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ABSTRACT Denoising is a permanent topic and there are various denoisers proposed in the fault diagnosis
of industrial systems. However, it is still ambiguous to evaluate their performance quantitatively in terms
of mean square error (MSE) and further achieve their maximum gains, because it is always infeasible to
obtain the MSE metric without real feature signals in the engineering practices. Therefore, leveraging Stein
Unbiased Risk Estimator (SURE) theory, a bi-level nested sparse optimization framework (BiNSOF) is
proposed to jointly optimize a parameterized sparse denoiser as well as its regularization parameter, further
obtaining the near-optimal fault features with a minimum MSE. The inner level of BiNSOF utilizes a `1
regularized sparse denoiser to describe the intrinsic sparse structure of feature information, which can be
effectively addressed by popular primal-dual splitting schemes. The core of the outer optimization level is
a SURE-based unbiased estimator for MSE, and the minimum MSE search problem is transformed into a
quadratic optimization problem which could be fast solved by classic golden section search schemes. The
proposed BiNOSP can perfectly approximate the oracle MSE without any real feature information, and
further provides a reliable way to obtain the optimal hyper-parameter sets for the maximum performance
gains of the sparse denoiser. The computational complexity of the advocated approach is also investigated.
Moreover, its feasibility and performances are profoundly evaluated by a set of comprehensive numerical
studies. Lastly, two bearing fault detection cases confirm the applicability and superiority of the proposed
framework.

INDEX TERMS Sparse optimization, Stein unbiased risk estimator (SURE), fault feature detection, primal-
dual splitting, bi-level nested optimization, adaptive parameter selection.

I. INTRODUCTION
In modern industrial systems, fault diagnosis and isola-
tion (FDI) has received an intensive amount of research inter-
est during the last decades [1]–[3]. It is due to its ability to
reduce maintenance costs and prevent the harmful and some-
times devastating consequences of faults and failures [4]. This
topic has become far more attractive and critical for complex
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and expensive systems with less tolerance for performance
degradation, productivity disease, and safety hazards [5]. The
purpose of FDI is to identify which component is being sub-
jected to malfunction or deviation from its normal working
status and thus the benefits are improved operability and
safety [6].

A primary issue in the FDI procedure is to detect feature
information from noisy measurements and many advanced
signal processing methods have been developed [7], such as
spectrum analysis [8], time-frequency analysis [9], wavelet
transform (WT) [10], spectrum kurtosis(SK) [11], adaptive
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mode decomposition [12], cyclostationary descriptors [13],
and deep learning [14], [15], etc. In recent years, sparsity
representation based fault diagnosis (SRFD) techniques have
been one of the hottest topics in the signal processing society
and aroused extensive interests. The core idea of SRFD is to
explore the sparsity prior of fault feature signal in an elabo-
rately designed transformation space, and then reconstruct the
target feature through optimization strategy [16]. Research on
SRFD mainly focuses on the design of the sparse representa-
tion dictionary and the exploit of feature prior information
to construct a proper sparse regularized optimization model.
As to the dictionary design, Cui constructed an impulse
dictionary based on the exponentially decaying response of
rolling bearing faults and then usedmatching pursuit methods
to extract fault feature signal [17]. Qin designed an improved
Morlet wavelet to sparsely represent weak transient features
and meanwhile adopted an iterative thresholding algorithm
to extract focused sparse components [18], [19]. Meanwhile,
learned dictionary established from collected signals also
attracts many researcher’s interests because of its flexibility
and adaptivity [20], [21]. On the other hand, various priori
knowledges are exploited to design sparse regularized mod-
els. Enforcing different threshold levels on sparse coefficients
according to their kurtosis values of envelope spectrum,
Zhang et al. proposed a weighted sparse model [22] for bear-
ing fault diagnosis. Sun et al. utilized mixed-norm priors on
time-frequency coefficients to construct a structured sparsity
time-frequency analysis model and meanwhile verified its
effectiveness through extracting feature signals from strong
noisy measurements [23]. Du explored the low-rank property
of feature signal and proposed a `2,1 norm based collab-
orative sparse model for robust feature identification [24].
Ding proposed a shock-response convolutional sparse coding
model for the diagnosis of a wheelset bearing in a high-speed
train [25]. Qing Li et al. developed a sparse low-rankmodel to
extract two types of impulsive fault components [26]. Mean-
while, replacing the popular convex `1 norm regularization,
non-convex sparsity-promoting regularization more recently
has been extensively studied [27]. Zhao et al. proposed an
adaptive enhanced sparse period-group lasso model which
can promote the sparsity within and across groups of the
impulsive bearing fault feature [28]. Wang proposed a non-
convex sparse regularizationmethod based on the generalized
minimax convex penalty [29]. Zhang proposed a collabo-
rative sparse classification method based on the low-rank
property of two-dimensional fault feature signal and applied
to the gear-hub crack fault detection [30].

In a nutshell, nearly all sparse feature detection tech-
niques need to solve a regularized sparse optimization model
(denoted as the sparse estimator in the following part) with a
set of adjustable hyper-parameters. Meanwhile, their perfor-
mances significantly depend on the hyper-parameter settings.
However, how to confirm optimal parameter is a challenging
problem as these parameters are always different for diverse
fault feature detection tasks. Moreover, there lacks a reliable
criterion to select optimal hyper-parameters. Currently, in

most literatures of fault diagnosis society, hyper-parameter
setting schemes can be categorized into two main strategies.
One strategy is to select optimal hyper-parameters empiri-
cally by trial and error approaches. However, it requires much
human labor to obtain only suboptimal results and it is often
sensitive to noise levels. The other strategy is to perform
an exhaust search among a set of pre-specific parameter
grids based on minimum Mean Squared Error (MSE) =∥∥x − x̂∥∥22 or maximum SNR = 20 log ‖x‖2

‖x−x̂‖2
(x are real

features and x̂ are estimated features). Generally speaking,
the latter strategy is very effective and ubiquitous in numeric
simulation analysis, but it is unfavorable and even infeasible
in practical engineering applications due to inaccessible to
real features x for MSE. Therefore, it is a very necessary and
attractive task to establish an adaptive strategy to select opti-
mal hyper-parameter configuration effectively, which guar-
antees the optimal performance of sparse estimators.

To address theses problems above, a bi-level nested sparse
optimization framework (BiNSOF) is proposed in this paper
to jointly optimize a parameterized sparse denoiser as well as
its regularization parameter. The proposed BiNSOF frame-
work could be viewed as a bi-level nested optimization
model. The inner optimization level utilizes the `1 regular-
ized sparse estimator to entail the sparse structure of feature
signals in the transformed domain. The core of the outer
optimization level is that, without any knowledge of the
noise-free feature signal x, an unbiased estimator for MSE
could be established through Stein Unbiased Risk Estimator
(SURE) theory [31]–[33], which effectively transforms min-
imumMSE estimation problem into a quadratic optimization
problem. The proposed BiNSOF could adaptively tune its
parameters to mitigate the limitation of regularization param-
eter selection in industrial applications.Meanwhile, extensive
numeric analysis demonstrates that the proposed approach
provides a nearly optimal way for adaptive feature detec-
tion problems. Lastly, the superiority of BiNSOF is further
demonstrated through applying it to the CWRU benchmark
bearing fault data and an aero-engine bearing test data.

The rest of the paper is organized as follows. Section II
rigorously describes the nested optimization problems of
BiNSOF and their relationship, and further designs a gen-
eral feature detection framework for mechanical systems.
Meanwhile, the complexity of the proposed technique is
investigated. Section III investigates the performance of the
proposed BiNSOF framework through extensive numerical
experiments. Section IV is dedicated to applying BINSOF to
two bearing fault data sets. Conclusions and future works are
reported in Section V.

II. PROPOSED ALGORITHM
A. NOTATION AND PROBLEM FORMULATION
Fault features x ∈ Rm×1 are often contaminated by relatively
strong noises w ∈ Rm×1 which may arise due to sensor
imperfection, poor running environment or communication
errors. Therefore, the measurements y ∈ Rm×1 could be
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described by a linear data model

y = x + w (1)

where w ∼ N (µ, σ 2) is an additive white Gaussian noises
of mean µ and variance σ 2. Typically, the task to detect
feature information x from y can be formulated as an operator
fθ (y) : Rm

−→ Rm that maps observation data y to estimated
features:

x̂ = fθ (y) (2)

where θ ∈ 2 represents the continuous hyper-parameter set
of fθ (y). Meanwhile, fault feature information often has an
intrinsic sparse structure, strictly speaking, for a signal x,
if we have a favorable over-complete dictionary 9 ∈ Rm×n,
most energy of x can be only concentrated on a few nonzero
elements of coefficient α = 9T x or α has many zero
values. Thus a regularization term (`p, 0 ≤ p ≤ 1) is often
employed to describe the sparse structure of fault features and
then the feature estimator can be formulated as a regularized
optimization problem [34]:

fθ (y) = argmin
x

1
2
‖y− x‖22 + θ

∥∥∥9T x
∥∥∥
p

(3)

where θ is the regularization parameter. A large value of θ
tends to over-smooth structures while a small value leads
to noisy recovery. To make the problem (3) more tractable,
moreover, the model parameter p is set as 1 since `1 norm
yields the convex objective cost and we can employ many
off-the-shelf optimization algorithms to solve it. The success
of this model mainly depends on the dictionary 9 and the
regularization parameter θ . In this paper, we focus on the
later problem and suppose the dictionary 9 is appropriate
to capture the sparse structure of x. However, the adaptive
configuration of regularization parameter is generally not a
trivial task.

A natural way is to design a performance criterion to eval-
uate the reconstruction quality and further confirm optimal
regularization parameters. A popular criterion is the MSE
which measures the difference between the reconstructed
feature signal fθ (y) and the original noise-free one x:

MSE(x̂) = Ew
{
‖fθ (y)− x‖22

}
(4)

where Ew {·} stands for the mathematical expectation opera-
tor. However, due to the nonsmooth property of sparse reg-
ularizer (`p, 0 ≤ p ≤ 1), it is impossible to directly obtain
a closed solution for fθ (y), and an iterative solver must be
introduced. Therefore, an optimal parameter configuration
can be obtained by the following bi-level nested optimization:

fθ (y) = argmin
x

1
2
‖y− x‖22 + θ‖9

T x‖1 (5)

θ∗ = argmin
f ,θ

Ew
{
‖fθ (y)− x‖22

}
(6)

Obviously, this problem is highly ill-posedness as the MSE
depends on the noise-free signal x which is generally unavail-
able or unknown in real engineering applications. There-
fore, a practical way is to find an unbiased estimator to

approximate the true MSE. Fortunately, a theoretical result
developed by C. Stein makes this possible in Gaussian sce-
nario [35] and provides a powerful scheme to obtain an unbi-
ased estimator of true MSE criterion. Therefore, the sparse
denoiser fθ (y) with the regularization parameter θ could be
optimized based on the SURE theory. Without ever requiring
knowledge of the noise-free feature signals x, most impor-
tantly, this approach could achieve favorable accuracy to
calculate MSE and meanwhile tack MSE evolution reliably.
Moreover, its unbiasedness can be established rigorously,
which makes it non-empirical.

However, there remain two problems need to be addressed.
Firstly, it is a necessary procedure to develop efficient algo-
rithms to jointly optimize Eq.(5) and Eq.(6). On the other
hand, the divergence of the operator fθ (y) with respect to y
is one key ingredient of SURE calculation, but the explicit
evaluation of the divergence is out of reach because the sparse
estimator fθ (y) is an iterative optimization procedure. There-
fore, another challenge is to propose an feasible scheme to
evaluate divergence operation without heavy computational
cost. All detailed information about the two problems is
shown in the subsequent sections.

B. STEIN’S UNBIASED RISK ESTIMATE - SURE
In this section, we discuss an unbiased estimator for theMSE,
which will later be used to optimize the sparse denoiser as
well as its regularization parameter. The Stein Unbiased Risk
Estimator (SURE) was proposed in [35]. One of the best
known algorithms that uses SURE is Donoho’s SureShrink
denoising algorithm [36]. The core idea of the SURE prin-
ciple is to seek an unbiased estimator for the MSE that is
only a function of the observation y and the feature estimator
fθ (y). Denote such an MSE estimator as η(fθ (y)). Then, if we
have accessed to such a function η(fθ (y)) that estimates the
MSE, while being also dependent on a set of parameters θ that
control the feature detection accuracy. Naturally we could
choose one optimal value θ∗ to minimize that function, which
guarantees the estimator fθ (y) to achieve the near-optimal
detection accuracy in terms of MSE.

To cover most of nonsmooth estimators with sparse regu-
larization penalties, we introduce the following assumptions.
Assumption 1: The established feature estimator fθ (y)

could be simplified as a m-dimensional vector mapping and
it has following characteristics:
A.1 The estimator fθ (y) is always a single-valued mapping

though fθ (y) is possibly multivalued.
A.2 The estimator fθ (y) is weakly differentiable with

respect to y.
A.3 The estimator fθ (y) is bounded by some fast increasing

functions, typically such that:

lim
|z|→∞

fθ (x + z)e
−

z2

2σ2 = 0.

A.4 The estimator fθ (y) is uniformly Lipschitz continuous
with Lipschitz constant L1 > 0.

A.5 The estimator fθ (y) is such that fθ (0) = 0 for any θ .
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Moreover, we also require that the divergence of fθ (y) with
respect to the observation y is given by

div {fθ (y)} =
m∑
i=1

∂fθi (y)
∂yi

(7)

where fθi (y) and yi denotes the i-th component of the vectors
fθ (y) and y, respectively.
Definition 1: Given y as in (1), w ∼ N (0, σ 2) is an

additive white Gaussian noises of mean 0 and variance σ 2.
SURE corresponding to fθ (y) is defined as:

η(fθ (y)) = ‖y− fθ (y)‖22 − mσ
2
+ 2σ 2div {fθ (y)} (8)

Then, the following description, according to Stein
theory [35], states that η is indeed unbiased
Theorem 1: If fθ (y) satisfies the assumption 1, then the

random variable η(fθ (y)) is an unbiased estimator of the
expected MSE, i.e.

Ew {η(fθ (y))} = Ew
{
‖x − fθ (y)‖22

}
(9)

Remark 1: Without any assumptions on the noise-free fea-
tures x, it is possible to reliably approximate the oracle MSE
by the unbiased estimator (8) which is a function of y only.
This has an important consequence: contrary to what is fre-
quently done in the literature, feature signal x is not modeled
as a random process in our estimator, i.e., we do not even
require x belong to a specific class of signals.
Remark 2: The constant energy term in the unbiased esti-

mator (8), mσ 2, is irrelevant to the estimator process fθ (y),
therefore, there is no need to estimate it since it will disappear
in the minimization problem (6). Consequently, we will con-
sider these terms which is the only part of the MSE estimator
that depends on the choice of the unbiased estimator fθ (y).
Naturally, the optimization problem (6) could be formulated
as follows,

θ∗ = argmin
fθ (y)

Ew
{
‖fθ (y)− x‖22

}
= argmin

fθ (y)
Ew

{
‖(y− fθ (y))‖22 + 2σ 2div {fθ (y)}

}
(10)

Remark 3: The unbiased estimator and optimization prob-
lem (10) require the knowledge of the variance σ 2, and
numerous works have entirely dedicated to σ estimation
problem [37]–[39]. One popular strategy is to firstly address
the noisy signals with a unit-norm highpass filter, and then
estimate the noise variance σ̂ from the filtered components.
This method has been popularized in wavelet-based denois-
ing algorithms developed by Donoho [37], and the median
of the absolute deviation (MAD) of the highest frequency
subband w1 has become as a benchmark method for σ̂ :

σ̂ = 1.4826 ∗Median {|w1 −Median(w1)|} (11)

For a wide range of noise levels, the wavelet-domain MAD
estimator usually gives an effective estimation of noise vari-
ance in most engineering applications. Thus, this approach
has been adopted for noise variance estimation throughout
this paper.

The reliability of the unbiased estimator is another impor-
tant topic and nowwe evaluate its reliability by computing the
expected squared error between η(fθ (y)) and the actual MSE.
The reliability is guaranteed by the following theorem.
Theorem 2: Under the same hypotheses as Definition 1,

the expected squared error between the estimator η(fθ (y)) and
the actual MSE is given by [32]:

Ew


(
η(fθ (y))− ‖x − fθ (y)‖22

mσ 2

)2
 = O(

1
m
) (12)

Remark 4: Generally, the estimated MSE, η(fθ (y)),
is inversely proportional to the sample number m. Moreover,
the number of samples in practical applications is usually
large, and thus the estimator has a small variance, typically
∝ 1/m. This designed estimator is therefore close to its
expectation, which indeed effectively describes the trueMSE.

Now, we can estimate the MSE purely based on the
input data y, the divergence of fθ (y), and the noise statis-
tics, meanwhile don’t require knowledges whatsoever of the
noise-free signal x. However, the evaluation of div {fθ (y)} is
difficult or even infeasible when there is no explicit form
for the estimator, as is the case for the sparse optimization
model (5). Therefore, we will demonstrates an iterative pro-
cedure to compute div {fθ (y)} in the following parts.

C. `1PARSE OPTIMIZATION ALGORITHM
In recent years, how to design numeric solvers for sparse
model (5) has attracted lots of researchers and many useful
algorithms have been proposed. An important progress in
the last decades is the primal-dual method, which offers
significantly computational advantages [40], [41]. Now we
illustrate detailed optimization procedures for the problem (5)
via the primal-dual strategy.

Based on Legendre-Fenchel transforms, the nonsmooth
term

∥∥9T x
∥∥
1 could be rewritten as∥∥∥9T x

∥∥∥
1
= sup
λ∈Rn

〈
9T x, λ

〉
− R∗(λ) (13)

where R∗(λ) is the convex conjugate function of ‖λ‖1 and
defined as:

R∗(λ) = sup
r∈Rn
〈λ, r〉 − max

‖s‖∞≤1
〈r, s〉 (14)

Substituting (13) into (3), we obtain one equivalent saddle
point problem:

min
x

max
λ

1
2θ
‖y− x‖22 +

〈
9T x, λ

〉
− R∗(λ) (15)

Then, two subproblems are formulated through alternately
optimizing a single block of variables and keeping the rest
of variables fixed.

argmax
λ

〈
9T x, λ

〉
− R∗(λ)−

1
2τ

∥∥∥λ− λk∥∥∥2
2

(16)

argmin
x

1
2θ
‖y− x‖22 +

〈
9T x, λ

〉
+

1
2ξ

∥∥∥x − xk∥∥∥2
2

(17)
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where the auxiliary terms
∥∥λ− λk∥∥22 and

∥∥x − xk∥∥22 could
guarantee the optimal point of every subproblem is not away
from previous points, which often provides an important con-
dition for algorithmic convergence. In the following, we will
provide the implementation details to obtain efficient solu-
tions to each separated sub-problem. For simplicity, the iter-
ation subscript k is omitted without confusion.

The λ-subproblem (16) is just the proximal operator of
R∗(·) and thus we can obtain a closed-form solution as follows

U k+1
=

(
λk + τ9T x

)
(18)

λk+1 = U k+1
− τProxR/τ

(
U k+1/τ

)
(19)

where the ProxτR(U ) is defined as

ProxτR(U ) =


Ui + τ if Ui ≤ −τ,
0 if − τ < Ui < τ,

Ui − τ otherwise.

(20)

The x-subproblem (17) can be reformulated as a least-
square problem and a closed form solution thus can be
straightforwardly obtained

V k+1
=

(
xk − ξ9λk+1

)
(21)

xk+1 = (θ + ξ)−1
(
θV k+1

+ ξy
)

(22)

Moreover, in order to improve the numerical efficiency,
an extrapolation step is performed for x,

x̃k+1 = xk+1 + ζ
(
xk+1 − xk

)
(23)

Finally, performing the above iterations leads to an optimal
point (x∗, λ∗). Based on the Fermat’s rule, it can be proved
that, if

(
x̂, λ∗

)
is the solution of problem (15), then x̂ is a

solution to the primal problem (3) and λ∗ is a solution to the
dual one. Moreover, a detailed description of the proposed
algorithm for sparse estimator x̂ = fθ (y) is illustrated in
algorithm 1.

Algorithm 1 Sparse Denoiser fθ (y) Solver (SDS)
Require: Observation signal y, dictionary 9, parameters θ .
Ensure: set k = 0, λ0 = 9T y, x0 = y, x̃0 = y, L = ‖9‖,

τ > 0, ξ > 0, τξL2 < 1 and ζ ∈ [0, 1],K = 50.
1: for k ≤ K do
2: U k+1

← λk + τ9T x̃k .
3: λk+1← U k+1

− τProxR/τ
(
U k+1/τ

)
.

4: V k+1
← xk − ξ9λk+1.

5: xk+1← (θ + ξ )−1(θV k+1
+ ξy).

6: x̃k+1← xk+1 + ζ
(
xk+1 − xk

)
7: k ← k + 1.
8: end for

Output: Feature estimate x̂.

Since all the subproblems of the proposed algorithm have
closed-form solutions, its convergence is guaranteed by the
primal-dual splitting theory given in [40].

D. OPTIMAL FEATURE DETECTION BASED
ON SPARSE DENOISER
After the explicit formulation of sparse estimator fθ (y) has
been constructed in the subsection II-C, the optimal point
of optimization problem (10) could be obtained through
the golden-section [42] or quasi-Newton optimization tech-
niques [43]. However, a major practical difficulty when com-
puting the objective values (10) lies in the numerical method
of div {fθ (y)} defined by (7). Due to that there is no closed-
form expressions for the sparse estimator (3), it is not pos-
sible to evaluate div {fθ (y)} directly. Therefore, we adopt an
iterative way developed from chain rules to compute the weak
directional derivative of fθ (y). Based on step 5 of algorithm 1
and the linearity of Jacobian matrix ∂fθ (y)/∂y, we can obtain

∂fθ (y)
∂y
= D(k+1)

x = (θ + ξ )−1(θD(k+1)
V + ξ ) (24)

For other steps in the algorithm 1, we have

D(k+1)
U = D(k)

λ + τ9
TD(k)

x̃ (25)

D(k+1)
λ = D(k+1)

U − τ
∂ProxR/τ (U/τ)

∂U
D(k+1)
U (26)

D(k+1)
V = D(k)

x − ξ9D(k+1)
λ (27)

D(k+1)
x̃ = D(k+1)

x + ζ
(
D(k+1)
x −D(k)

x

)
(28)

It can be shown that soft-thresholding function (20)
is weakly differentiable and thus its weak Jacobian
∂ProxτR (U) /∂U is diagonal, with diagonal elements, for
1 ≤ i ≤ n,

∂ProxτR (U)
∂U

=


−1 if Ui ≤ −τ,
0 if − τ < Ui < τ,

1 otherwise.

(29)

Now that a feasible and effective way to obtain
the div {fθ (y)} has been established, and therefore the
SURE-based MSE can be estimated by (8). Algorithm 2
summarizes the procedure of the sparse solver with SURE-
based MSE estimation under one fixed parameter θ̂ .

Since an analytical solution for problem (10) is difficult to
obtain, another iterative optimization technique is exploited.
The objective function with respective to θ in essence is
piecewise-affine [32] and furthermore there is only one mini-
mum point in the interval θ ∈ [0, |9T y|∞]. Thus, the golden
section search method is adopted to find the optimal solution
fθ∗ (y). Substituting the iterative schemes of algorithm 2 into
the second-stage optimization (10), then, a Bi-level nested
sparse optimization framework is obtained and shown in
algorithm 3. The mapping SureSDS shown in algorithm 2
denotes the sparse solver with SURE-based MSE estimation,
and the mappingGSS is the update criterion in golden section
search method. With GSS’s iteration increases, the interval
[θ i+1L , θ i+1H ] is gradually reduced to one optimal parameter
θ∗. The update steps in the line 6 ∼ 12 of Algorithm 3 is
performed cyclically until the interval length is less than
one pre-specified tolerance level ε = 10−3, one optimal
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Algorithm 2 The Sparse Solver With SURE-Based MSE
Estimation (SureSDS)
Require: Observation signal y, sparse representation dictio-

nary 9 and parameter θ̂ .
Ensure: let k = 0, λ0 = 9T y, x0 = y, x̃0 = y, L =
‖9‖, τ > 0, ξ > 0, τξL2 < 1, ζ ∈ [0, 1], K =
50;DU ,Dλ,Dx ,Dx̃ ← 0;

1: for k ≤ K do
2: U k+1

← λk + τ9T x̃k .
3: D(k+1)

U ← D(k)
λ + τ9

TD(k)
x̃ .

4: λk+1← U k+1
− τProxR/τ

(
U k+1/τ

)
.

5: D(k+1)
λ ← D(k+1)

U − τ
∂ProxR/τ (U/τ)

∂U D(k+1)
U .

6: V k+1
← xk − ξ9λk+1.

7: D(k+1)
V ← D(k)

x − ξ9D(k+1)
λ .

8: xk+1← (θ + ξ )−1(θV (k+1) + ξy)
9: D(k+1)

x ← (θ + ξ )−1(θD(k+1)
V + ξ )

10: x̃k+1← xk+1 + ζ
(
xk+1 − xk

)
.

11: D(k+1)
x̃ ← D(k+1)

x + ζ
(
D(k+1)
x −D(k)

x

)
.

12: k ← k + 1.
13: end for
14: x̂ ← xK .
15: div

{
f
θ̂
(y)
}
← DK

x
16: σ ← MAD estimator by (11).
17: η(f

θ̂
(y))←

∥∥(y− x̂)∥∥22 + 2σ 2div
{
f
θ̂
(y)
}
.

Output: Feature information x̂,
Estimated MSE η(f

θ̂
(y)),

parameter is then obtained. More detailed description about
golden section search could be found in the chapter 4 of [44].

Another important issue is how to choose efficient ini-
tialization values and reliable stopping criterion. If θ → 0,
the recovered features x∗ are often meaningless due to that
interferences and noises are inevitable, and thus we empiri-
cally select a lower bound for the feasible space of θ as

θL =
mσ 2

4
∥∥9T y

∥∥
1

(30)

Moreover, the upper bound θU of parameter θ is set as
|9T y|∞ since the solutions fθ (y) are always zeros when θ is
over θU . In addition, a medium accuracy solution of iterative
algorithm 1 is often attained after only a few iteration times
and thus the iteration number is fixed as K = 50. Lastly,
the proposed algorithm BiNSOF is stopped if the interval
[θL , θU ] reduces to a sufficiently precise value which is often
set as the order of 10−3.

E. COMPUTATIONAL COMPLEXITY
The main computational cost (CC) of the proposed algorithm
BiNSOF is mainly composed of three parts, i.e., sparse esti-
mator solver, MSE estimation and the golden section search.
The sparse estimator solver only requires a small number
of inner products, vector-scalar multiplications and vector

Algorithm 3 Adaptive Feature Detection Based on the
Bi-Level Nested Sparse Optimization Framework (BiNSOF)
Require: Observation signal y, dictionary 9.
Ensure: set θ0L by the formula (30) and θ0U = |9

T y|∞ and
ε = 10−3, I0 = θ0U − θ

0
L , θ

0
a = θ0U − 0.618I0, θ0b =

θ0L + 0.618I0

1: while I i = θ iU − θ
i
L ≥ ε do

2:
(
θ i+1L , θ i+1U , θ i+1a , θ i+1b

)
← GSS(θ iL , θ

i
U , SureSDS).

3: end while
4:
(
∼, ηi+1a

)
← SureSDS

(
θ i+1a

)
.

5:
(
∼, ηi+1b

)
← SureSDS

(
θ i+1b

)
.

6: if ηi+1a > ηi+1b then
7: θ∗ = 1

2 (θ
i+1
a + θ i+1U ).

8: else if ηia < ηib then
9: θ∗ = 1

2 (θ
i+1
L + θ i+1b ).

10: else
11: θ∗ = 1

2 (θ
i+1
a + θ i+1b ).

12: end if
13: (x∗, η∗)← SureSDS (θ∗) .
Output: Optimal feature information x∗,

Optimal parameter θ∗.
Minmimum MSE η∗.

additions, and every iteration needs O(n) or O(m) floating-
point operations plus a modest number of multiplications by
9 and9T . In order to effectively reduce the overall computa-
tional complexity, we only consider the analytic formulation
of dictionary 9 and its explicit dictionary will be a future
topic, therefore, performing 9 or 9T product only needs
O(n) or O(n log n) computational cost, where the reasonabil-
ity of cost approximation is originated from that redundant
dictionary 9 (m ≤ n) often provides a more sparse represen-
tation expansion. In the case of the soft-thresholding opera-
tion, the computational cost is approximate O(n). Therefore,
every iteration cost of the Sparse Denoiser Solver from line 2
to line 6 of algorithm 1 is O(n log n) + O(m) + O(n). As to
the estimation procedure of MSE in algorithm 2, fortunately,
it doesn’t introduce more complex operations besides some
linear partial derivations. Therefore, the main cost of sparse
denoiser along with MSE estimation from line 2 to line 11
of algorithm 2 is O(n log n) + O(m) + O(n). Lastly, the cost
of golden section search in line 2 of algorithm 3 is O(1).
Therefore, the global complexity of the algorithm is

CC = O ((2J + 1)K (n log n+ m+ n)+ JO(1)+ O(m))

≈ O ((2J + 1)K (n log n+ m+ n))

≈ O ((2J + 1)Kn log n) (31)

where J is the iteration times from line 4 to line 2 of
algorithm 3.

In summary, for a wide choice of fast dictionaries with
O(n) orO(n log n) computational cost, the BiNSOF algorithm
has O (JKn log n) computational complexity.

19772 VOLUME 8, 2020



H. Zhang et al.: Bi-Level Nested Sparse Optimization for Adaptive Mechanical Fault Feature Detection

III. PERFORMANCE ANALYSIS
In this section, extensive computational experiments are
implemented to investigate the performance behavior of
the proposed algorithm. Impulsive components are always
viewed as one type of critical signatures when there is an
anomaly in the mechanical systems [11], [45], therefore, fault
feature x and the measurements y are designed as follows:

y = x + w

h(t) = exp (−1500t) sin (2π × 3000t)

x(t) = 2 cos(20π t)
∑
k

10× h
(
t −

k − 0.1× RC
201

)
(32)

where 201 Hz is the period of the impulse signals and w is
the additive zero-mean white noises with variance σ . RC is
a random number sampled from the uniform probability
distribution on [−1, 1]. The simulation signals are sampled
at a frequency of 8192 Hz and have m = 32768 points.
Moreover, eight different noise variance σ varying from
0.1 to 0.8 in 8 steps, corresponding to SNR from 10.89 dB to
−7.18 dB, are employed to study the performance robustness
of the BiNSOF under various noise levels.

Moreover, the dictionary 9 plays an important role in the
proposedmethod and thus how to select an impulse-similarity
dictionary becomes a fundamental problem. Once the dictio-
nary 9 is specified, a sparse estimator is then designed and
further obtained feature signals are unique. Among current
analytical dictionaries, wavelet dictionary shows excellent
performances in sparsely representing the impulsive com-
ponents, since the morphology of wavelet atoms is similar
to the impulsive waveform. It is thus an important task to
construct or select one proper wavelet basis for focused fault
features, consequently various wavelets have been investi-
gated [46], such as dB family, lifting scheme, multi-wavelets.
As a new branch of wavelet family, tunable Q-factor wavelet
transform (TQWT) could generate various basis with dif-
ferent oscillating patterns through adjusting three flexible
parameters [47], i.e., quality factor Q, redundant factor R
and decomposition level J . Therefore, each combination
(Q,R, J) is a feasible sparse estimator and then the BiN-
SOF’s performance could be evaluated quantitatively. Every
parameter in (Q,R, J) ranges through 5 equispaced points in
[1, 9], and only one parameter is considered at one time while
other parameters are fixed as initialization values (Q = 3,
R = 3, J = 5).

To profoundly evaluate the performance of the proposed
method, some quantitative criterion are designed.

δ1 =

∥∥θExh − θOra∥∥2
θOra

(33)

δ2 =

∥∥θ∗ − θOra∥∥2
θOra

(34)

where θOra is the optimal hyper-parameter that achieves the
minimum MSE with x is known and serves as a benchmark
on the best estimator performance. It is obtained through
implementing algorithm 1 with an exhaustive search of θ in

one interval from θL to θU in 100 steps. θExh is the optimal
hyper-parameter that achieves the minimum η(f

θ̂
(y)). It is

obtained by implementing algorithm 2with exhaustive search
of θ̂ in the same interval. θ∗ is the underlying parameter corre-
sponding to the resulting feature information x∗ through the
proposed algorithm 3. Therefore, δ1 evaluates the accuracy
of the SURE-based MSE estimation. δ2 evaluates the effec-
tiveness of the proposed bi-level nested sparse optimization
algorithm.

Moreover, the denoising performance of the proposed
method is also evaluated by the improvement in SNR (ISNR)
calculated as,

ISNR = 20 log10

(
‖y− x‖2
‖x∗ − x‖2

)
(35)

Based on these criterions, we now make a quantitative anal-
ysis through a series of numerical experiments for various
noise levels and parameter settings. The statistical results are
tabulated in Tables 1-3 where the superior δ2 with respect
to δ1 is indicated in bold-face font for all combination
of parameter and noise variance, and also the minimum
ISNR value among eight tests with only different noise level
(i.e., the parameterQ,R, J are specific) is marked with boxes.
Several observations are in order:
• Firstly, in most parameter configurations, θExh is nearly
equal to θOra, which demonstrates that η(f

θ̂
(y)) can accu-

rately approximate the true MSE without knowledge of
the real feature signals x.

• Noticeably, the optimal parameters obtained based on
the true MSE and estimated MSE, θOra and θ∗ respec-
tively, are either equal or different only in the second
decimal place for nearly all tested cases. This indicates
the reliability and robustness of the proposed method.
Moreover, it is also interesting to see that δ2 sometimes
is even less than δ1, highlighted in bold-face font, which
means that the proposed BiNSOF can outperform the
exhaustive search strategy. This phenomenon can be
attributed to that the revolution of θ in [θL , θH ] can not as
high as possible in the exhaustive search considering the
computation complexity. Therefore, it can be asserted
that BiNSOF provides an efficient and reliable way to
adaptively tune the regularization parameter, and guar-
antees the recovered feature signals are near-optimal.

• Evidently, the average ISNR is 8 dB and this gain is very
noticeable, especially at high noise levels. Moreover,
the obtained ISNR from every test is the maximum level
and cannot be increased significantly, since the BiNSOF
method sufficiently takes advantage of both the sparse
structure of feature information andmeanwhile the near-
optimal parameter configuration of the sparse denoiser.

• Furthermore, the ISNR of each experiment under the
same noise level is nearly same with only a slight differ-
ence of 0.6 dB. These results highlight that the proposed
BiNSOF is robust with TQWT dictionary parameters.

• Surprisingly, under specific dictionary parameter cases,
the tendency of ISNR doesn’t decrease continuously
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TABLE 1. Comparison of feature detection accuracy under five different
Q-factors and various noise levels.

as the noise variance σ increases, but achieves the
minimum point (marked in the boxes) at one mod-
erate noise level and then increases regardless of the
noise energy. This phenomenon could be explained
as follows. To keep more feature information in the

TABLE 2. Comparison of feature detection accuracy under five different
R-factors and various noise levels.

extracted features x∗, noises are introduced inevitably
and a good balance between the estimator bias and noise
variance should be achieved. When the noise variance
is small or medium, the obtained x∗ includes a small
number of noises and generates uniform bias for the
whole feature signals x, the ISNR thus decreases. As the
noise level increases, the details of x are submerged
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TABLE 3. Comparison of feature detection accuracy under five different
J-factors and various noise levels.

completely and only its dominant parts could be pre-
served, the bias of dominant parts is thus reduced to
achieve the minimum objective cost (10), and conse-
quently, the ISNR index begins to increase. From this
analysis, it can be found that the proposed BiNSOF algo-
rithm could effectively search the optimal bias-variance
trade-off and thus the feature detection procedure is
adaptive.

FIGURE 1. Plot of MSE and ISNR as functions of sparse denoiser
parameter θ . (a) evolution of two types of MSE and three minimum points
based on different schemes, (b) evolution of oracle ISNR and three
maximum SNR points based on different schemes. These curves are
adopted from the eleven row of Tables 1 corresponding to the σ = 0.3
condition, and the dictionary parameters are Q = 3,R = 3, J = 5. The MSE
in (a) is normalized through dividing by the factor mσ2. Moreover,
the predicted-SURE curve denotes the 100 MSE sequences that originated
from the exhaustive-search method. These plots demonstrate that
Predicated-SURE closely captures the trend of Oracle-MSE and the
minima of BiNSOF selection are close to that of the oracle points
indicated by the solid vertical lines.

To further highlight the characteristic of the proposed fea-
ture detection method, the evolution of two criterions (MSE
and ISNR) versus the sparse denoiser parameter θ under three
different (Q,R, J ) settings are illustrated in Fig. 1, Fig. 2,
Fig. 3, respectively. It is observed that the SURE-based MSE
estimator (8) follows the true MSE curve remarkably well in
all the cases and is indeed a good estimator to approximate the
oracle MSE. Moreover, the resulting ISNR of the proposed
BiNSOF is sufficiently closed to the corresponding oracle
ISNR, which illustrates that the BiNSOF has an excellent
capability in maximally detecting feature information for
fault diagnosis.

In summary, the proposed BiNSOF algorithm provides
a near-optimal sparse estimator for MSE and thus it is
indeed a good objective to maximize the ISNR. Moreover,
the BiNSOF algorithm could adaptively strike a good bal-
ance between the estimator bias and noise variance and thus
achieves the maximum gain of ISNR, which yields an adap-
tive feature detection technique. Lastly, the BiNSOF algo-
rithm is insensitive to the TQWT dictionary parameters.
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FIGURE 2. Plot of MSE and ISNR as functions of sparse denoiser
parameter θ . (a) evolution of two types of MSE and three minimum points
based on different schemes, (b) evolution of oracle ISNR and three
maximum SNR points based on different schemes. These curves are
adopted from the twenty row of Tables 2 corresponding to the σ = 0.4
condition, and the dictionary parameters are Q = 3,R = 5, J = 5. The MSE
in (a) is normalized through dividing by the factor mσ2. Moreover,
the predicted-SURE curve denotes the 100 MSE sequences that originated
from the exhaustive-search method. These plots demonstrate that
Predicated-SURE closely captures the trend of Oracle-MSE and the
minima of BiNSOF selection are close to that of the oracle points
indicated by the solid vertical lines.

IV. EXPERIMENTAL VALIDATION
A. CASE 1
In this section, a bearing vibration data collected from the
data center of Case Western Reserve University (CWRU) is
used to evaluate the proposedmethod. This dataset is publicly
available andwidely used. Therefore, a thorough examination
of the dataset was performed by Smith and Randall [48].
Every data record has been studied and categorized into three
groups, labeled as ‘‘Y’’, ‘‘P’’ and ‘‘N’’ respectively. ‘‘Y’’
means that the data is diagnosable, ‘‘P’’ denotes that the fea-
ture is weak and the data is probable or potentially diagnos-
able and ‘‘N’’ is labeled to data which can not be diagnosable.
The data sets in the ‘‘P’’ or ‘‘N’’ categories are suggested for
validation of newly developed algorithms. Consequently, one
data record labeled as ‘‘P’’ is taken. The experimental bearing
is SKF deep groove ball bearing 6203-2RS JEM and its char-
acteristic frequencies are presented in Table 4. The vibration
signal from one bearing with a 0.36-mm-diameter fault on
the inner race was collected with a sampling frequency of
12 kHz. The shaft rotational speed is 1730 rev/min. The shaft

FIGURE 3. Plot of MSE and ISNR as functions of sparse denoiser
parameter θ . (a) evolution of two types of MSE and three minimum points
based on different schemes, (b) evolution of oracle ISNR and three
maximum SNR points based on different schemes. These curves are
adopted from the thirty-one row of Tables 3 corresponding to the σ = 0.7
condition, and the dictionary parameters are Q = 3,R = 3, J = 7. The MSE
in (a) is normalized through dividing by the factor mσ2. Moreover,
the predicted-SURE curve denotes the 100 MSE sequences that originated
from the exhaustive-search method. These plots demonstrate that
Predicated-SURE closely captures the trend of Oracle-MSE and the
minima of BiNSOF selection are close to that of the oracle points
indicated by the solid vertical lines.

TABLE 4. Basic characteristic frequencies of different rolling bearings
components for 6203− 2RSJEM type.

rotation frequency R and the ball pass frequency in the inner
race (BPFI) are 28.83 Hz and 142.64 Hz, respectively.

One segment of vibration signals and its corresponding
spectrum are illustrated in Fig. 4. The time view of the
signal shown in Fig. 4(a) does not reveal fault symptoms
due to high-level noises and fault frequency bins are also
indistinct in the frequency spectrum. Moreover, only rotation
frequency R and its harmonics could be found in the envelope
spectrum. Moreover, the characteristic frequency BPFI is
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FIGURE 4. Vibration signals of the fault bearing and its corresponding
spectrums: (a) original waveforms, (b) zoom-in view of waveforms with
its corresponding envelope components, (c) frequency spectrum,
(d) envelope spectrum of original signals, (e) zoom-in view of envelope
spectrum indicated by the dotted rectangle. Moreover, R denotes the
rotational speed.

nearly coincided with the 5-th order of rotation frequency.
Thus, there is no significant feature information to perform
diagnosis. Due to strong rotational frequency bins, the pre-
whited strategy is firstly adopted and the proposed method
BiNSOF is then applied to detect fault information. Due to
that tunable Q-factor wavelet transform (TQWT) could gen-
erate various basis with different oscillating patterns through
adjusting three flexible parameters [47], i.e., quality factor Q,
redundant factor R and decomposition level J, sparse dictio-
nary9 is set as TQWTwith parameters (Q,R, J ) = (3, 3, 5).
The resulting feature signals and its spectrum are depicted
in Fig. 5. It can be seen from time waveforms that feature
signals are mainly composed of quasi-periodic impulses and
furthermore are modulated by low-frequency components.
As seen from the spectrum of Fig. 5(c), the resonance band
of feature signals is extracted and noises are alleviated.
Compared with the results of Fig. 5(d-e) with Fig. 4(d-e),
the envelope spectrum of extracted feature signals clearly

FIGURE 5. Feature signals extracted through the proposed BiNSOF and its
corresponding spectrums: (a) waveforms of feature signals, (b) zoom-in
view of waveforms and corresponding envelope components,
(c) frequency spectrum, (d) envelope spectrum of feature signals,
(e) zoom-in view of envelope spectrum indicated by the polygon.
Resonance band indicates the critical region where feature information
concentrates. BPFI × 1 is the inner race fault frequency of bearings. The
interval period in the vicinity of BPFI and its multiplies (BPFI × 1 to 3) is
the rotational speed R, which is displayed in (e).

indicates the characteristic frequency 142.64 Hz (i.e., BPFI×
1 = 28.83 × 4.9469 Hz) and its multiples (BPFI × 2 and
×3) with the side-bands composed of equispaced modulated
frequency 28.83 Hz. According to the fault mechanism [49],
the detected feature patterns thus demonstrate that a localized
fault exists on the inner race of the rolling bearings.

To gain more insight into the effectiveness of BiNSOF,
the evolution of estimated MSE and the optimal points are
depicted in Fig. 6. The MSE curve demonstrates the relation-
ship between the estimator bias and noise variance and this is
a popular phenomenon in the signal processing community.
However, it is a very difficult problem to achieve an equi-
librium point, and fortunately, the resulting point obtained
through BiNSOF is remarkably near to desired values, which
validates the effectiveness of the proposed feature detection
algorithm.
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FIGURE 6. Evolution of MSE versus sparse estimator parameter θ . The
estimated MSE is calculated based on the formula (8). Moreover,
the predicted-SURE curve denotes the 100 MSE sequences that originated
from the exhaustive-search method. Strikingly, the minima of BiNSOF
selection is close to the empirical minimal MSE point indicated by the
solid vertical line.

FIGURE 7. The fault information obtained by the SK technique: (a) Fast
Kurtogram of the original signals, (b) filtered signals according to the
optimal filter with the center frequency 1520 Hz and the bandwidth
160 Hz, (c) envelope spectrum of the filtered signals. R denotes the
rotational speed and BPFI is the characteristic frequency of faults located
in the inner race of rolling bearings.

Moreover, spectral kurtosis [46], one of state-of-the-art
fault diagnosis techniques, is introduced to detect the feature
information from the same vibration signals. The results are
illustrated in Fig. 7. As can be seen, the fault information of
rolling bearings is not significant and its multiples cannot
be detected. Meanwhile, compared with the results shown
in Fig. 5(e), the energy of BPFI depicted in Fig. 7(c) is weak
and not easy to identify, which is originated from the fact that
most of feature information is discarded to remove the noises.

FIGURE 8. The aero-engine bearing test rig.

FIGURE 9. The internal structure of the aero-engine bearing test rig.

Therefore, the SK technique is inferior to extract fault signals
compared with the BiNSOF method.

B. CASE 2
In this section, we use the data generated from the aero-engine
bearing fault test to investigate the effectiveness of BiNSOF.
The photo of the test rig is shown in Fig. 8. It consists of
the main body of the test rig, the cooling and lubrication
system, the industrial personal computer (IPC), and the data
acquisition system. The temperature, load and the rotational
speed of the test rig are controlled by the IPC. The internal
structure of the test rig is also shown in Fig. 9. The spindle of
the test rig is driven by the high-speed motor. The bearing 3
is the test bearing and the bearing 1 and the bearing 2 are
two support bearings. The axial load and radial load are
simultaneously applied to the test bearing by the lubrication
system. During one accelerated life test, a local defect on the
outer raceway is detected, which is shown in Fig. 10. The
type of the test bearing is H7015. The patch diameter, the ball
diameter, the angle of contact and the number of balls are
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FIGURE 10. The local fault on the outer raceway.

FIGURE 11. Vibration signals of the fault bearing and its corresponding
spectrums: (a) original waveforms, (b)frequency spectrum, (c) envelope
spectrum of original signals, (d) zoom-in view of envelope spectrum
indicated by the dotted rectangles.

95mm, 12.65mm, 15◦ and 19 respectively. The characteristic
frequency of the outer race under running speed of 2000 r/min
is 275.94Hz. Vibration signals are sampled at 20.48Hz by a
data acquisition system.

One segment of the vibration signal with a length of 0.8s
is adopted for basic spectrum analysis, which is shown
in Fig. 11. However, fault information cannot be found and
our desired feature component BPFO is fully submerged into
various noises and interferences. To highlight the feature
information, a band-pass filter with center frequency 2700Hz

FIGURE 12. Filtered signals of the fault bearing and its corresponding
spectrums: (a) time waveforms, (b) frequency spectrum, (c) envelope
spectrum of original signals, (d) zoom-in view of envelope spectrum
indicated by the dotted rectangle.

and bandwidth 2000Hz is designed and its filtered results are
shown in Fig. 12. However, feature signals still cannot be
recognized. To further mitigate the discrete harmonic compo-
nents, a pre-whited operation is then performed to the filtered
signals and then the proposed BiNSOF is applied to extract
fault information. The TQWT transform with parameters
(Q,R, J ) = (2, 6, 19) is adopted as the sparse dictionary.
The extracted feature signal and its spectrum are depicted
in Fig. 13. Compared with the results of Fig. 12(c) and (d)
with Fig. 13(c) and (d), the fault characteristic frequency
BPFO and its higher orders are significantly highlighted.
Moreover, discrete interference frequencies and strong noises
are well eliminated.

For comparison, SK is also used to analyze the same
signal and its results are shown in Fig. 14. It can be seen
that the center frequency and bandwidth of the optimal fil-
ter are 3840Hz and 2560Hz, respectively. Moreover, fea-
ture information cannot be recognized from the spectrum
of the envelope signal. Therefore, the effectiveness of the
SK algorithm is unsatisfactory compared with the proposed
BiNSOF.

In addition, the above two cases are performed under
Windows 10 and MATLAB 2016b running on a computer
equipped with an Intel Core 7 CPU at 2.93 GHz and 16 GB
of RAM. The running time of the proposed method is 66.73s

VOLUME 8, 2020 19779



H. Zhang et al.: Bi-Level Nested Sparse Optimization for Adaptive Mechanical Fault Feature Detection

FIGURE 13. Feature signals extracted through the proposed BiNSOF:
(a) waveforms of feature signals, (b) frequency spectrum, (c) envelope
spectrum of feature signals, (d) zoom-in view of envelope spectrum.
Resonance band indicates the critical region where feature information
concentrates. BPFO × 1 is the outer race fault frequency of bearings.

FIGURE 14. The fault information obtained by the SK technique: (a) Fast
Kurtogram of the original signals, (b) filtered signals according to the
optimal filter with the center frequency 3840 Hz and the bandwidth
2560 Hz, (c) envelope spectrum of the filtered signals.

with the signal length of 60000 and 27.95s with the signal
length of 16283, which is acceptable for offline condition
monitoring Systems.

V. CONCLUSION
In this paper, a SURE based bi-level nested sparse opti-
mization framework (BiNSOF) is proposed for adaptive fault
feature recognition from its noisy collections. The proposed
BiNSOF jointly optimizes the `1 regularized sparse esti-
mator as well as its hyper-parameter. Its highlights is to
almost perfectly approximate the oracle MSE without any
real feature information, and meanwhile provide a reliable
way to adaptively confirm optimal hyper-parameter sets for
the maximum performance gains of fault detection. The
BiNSOF, in essence, adopts a bi-level nested optimization
strategy with an inner primal-dual splitting scheme and an
outer golden section search scheme. Moreover, an iterative
procedure is proposed to gradually calculate the divergence of
sparse estimator while this procedure incurs no significantly
computational cost, which guarantees the effectiveness of
MSE estimator. The BiNSOF’s convergence is evident based
on convex optimization theory and its computational com-
plexity has the same order of popular first-order algorithms.
Extensive numeric simulation shows that the BiNSOF algo-
rithm could reliably track the trend of oracleMSE and rapidly
achieve the minimumMSE point to extract near-optimal fea-
ture signals. Moreover, the BiNSOF’s performance is robust
with dictionary types and noise levels, which significantly
boosts its generalization capability. Lastly, the effectiveness
and applicability of the BiNSOF are demonstrated through
applying it to two bearing fault data sets from CWRU bench-
mark bearing data and aero-engine bearing test data. All fault
detection results confirm that the BiNSOF outperforms state-
of-the-art fault detection techniques.

By product, the inner sparse estimator of BiNSOF is not
restricted to `1 regularized sparse estimator, various recently
developed sparse estimators, such as weighted sparse estima-
tor [22], enhanced sparse period-group lasso estimator [28]
and generalized minimax convex penalty based sparse esti-
mator [29] can also be embedded into BiNSOF to adaptively
attain optimal hyper-parameters as well as achieve its near-
optimal performances. Moreover, it is a possible direction
for future research to extend the applicability of our current
adaptive fault diagnosis technique to other industrial systems.
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