably higher than that of real samples in the real datasets.
For this reason, a lot of segmentation forms of penalized
CCA algorithm [2], [3], [14], [15] were introduced to solve
the confronting problem, when applying the datasets with
high-dimensional features but small-size samples. They per-
formed different sparse penalty functions on the canonical
vectors u and v, in order to acquire some meaningful sparse
vectors. The form of sparse CCA is proposed by Witten et al.
(2009), which is given by (3), the corresponding schematic
illustration is provided in Fig.2.

maxu,v u′X ′Yv

s.t. u′u ≤ 1, v′v ≤ 1, P (u) ≤ c1, P (v) ≤ c2 (3)

where P(∗) is convex penalty function (e.g., L1 norm), and
c1, c2 are trade-off parameters which decide sparsity level of u
and v respectively. The optimization challenge of CCA can be
overcome by (X ′X )−1 and (Y ′Y )−1, but they may be singular
for high dimensional data matrix so that the inverse matrix
of X ′X and Y ′Y may not exist. Assume that the features are
uncorrelated within both data matrix respectively, constraints
u′X ′Xu ≤ 1 and v′Y ′Yv ≤ 1 in (1) become u′u ≤ 1 and
v′v ≤ 1 in (3). Because of these constraints in (1), the penal-
ized criterion in (3) tries to maximize the covariance u′X ′Yv
instead of maximizing the Pearson correlation u′X ′Yv/XuYv,
this way is available given that it can reduce computational
cost without computing (X ′X )−1 and (Y ′Y )−1.
Sparse multiple CCA (sparse mCCA) was introduced by

Witten et al. (2009), which is an extended form of sCCA
with two-modality data when three or more modality data
are applied to analyze the maximal correlation [4]. Let the
n data matrices be defined as X1,X2, . . . ,Xn respectively,
and assume that sample features of all data matrices are
independent. After that, sparse mCCAfinds canonical weight
coefficients w1,w2, . . . ,wn that maximize the sum of all
pairwise linear correlation, which is shown in the following
objective function

maxw1,w2,...,wn

∑
i<j

w′iX
′
iXjwj

s.t. w′iwi ≤ 1,Pi (wi) ≤ ci, ∀i (4)

where Pi is sparse penalty function, and wi can be sparse
when Pi(∗) is a proper penalty term and ci is a suitable
value. However, it is unjust to combine different coupled
covariance, because these coupled covariance varies signif-
icantly in the dimensions of values. Some works of sparse
multiple CCA [16], [17] couldmoderate the trouble of ‘unjust
combination of coupled covariance’ by adding appropriate
weighting coefficients to individual coupled covariance. For
weight selection, cross-validation algorithm as limit func-
tions [18] is used to evaluate the capacity of each appropriate
weight.

C. INNOVATION AND BREAKTHROUGH: DEEP CCA
The employment of deep neural network (DNN) has
increased explosively due to its breakthrough applications in
cancer detection, image processing and so on. DNN can rep-
resent high dimensional nonlinear function, which has two or
more layers. With the accumulation of various data resources
and the improvement of computing power, the use of the deep
network architecture is promoted, and the performance of
this architecture is greatly optimized when the size and com-
plexity of the data increases. The traditional CCA algorithm
had encountered a problem that it can only detect the linear
correlation between two-modalities, but cannot capture the
nonlinear correlation between them. Sparse mCCA also faces
a restriction in that it is unjust to combine different coupled
covariance when the coupled covariance varies greatly in the
scale of values.
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FIGURE 3. A work-flow of deep CCA for analyzing the maximal canonical
correlation between two kinds of imaging data. The data of first (visual)
layers are X , Y (the actual total numbers of nodes of two modalities are
determined by the high-dimensional features of real data), the data of
output layer are f (X ), f (Y ), deep networks are f , g and both networks
include two hidden layers which mainly used to deal with the trouble of
linear inseparable respectively.

Faced with these issues, deep CCA with a deep net-
work capable of preprocessing data was introduced by
Andrew et al. to capture nonlinear mappings [10].

They supposed that each hidden layer in the deep network
of the two modalities has i units, and the final layer has d
units. In this paper, the weighting coefficient matrix of first
layer is defined asW 1

∈ Ri×n, then define the vector of biases
as b1 ∈ Ri, at last, the output of first hidden layer is h1 =
s(W 1X + b1) ∈ Ri. The second hidden output is defined by
applied output of first hidden layer as h2 = s(W 2h1 + b2) ∈
Ri, until the final layer of deep network is defined by f (X ) =
s(Wmhm + bm) ∈ Rd , where m is the total number of layers
in the deep network. The formulation of deep CCA is given
in (5) and corresponding work-flow diagram is given in Fig. 3

maxWf ,Wg,U ,V
1
N
Trace

(
U ′f (X)′ g (Y )V

)
s.t. U ′

(
1
N
f (X)′ f (X)

)
U = I ,

V ′
(
1
N
g (Y )′ g (Y )

)
U = I (5)

The paired observations from two modalities, denoted
(x1, y1), . . . , (xN , yN ), where N is the sample size, xi ∈
RDx and yi ∈ RDy for i = 1, . . . ,N . Denoting the data
matrices for each view by X = [x1, . . . , xN ] and Y =
[y1, . . . , yN ]. Where f and g are two deep neural networks
which improve the ability to capture both linear and complex
nonlinear correlations. U ,V are projection matrices, which
project outputs of the final layer in both deep neural net-
works. The dimensionality of f (X ) and g(Y ) are denoted s
and r , U ′f (X ) and V ′g(Y ) are the final projection mapping.
The DCCA objective function joins together all preprocessed
sample data through the whitening constraints, so stochastic
gradient descent algorithm is not suitable in a normal way.
The algorithm was introduced by Wang et al., but it’s only
suitable for large-scale small batch optimizationwith stochas-
tic gradient [19].

FIGURE 4. A work-flow of deep canonically correlated auto-encoders,
in order to obtain the maximal correlation inspired by deep CCA and the
minimum of reconstruction feature error. The model includes two feature
extraction networks f , g and two reconstruction networks p, q.

D. DEEP CANONICALLY CORRELATED AUTO-ENCODERS
Wang et al. proposed an improved form of DCCA model
termed deep canonically correlated auto-encoders (DCCAE;
see Fig. 4) [11]. Their model was introduced in International
Conference on Machine Learning that consists of a couple
of auto-encoders, in addition, the model also optimized the
combination of nonlinear correlations between reconstruc-
tion error of general auto-encoders and the learned represen-
tations of neural network. The objective function of DCCAE
is

maxWf ,Wg,Wp,Wq,U ,V
1
N
Trace

(
UT f (X)T g (Y )V

)
−
γ

N

N∑
i=1

(
‖xi − p (f (xi))‖2 + ‖yi − q (g (yi))‖2

)
(6)

s.t. The corresponding constraint is consistent with (5)
where γ is trade-off parameter. As shown in (6), DCCAE
finds two regularized deep neural network representation
f (X ), g(Y ) and two reconstruction networks representations
p(f (xi))q(g(yi)). Compared to CCA and DCCA, DCCAE
further extracts features for better data fitting. This model
considered the best consequence of multi-modality data cor-
relation in a practical manner and stochastic gradient was
applied to optimize the objective function.

E. DEEP PRINCIPAL CORRELATED AUTO-ENCODERS
(DPCAE)
Inspired by nonlinear deep network models (DCCA,
DCCAE) and linear sparse models (CCA, sCCA, smCCA),
we propose an innovative model, deep principal correlated
auto-encoders (DPCAE; see Fig.5). The model consists
of two back propagation neural networks and two multi-
layer belief networks, the multi-layer belief network is made
up of Restricted BoltzmannMachines (RBM), while integrate
the maximal correlation of the model simultaneously. It not
only acquire multi-modality linear features by referencing
the benefits of adding penalty items to dimensionality reduc-
tion of high-dimensional data, but also learn multi-modality
nonlinear feature representation by developing deep network
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FIGURE 5. Schematic diagram of DPCAE, consisting of two back propagation neural networks and two multi-layer belief networks
which is made up of RBM. The layer of each RBM are maximal correlation, then optimize the input layer of each BP network by using
largest correlation coefficient, in order to get the best results of classification of multi-modal imaging genetic data.

structure. Here, it is worth noting that two multi-layer belief
networks f and g are applied to extract consequential hidden
unit feature representation while two back propagation neural
networks p and q are used to extract top-level feature repre-
sentations and fine-tune the entire multi-layer belief network
in each modality respectively. In terms of multi-modality
sample representations learning setting, paired observation is
used from two modalities, then denote the data set of each
modality by X and Y of dimension n× px and n× py, where
n denotes the total number of samples. px , py are the dimen-
sionality of feature representations of X ,Y respectively, and
Fk ,Fh are symbolic representations of PCA methods. Next,
px1 , py1 are defined as the number of features after linear
dimensionality reduction, px2 , py2 are the number of features
after DBN networks training, px3i , py3i (i = 1, 2, . . . ,m) are
the number of features of hidden layers before reconstructing
features, m denotes the number of stacked RBMs. The objec-
tive function of DPCAE is shown in (7)

maxθ
1
N
Trace

(
U ′f (Fk (X))′ g (Fh (Y ))V

)
−
γ1

N

m∑
i=1

N∑
j=1

(∥∥Fk (xij)− θ1r1i (Fk (xij))∥∥2
+
∥∥Fh (yij)− θ2r2i (Fh (yij))∥∥2

)

−
γ2

N

(∥∥L −Wpp (f (Fk (X)))
∥∥2

+
∥∥L −Wqq (g (Fh (Y )))

∥∥2
)
− P

(
W ∗

)
s.t. U ′

(
1
N
f (Fk (X)) f (Fk (X))′ + r1I

)
U = I ,

V ′
(
1
N
g (Fh (Y )) g (Fh (Y ))′ + r2I

)
V = I ,

u′if (Fk (X))
′ g (Fh (Y )) vj = 0, for i 6= j (7)

where P(W ∗) is the combined function of convex penalty
function P(Wp) and P(Wq). Note that convex penalty is
mainly ridge penalty, P(W ∗) is a sum of squared L2
penalty on Wp and Wq, namely P(W ∗) = µp

∥∥Wp
∥∥2
2 +

µq
∥∥Wq

∥∥2
2, ridge penalty can prevent overfitting of the model

and help to ensure non-singularity. θ is a combination of
Wp,Wq, θ1, θ2,U and V ,are weight-decay parameters which
can be used to adjust the rationalization of the two sides in
the function, and γ1, γ2 are trade-off parameters.

The model applies a 5-fold cross-validation pattern to
select the weight-decay parameters. The total samples are
grouped into 5 subgroups, and one subgroup is selected as
testing sample and the remaining 4 subgroups are used as
training sample in each stage. A calculated score is deter-
mined by the difference value between the correlation of
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training sample and that of the test sample, which is applied to
assess the property of selecting the weight-decay parameters.
It is very vulnerable when utilizing cross-validation to pick
out weight-decay parameters µp, µq, which is immediately
applied as the threshold value when updating loading vectors.
The vulnerability is due to the non-uniform distribution of
loading vector values.

For (7), a reasonable explanation is given as follows: sparse
CCA maximizes the correlational information between the
two projected models to achieve specific and smooth dis-
tributions, while training an auto-encoder to minimize
reconstruction error amounts to maximizing a lower bound
on the correlational information between inputs and learned
features. The DPCAE model gives a trade-off between the
information captured in the (input, feature) mapping within
each model on the one hand, and the information in the
(feature, feature) relationship across modalities.

As f (Fk (X ))f (Fk (X ))′ and g(Fh(Y ))g(Fh(Y ))′ may be sin-
gular but they are essential when calculating the compu-
tation of (f (Fk (X ))f (Fk (X ))′)−1 and (g(Fh(Y ))g(Fh(Y ))′)−1,
matrix regularization process is frequently accomplished
on f (Fk (X ))f (Fk (X ))′ and g(Fh(Y ))g(Fh(Y ))′, as follow to
ensure that they are positive define

1
N
f (Fk (X)) f (Fk (X))′ ∼=

1
N
f (Fk (X)) f (Fk (X))′ + δ1

(8)
1
N
g (Fh (Y )) g (Fh (Y ))′ ∼=

1
N
g (Fh (Y )) g (Fh (Y ))′ + δ2

(9)

where δ1, δ2 > 0 are regularization parameters in the multi-
variate estimation of variance [20].

The formulation of (7) can also be written as

Z (R1,R2,P,Q)

= maxθ

∥∥∥∥∑−1/2

11

∑
12

∑−1/2

22

∥∥∥∥
−

∥∥∥Fk (X)− R1 (R′1R1)−1 R′1Fk (X)∥∥∥22
−

∥∥∥Fh (Y )− R2 (R′2R2)−1 R′2Fh (Y )∥∥∥22
−

∥∥∥L − P (P′P)−1P′L∥∥∥2
2
−

∥∥∥L−Q (Q′Q)−1 Q′L∥∥∥2
2

(10)

where R1 = r1(Fk (X )) ∈ Rn×px3 , R2 = r2(Fh(Y )) ∈ Rn×py3 ,
P = p(f (Fk (X ))) ∈ Rn×px2 , Q = q(g(Fh(Y ))) ∈ Rn×py2 and∑

22 = g(Fh(Y ))g(Fh(Y )) in (10) is equivalent to (7).
Linear CCA and linear sparse CCA models seem to have

the maximal correlation with optimal projection vectors
U ,V , as given in (2) and (3). Nevertheless, the main rea-
son for reviewing the models of Deep CCA and DCCAE
in this paper, is to analysis limitations of traditional CCA
which cannot obtain complex nonlinear relations. Compared
to general model and structure of deep neural network, our
model joint deep belief network based on several RBMs and
linear dimension reduction method, the goal is not only to
speed up machine learning, but also to discard dimensions

that carry less information. Moreover, differ from nonlinear
deep canonically correlated auto-encoders, DPCAE adjusts
the network’s in-layer parameters by using multi-layer belief
network, and fine-tunes all network parameters from top to
bottom layer by BP network. It acquire the best nonlinear
correlation and data fitting in multi-modality data. In particu-
lar, the model of DPCAE further optimize significant feature
information and parameter information, it can generate an
excellent presentation of multi-modality data relationship in
an available way.

In order to acquire more efficient computing efficiency,
the experiment just uses the first derivative information and
employs the conjugate gradient descent method to solve
the optimization problem [21]. Multi-layer belief networks
algorithm which is made up of RBM and back-propagation
algorithm is used to pass the conjugate gradient backward to
each layer of the network during each iteration process. In
addition, the regularization technique is employed to avoid
over-fitting. Here, wemust compute the gradient of DPCAE’s
formulation (7) for using conjugate gradient descent method
and BP.

The gradient of DPCAE’s formulation (7) is given as

∂Z (R1,R2,P,Q)
∂R1

= −R1

−1/2∑
11

U1D1U ′1
∑−1/2

11

+R2
∑−1/2

22
V1U ′1

∑−1/2

11
+2Fk (X)Fk (X)′ R1

(
R′1R1

)−1
−2R1

(
R′1R1

)−1 R′1Fk (X)Fk (X)′ R1 (R′1R1)−1 (11)
∂Z (R1,R2,P,Q)

∂R2

= R2
∑−1/2

22
V1D1V ′1

∑−1/2

22

+R1
∑−1/2

11
U1V ′1

∑−1/2

22
+2Fh (Y)Fh (Y )′ R2

(
R′2R2

)−1
−2R2

(
R′2R2

)−1 R′2Fh (Y )Fh (Y )′ R2 (R′2R2)−1 (12)
∂Z (R1,R2,P,Q)

∂P
= 2LL ′P

(
P′P

)−1
− 2P

(
P′P

)−1 PLL ′P (P′P)−1 (13)
∂Z (R1,R2,P,Q)

∂Q

= 2LL ′Q
(
Q′Q

)−1
− 2Q

(
Q′Q

)−1 Q′LL ′Q (Q′Q)−1 (14)

Optimization Many researchers use different forms of acti-
vation functions to obtain the output of network layers in
a DPCAE model, however, after many experimental analy-
ses and comparisons, the result indicated that the form of
non-saturating sigmoid nonlinearity is a very effective acti-
vation function. If ρ is the function ρ (y) = y3 + y, our
nonlinearity form is s (x) = ρ−1 (x). The traditional sigmoid
function will quickly reach their asymptotic value which dif-
ferential coefficient goes down to essentially zero, and s is not
bounded, so its value of differential coefficient fall off with
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Algorithm 1 Deep Principal Correlated Auto-Encoders

1: Input X ∈ Rn×px , Y ∈ Rn×py , phenotype L ∈ Rn×1,
initial networks f1, g1, p1, q1, r11, r21

2: Output Optimal networks f̂1, ĝ1 with f̂ (Fk (X ))
∈ Rn×px1 ,
ĝ (Fh(Y )) ∈ Rn×py1 ; p̂1, q̂1 with p̂

(
f̂ (Fk (X ))

)
∈ Rn×px2 ,
q̂
(
ĝ (Fh(Y ))

)
∈ Rn×py2 ; r̂11, r̂21 with r̂1

(
f̂i (Fk (X ))

)
∈ Rn×px3i ,
r̂2
(
ĝi (Fh(Y ))

)
∈ Rn×py3 i , i = 1, 2, . . . ,m

3: f̂ (Fk (X ))← f̂1 (Fk (X )) , ĝ (Fh(Y ))
← ĝ1 (Fh(Y )),
p̂
(
f̂ (Fk (X ))

)
← p̂1

(
f̂ (Fk (X ))

)
, q̂
(
ĝ (Fh(Y ))

)
← q̂1

(
ĝ (Fh(Y ))

)
,

r̂1
(
f̂i (Fk (X ))

)
← r̂11

(
f̂i (Fk (X ))

)
, r̂2

(
ĝi (Fh(Y ))

)
← r̂21

(
ĝi (Fh(Y ))

)
,

i = 1, 2, . . . ,m
4: Iteration k ← 0
5: while k < maxepoch and no convergence do
6: p̂1← Eq. (11) and Eq. (12)

7: f̂
stack
← r̂11← RBM1 i(
r̂11,∇Z (R1,R2,P,Q) |R11=r̂1,R2=r̂21 )

8: ĝ
stack
← r̂21← RBM2 i(
r̂21, ∇Z (R11,R2,P,Q)|R1=r̂11,R2 = r̂21

)
9: ∇Z (R1,R2,P,Q)|P=p̂1,Q=q̂1
← Eq. (13) and Eq. (14)

10: q̂1← BackProgation(
p̂1,∇Z (R1,R2,P,Q) |P=p̂1,Q=q̂1 )

11: q̂1← BackProgation(
q̂1,∇Z (R1,R2,P,Q) |P=p̂1,Q=q̂1)

12: p̂← ForwardProgation
(
p̂1
(
f̂ (Fk (X ))

))
13: q̂← ForwardProgation

(
q̂1
(
ĝ (Fh(Y ))

))
14: k ← k + 1
15: return f̂ , ĝ, p̂1, q̂1, p̂, q̂

x gradually. These natures make s better-adapted for min-
batch optimization with a special method which makes sure
the model does not reach steady state early during optimiza-
tion. In order to better conform to the datasets and prevent
overfitting, on the one hand, L2 penalty term is applied onWp
andWq to increase the difference between each component of
the weight vector, on the other hand, dropout is applied to the
hidden layers in each training iteration, which is randomly
omitted from the network with a certain probability, and in
this way the hidden units do not rely on other hidden units to
change their states.

By taking a DPCAE having three hidden layers for two
modalities as an example, Fig. 5 shows the pre-training pro-
cess of the DPCAE. The learning procedure of the DPCAE
can be grouped into two processes, the pre-training process

and the classification process. Moreover, the non-saturating
sigmoid function is selected as the activation function of each
layer in the DPCAE.

In the pre-training stage, PCA reduces dimension of the
visible layer, then the RBM1 and RBM2 obtain weights
connecting the layer after reducing dimension and the sec-
ond hidden layer. At last, the DPCAE model makes use
of the MRBM to train the weights {Wp,Wq, µp, µq} con-
necting the second hidden layer and the third hidden layer
and obtain a unified representation. The input of MRBM is
H = {f (Fk (X )), g(Fh(Y ))} and the RBM updates the weights
{Wp,Wq, µp, µq} by maximizing (7).
In the classification stage, the DPCAE model utilizes

the data with labels and the gradient descent method to
fine-tune the weights for classification. As the first two hid-
den weights contain the correlation between two modalities,
the model uses the gradient descent method to fine-tune
the weights {Wp,Wq, µp, µq} connecting the second hidden
layer, the third hidden layer, and the weights {γ1, γ2} con-
necting hidden units and label units. By taking a DPCAE
model having three hidden layers for two modalities as an
example, the specific flow of the DPCAE model is shown
in Fig. 6. It’s worth mentioning that the DPCAE model is
not only suitable for two-class classification data but also for
multi-class classification data.

III. APPLICATION OF IMAGING GENOMIC DATA
A. TYPES OF GRAPHICS DATA ACQUISITION AND
ANALYSIS
Clinical Imaging Consortium (MCIC) data sets include
many biology factors about schizophrenia patients like clini-
cal characterization, functional magnetic resonance imaging
(fMRI), single nucleotide polymorphisms (SNPs) and so on
in the on-line data repository [22]. The data was dealt with
cross-sectional learning to verifymensurable imaging genetic
biomarkers of schizophrenia. Enlist patients early in the
course of their disease is MCIC data’s extraordinary prepon-
derance, therefore, the MCIC data sets involve a remarkable
ratio of many people with schizophrenia researched in early
stages of the clinical sign as same as a comparatively equal
sampling of disease persistence via standing and diagnosed
sickness. The method satisfied the crucial medical purposes
of the multi-modality schedule, research of the kernel cogni-
tive skill deficits affiliated to schizophrenia and their corre-
lation to the clinical manifestation of the disorder [23]–[28].
In this research, two modalities (fMRI, SNPs) were acquired
from 184 subjects consisting of 81 patients with schizophre-
nia and 103 healthy controls [29]. The real samples include
schizophrenia patients and healthy controls, which were sup-
plied with an informed agreement. Healthy participants were
free of any medical, neurological or psychiatric illnesses and
had no history of substance abuse. By the clinical interview
of patients for DSM IV-TR Disorders or the Comprehensive
Assessment of Symptoms and History, patients met criteria
for DSM-IV-TR schizophrenia.
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FIGURE 6. The flow chart of the DPCAE model.

B. INTRODUCTION OF fMRI DATA
The fMRI dataset which used in the experiments was col-
lected by fMRI scanning, all people must early take part in a
‘‘mock scanner’’ task for adapting to the sensor motor setting.
In the meantime, there are four fMRI tasks need all subjects
to complete until they adapt themselves to the session and
the sensor motor environment, for instance, a sensory-motor
task (SM), a breath-hold task, an auditory oddball (AOD)
and Sternberg item recognition paradigm (SIRP) [30]. For the
four fMRI tasks, every part used a specific functional input
equipment with equal terms for button presses to collect sub-
jects’ reaction, then all people were requested to respond to a
suitable signal by pressing a button, at last, researchers con-
nect the input equipment and specialized E-Prime software
to provide visual stimuli for subjects and collect subjects’
reaction. It is worth mention-ing that researchers collected
four runs of SIRP task of fMRI tasks each contained 177 time
frames for five minutes and fifty-four seconds per run, four
runs of the AOD task of four tasks each contained 96 time
frames for three minutes and twelve seconds per run, one run
of breath-hold task and two runs of SM task each contained
120 time frames for four minutes per run.

The clinical data were pretreated using SPM5 (the Statis-
tical Parametric Mapping package, SPM), then created brain

imaging data of 63×46×53 voxels [31]. Finally, 41,236 vox-
els were picked up, which were extracted from 116 ROIs
for this experiment, it could well adapt the research of brain
development and was used for biology identification, corre-
lation analysis and classification [32].

C. INTRODUCTION OF SNPs DATA
All subjects were commanded to collect blood samples and
extract candidate genes and genotyping. At the fewest 200 ng
of candidate genes were used to type each schizophrenia
patient and healthy control in the light of the manufacturer’s
protocol. After professional clinical techno-logy handling,
the particular candidate genes were fluorescently labeled and
detected making use of an appropriative scanner. Then some
nonspecific hybridized fragments were separated by wash-
ing while these residual specific hybridized candidate genes
were further processed [22]. To permit the pursual of sub-
jects, capability control was used by statistical analysis, the
genome-wide data management system was used to import
raw genotypic data. At the end of the process, experimenters
created 1,140,419 SNPs loci dataset. After capability control
procedures, the dataset result in 777,365 SNPs loci left for
our experiment finally. Lots of SNPs with linkage disequi-
librium (LD) were spotted to reflect the genetic variant at
different loci in learning high-dimensional features of sam-
ples. A subset of these simulated SNPs data showed the
representative LD framework reflected the genetic variant,
where special genetic markers that approximate one another
on the candidate genes were in stronger LD, issuing in a
representative block-like framework.

IV. EXPERIMENTS
Firstly, comparing the proposed algorithm and the other algo-
rithms, and then demonstrate related work on deep prin-
cipal correlated auto-encoders (Sections A–D), sections A
describes that classification difference of two data types
between different subjects, sections B gives a description of
the performance measures about clustering and classification
respectively, sections C describes receiver operating charac-
teristic of multi-modality data, and the last section describes
that the maximal correlation of various advanced methods on
the different number of dimensions.

The DPCAE’s experiment on genetic variants and brain
imaging phenotypes focused on two works: classification
(to classify different subjects using MCIC dataset), and
correlation analysis (to explore the correlation between
SNPs loci and brain imaging data). The classification ver-
ifies the classification capability of the DPCAE algorithm,
while correlation analysis verifies the performance of the
DPCAE algorithm in terms of finding the maximal cor-
relation. All hyper-parameters, including energy function,
activation function type, regularization parameters, learning
rate, trade-off parameters, maximum epochs, types of deep
networks, the number of layers, and the total number of nodes
in different network layers, were selected using conjugate
gradient descent [12]. The model is proposed by us and
other advanced models can be divided into two categories
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FIGURE 7. Maps showing the comparison of the power of each model on
classifying two modalities (sub-figs a-b) (schizophrenia patients vs.
healthy controls). (a) describes the power of classification on different
subjects using fMRI data, (b) gives a description of the power of
classification on different subjects using SNPs data, X-axis represents
several different algorithms applied on MCIC data, the full names of the
algorithms are traditional CCA, sparse CCA, sparse mCCA (smCCA), DCCA,
distAE, DCCAE, and DPCAE. Y-axis represents classification accuracy (%).

generally, one kind is DNN-based models, which can detect
non-linear relationship, including DCCA, DCCAE, DistAE
and DPCAE, another CCA-based models, corresponding to
DNN-basedmodels with only a linear networkwith no hidden
layers, includingCCA, sparse CCA, sparsemCCA.We devel-
oped these programs using Tensorflow as the deep learning
framework. These programs were run under the Tulane Uni-
versity High Performance Computing system, code named
‘‘Cypress’’ with an operating system of Linux. It is a 124-
node cluster, with each node providing dual 10-core 2.8 GHz
Intel Xeon E5-2680 v2 CPUs, 64 GB of RAM, and dual Xeon
Phi 7120P coprocessors.

A. CLASSIFICATION DIFFERENCE OF MULTI-MODALITY
DATA
Comparing the power of the DPCAE algorithm to that of
other representative algorithms, including CCA, sparse CCA,

sparse mCCA (smCCA), deep CCA (DCCA), minimum-
distance auto-encoders (distAE), deep canonically correlated
auto-encoders (DCCAE), and deep principal correlated auto-
encoders (DPCAE) in terms of both fMRI classification
and the classification of SNPs data. DPCAE’s network uses
MCIC dataset to train and then the trained network was
used to classify. Some meaningful preprocessing methods,
including mainly data augmentation, data standardization,
and so on, were implemented on the multi-modality data [12].
The DPCAE model applied two modal data to study brain
development of schizophrenia. It needs a large sample size in
order to train deep networks. However, collecting fMRI data
is very expensive, and therefore the sample sizes of existing
fMRI cohorts are limited. A reasonable method to generate
more valid data is data augmentation. Data augmentation is
a widely used method in deep learning fields, notably when
dealing with images. For application of deep learning in
image classification, data augmentation methods, e.g., image
rotation, image reflection, scaling, are continually applied to
generate added ‘real’ images.

Like CCA-based models need at lowest two modality data
as input, here data-pair combination of fMRI and SNPs data
are used. For this data combination, we experimented with
the property of each model, and the results of the experi-
ment were given in Fig. 7. From this figure, the proposed
method, deep principal correlated auto-encoders, acquired
better classification accuracies than both CCA-based mod-
els and other DNN-based models for classifying different
subjects using MCIC dataset separately. The classification
accuracy is evaluated by comparing the trained datasets with
the real labels. This classification method can observe the
accuracy of datasets through the box diagram, and the calcu-
lation formula for the classification accuracy is shown in (15).

Pre = TP/(TP+ FP) (15)

where TP is the number of datasets correctly classified as
positive samples after training of each modality, while FP
is the number of modal data wrongly classified as positive
samples after training of each modality.

Learning based deep network, DCCA and DCCAE per-
formed better thanCCA-basedmodels andminimum-distance
auto-encoders but worse than DPCAE in the aspect of classi-
fication, which may be due to the incorporation of DNN out-
puts and regularization parameters for assessment of example
variance. While minimum-distance auto-encoders performed
worse than DCCA and DCCAE, which may result from
weakness of the average discrepancy term between projected
example pairs.

The excellent classification accuracy (over 90% for SNPs
data, over 95% for fMRI data) indicates the subjects (e.g.,
schizophrenia patients and healthy controls). The most
important factor must be pointed out here is that it could
be seen from Fig. 7 that the classification accuracy of fMRI
data is higher than the classification accuracy of SNPs data
which might be due to the fact that fMRI data is an imag-
ing data which were pre-processed with SPM5, while SNPs
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data may be deletions of gene fragments due to human or
environmental factors with linkage disequilibrium which is
not as accurate and consistent as fMRI data. There is great
interest in studying how different original features of imaging
genomics impact the classification accuracy of SNPs data
and fMRI data, however, the data representation of DPCAE
is created by different deep networks in which nonlinear
activation functions are used to each hidden layer. As a con-
sequence, it is not easy to analyze how each original variable
is displayed in the deep network representation and hence it is
challenging to analyze the identification performance of each
original biomarker variable.

B. PERFORMANCE MEASURES OF PROJECTED
MULTI-MODALITY DATA
The class distance is estimated in the extracted feature spaces
by clustering around the projected SNPs data and fMRI data
inputs into two clusters, and assessing the performance of
the clusters in line with sample labels respectively. Spectral
clustering [33] is applied in this task, in order to explain
potentially non-convex cluster shapes. Firstly, it needs to be
further pointed out that a k-nearest-neighbor diagram could
be constructed on the projected the samples of two-modality
data with a binary weighting manner, then these projected
samples are embedded in R2 employing the eigenvectors of
the normalized diagram Euclidean, eventually run K-means
procedure in the embedding to find an available segmentation
of the samples [34]. The final step of the process needs
to be explained that K-means procedure is run ten times
with optimal initialization of maximal correlation and the
best K-means value is used to run spectral clustering. The
normalized mutual information (NMI) is used as a clustering
evaluation index [35], what’s more, tuning value ‘2’ is used
as the size of neighbor diagram k. The calculation formula of
normalized mutual information is given

Min (Xtr ;Ytr ) = 2I (Xtr ;Ytr ) /H (Xtr )+ H (Ytr )

I (Xtr ;Ytr ) =
∑
xtr

∑
ytr

p (xtr , ytr ) ∗

s.t. log{p (xtr , ytr ) /[p (xtr ) p (ytr )}

H (Xtr ) = −
∑
i

p (xtri) log p (xtri)

H (Ytr ) = −
∑
i

p (ytri) log p (ytri) (16)

where p(xtr , ytr ) is the joint distribution of two groups of
data Xtr ,Ytr after training, p(xtr ) and p(ytr ) are probabil-
ity distribution of xtr and ytr respectively, H (Xtr ) and H (Ytr )
are information entropy of Xtr and Ytr respectively, while
I (Xtr ,Ytr ) is relative entropy of p(xtr , ytr ) and p(xtr )p(ytr ).
According to the training data of different models, the clas-

sification error rate of the datasets was calculated:

Err = (FP+ FN )/(P+ N ) (17)

where FP is the number of trained datasets that are actually
negative samples but are divided into positive samples by the

TABLE 1. Performance evaluation of each typical research methods on
the dataset of SNPs and FMRI.

classifier; FN is the number of trained datasets that are actu-
ally positive samples but are divided into negative samples
by the classifier; and P+N is the total number of samples of
trained datasets.

The better NMI of clustering (92.1% for SNPs data, over
93.8% for fMRI data) indicates that different subjects (e.g.,
schizophrenia patients and healthy controls). While projec-
tions by distAE model perform somewhat better segmenta-
tion for some clusters, worse than other DNN-based models.
For another, CCA-based models can approximate the same
variable, but the part of separate classes is failed, probably
because the original data are too complex to be better applied
by linear mappings. Overall, DPCAE shows the best result
of NMI of clustering and cleanest embedding between SNPs
data and fMRI data using different methods. The model
expects that an easy linear classifier can acquire better accu-
racy on DPCAE projections. Then, the linear SVM is trained
on the projected dataset (now using two-modality sample
labels), and applying the projected tuning set to select the
SVMhyper-parameters [36]. Error rates (including error rates
of SNPs data and fMRI data, and abbreviated form of them
are S-Error and F-Error) on the optimal classification of each
model are given in Table 1. When the model we used gets
the maximal value of NMI, the value of classification error
rate of the model is the largest. In generally, the smaller the
classification error rate, the higher the classification accuracy,
so these error rates consistent with the clustering results.
The result of DCL is very close to DPCAE in classification
accuracy and normalization of normalized mutual informa-
tion, which may be due to the incorporation of phenotype
information. But comprehensive indicators, deep principal
correlated auto-encoders makes classification accuracy much
higher than other methods, the result is sufficient to prove
the correctness of the classification results of the two modal
data. Take the place of employing a hard nonlinear classi-
fier on the feature representations of high-dimension, a very
ordinary linear classifier that can be educated effectively on
low-dimensional projections already acquires the best result
of accuracy.

C. RECEIVER OPERATING CHARACTERISTIC OF
MULTI-MODALITY DATA
In some scenarios, varying feature types are favorable for
different modalities. For instance, in scenario of video and

20102 VOLUME 8, 2020



G. Li et al.: Deep Principal Correlated Auto-Encoders With Application to Imaging and Genomics Data Integration

FIGURE 8. Data classification across feature type on MCIC dataset in
terms of ROC.

images, intensity and covariance of intensity are preferred
for representing the videos and images respectively, or vary-
ing lighting pre-processing are preferred for varying images.
In these scenarios, classification is conducted across feature
type. To analyze two-modality data across feature type, dif-
ferent models conduct the experiment on the MCIC dataset
with two modalities.

Similar to the two experiments above, CCA, sCCA,
DistAE, DCCA, DCCAE and DPCAE are tuned to report the
best result. The evaluation consequences are given in Fig. 8.
In the Fig. 8, the general linear models for evaluation include
CCA and sCCA, denoted in blue lines. For non-linear deep
models, the experiment tries to evaluate the DistAE, DCCA,
DCCAE and our DPCAE which share similar objective as
the general linear models. The task on this experiment is to do
data classification between the SNPs and fMRI with different
types of feature respectively. The property is measured in
terms of ROC curve. It defines false accept rate (FAR) as the
X-axis and true positive rate true accept rate (TAR) as the
Y-axis. The calculation formulas of FAR and TAR are given

FAR = FP/(FP+ TN ) (18)

where FP is the number of trained datasets that are actually
negative samples but are divided into positive samples by the
classifier, TN is the number of datasets correctly classified as
negative samples after training of each modality.

TAR = TP/(TP+ FN ) (19)

where TP is the number of datasets correctly classified as
positive samples after training of each modality, FN is the
number of trained datasets that are actually positive samples
but are divided into negative samples by the classifier.

All algorithms are evaluated in Fig. 8. The unsupervised
CCA and sCCA perform the worst followed by DistAE.
Furthermore, DCCA and DCCAE perform much better.
Finally, the proposed DPCAE performs the best, with effec-
tive improvement, benefited from the deep non-linear and

FIGURE 9. A comparison of maximal correlation of CCA-based models
and DNN-based models on different number of dimensions.

penalty term. To all appearances, our DPCAE exceeds other
algorithms, demonstrating the efficacy of our deep multi-
modality scheme.

D. MAXIMAL CORRELATION OF VARIOUS ADVANCED
METHODS ON THE DIFFERENT NUMBER OF DIMENSIONS
To compare the power of DPCAEwith that of other advanced
models, DPCAE is applied to integrate SNPs dataset and
fMRI dataset, and use other advanced models to integrate
SNPs dataset and fMRI dataset as an instance for comparison.
After that, the experiment compared the power of maximal
correlation of DPCAE and other advanced models for differ-
ent number of dimensions. In the experiment, 5-fold cross-
validations were used to test the data set. 80% of samples
were randomly selected from all samples as the training set,
and the remaining samples were used as the test set. In order
to minimize the adverse effect on the results caused by the
difference between the training set and the test set, we chose
the result with the smallest correlation coefficient difference
between the training set and the test set in the 5-fold cross-
validations. Here both DPCAE and other advanced models
were performed 50 times, and the maximal correlation was
calculated, each using 50% of the SNPs data and fMRI data
for learning projections, 30% for adjusting hyper-parameters
(regularization parameters learning rate, the total number of
neurons in all intermediate layers and so on), and 20% for
eventual testing.

Fig. 9 shows different maximal correlations acquired
using traditional CCA, sCCA with L1 penalty, special sCCA
with more than two data sets, Deep CCA with deep net-
work including non-linear mapping, minimum-distance auto-
encoders, deep canonically correlated auto-encoders and
deep principal correlated auto-encoders. The DCCAE model
is inclined to find slightly non-linear relationship in the first
little margin, after which the DPCAE model exceed them
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TABLE 2. The captured best correlation by different MODELs including
our proposed DPCAE, which represent only what is shown in Fig.9.

by a large margin. It’s worth noting that DPCAE should
particularly have a superiority when PCA technology is used
to better fitting multi-modalities data, two deep networks are
used to extract features of hidden units, two back propaga-
tion neural networks are used to extract top-level features
representation and fine-tune the entire deep belief network in
each modality respectively. The results indicate that DPCAE
model can indeed detect more correlation than CCA-based
models and other DNN-based models (the result is given
in Fig. 9).

The maximal correlation coefficients of the top-level out-
put nodes are calculated in different dimensions, and made
maximal correlation analysis for these models:

σ = Corr(Xtrainutest ,Ytrainvtest ) (20)

where Xtrain and Ytrain are the outputs of trained datasets, utest
and vtest are the weight vectors for the final test. These models
have be tested for several times, then select argmax σ as the
maximal correlation coefficients.

To identify and clearly show the influence of differentmod-
els on the performance of maximal correlation, we have com-
bined the proposed model with other advanced models into a
table. For DNN-based models, the experiment decreases the
total number of intermediate units in all layers so as to the
total sum of all parameters approximatively consistent with
CCA-based models. Table 2 gives the maximal correlation,
noting that the maximal correlation of both datasets increases
monotonically with the number of parameters of all models.

V. DISCUSSION AND CONCLUSION
In the work, we propose the DPCAE model to effectively
combine prediction and correlation using multi-layer belief
networks. DPCAE seeks the optimal network representation
that can maximize cross-data correlation while minimize the
data fitting error. As we demonstrate, the DPCAE model
overcomes the limitation of several existing models in that it
can detect complex nonlinear relationship and acquire max-
imal correlation. As a result, the model can lead to better
performance in both prediction and correlation detection. The
superior power of DPCAE on both correlation detection and
classificationmakes it a suitable model for genomic data inte-
gration, here we apply the model to analyze the correlations
of functional networks and the difference of multi-modality
features between how different subject groups.

Several experiments have been tested in both CCA-based
and DNN-based representation learning. The results have
discovered that on several experiments, all aspects of perfor-
mance of DNN-based models consisting of DCCA, distAE,
DCCAE and DPCAE outperform that of CCA-based models
consisting of CCA, sCCA and smCCA. The best overall

performer is a competent optimization algorithm for solving
DCCA with PCA on multi-modality linear features learning
and a multi-layer belief network based on RBM on multi-
modality nonlinear features learning introduced here, deep
principal correlated auto-encoders (DPCAE). It can be inter-
preted that DNN-based models can acquire preferable rep-
resentations concerning the interrelated objective measured
on multi-modalities. DPCAE not only provides a flexible
nonlinear mapping but also provides a simple linear mapping.
Another noteworthy preponderance of DPCAE is that, like
the CCA method, it does not need an inner product. It is
difficult to the pattern recognition problem faced by deep
learning. There is lack of general conclusion about what
conditions can be converged on the training set andwhat is the
minimum upper bound of loss after many epochs. The main
reason is that there are toomany variables to describe the time
complexity of deep learning. In the back-propagation algo-
rithm, the gradient of parameters can only be obtained after
a complete ‘‘forward’’ calculation and ‘‘reverse’’ calculation,
and the parameters are updated. Therefore, all the intermedi-
ate gradients need to be saved, and the space complexity of
utilizing deep networks is high. Therefore, the experiments
on genetic variants and brain imaging phenotypes focused
on two works: classification and correlation analysis. Mean-
while, in many learning tasks of DNN-based models, for
instance, classification and visualization, obtaining the high
performance of correlation is not the last aim and themaximal
correlated representations are applied in the learning of other
experiments [37], [38].

On the basis of the empirical researches, it is appealing
to think about again the essential learning performances of
different function types and corresponding penalty terms.
Auto-encoder-based technology is grounded in the concept
that the output variables should be in a position to exactly
reconstruct the variables of the visual layer. For another,
CCA method only focuses on how fine multi-modalities’
learning feature forecasts the other feature while neglecting
the power to reconstruct multi-modalities. The CCA method
is anticipated to accomplish well when the two modalities are
uncorrelated given the sample labels [39]. The penalty terms
in the miscellaneous algorithms also have a crucial impres-
sion. Objectively speaking, the stronger DPCAE penalty term
is not strong enough yet; an even slightly fine penalty term
would be to need the learned feature representations to be
mutually independent.

DPCAE could be further improved by using other neural
network structures, e.g., self-organizingmap network (SOM),
which is a competitive unsupervised neural network, and also
can map the high-dimensional feature representations to the
low-dimensional space and maintain the topological forma-
tion of the input in the high-dimensional space [40]. How-
ever, directly using the SOM network to multi-modalities
learning of SNPs-fMRI may face many challenges because
brain imaging and single nucleotide polymorphisms data
cannot have some output coming back as input. Despite the
difficulties of using SOM networks, using recurrent neural
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network structure might be an attractive way to exploit the
complex non-linear information or simple linear information
within SNPs-fMRI data [41], another prospective schedule
is to compare DNN-based methods with methods grounded
on deep Boltzmann machines [42], [43]. Multi-label learn-
ing arouses great interests in many applications, it can not
only enhance the uncertainty but also improve the similar-
ity measurement of multi-label data with labels informa-
tion [44], [45]. But the lack of the labeled data and the
complex structures of various data may make learn the uncer-
tainty and representativeness accurately become hard, a mul-
tiple kernel active learning framework could be used to solve
this problem [46]. We will consider applying multi-layer
belief networks or SOM networks to represent original data
and then seeks their correlations, while also linking the data
representation with phenotypical information.
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